Pa The

Connection Machine
System

CMMD User’s Guide

Version 3.0
May 1993

Thinking Machines Corporation
Cambridge, Massachusetts

vf
First printing, May 1993 ‘ '

dkkkkkkdkdkkhkkkhkkdkhkhkhkikhhhhdhrbhdbhdhhhhhrdkhrdhhhhbrbbddkdrrbhrhrrbrdihhhhkhhhir

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines reserves the right to make changes to any
product described herein.

Although the information in this document has been reviewed and is believed to be reliable, Thinking Machines
Corporation assumes no liability for errors in this document. Thinking Machines does not assume any liability ﬁ :
arising from the application or use of any information or product described herein.

kkkkibkkhhkkhhhhhkhrbhhhhkhbbkbhrihhhkhbdrbhrhbbbdhhhhhhhhrbhrhbbhrhhhhhhkhhrhhhhhrbirihd

Connection Machine® is a registered trademark of Thinking Machines Corporation.
CM, CM-2, CM-200, CM-5, CM-5 Scale 3, and DataVault are trademarks of Thinking Machines Corporation.
CMost, CMAX, and Prism are trademarks of Thinking Machines Corporation.
C*®is a registered trademark of Thinking Machines Corporation.

Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.
CMML), CMSSL, and CMX11 are trademarks of Thinking Machines Corporation.
Scalable Computing (SC) is a trademark of Thinking Machines Corporation.
Thinking Machines® is a registered trademark of Thinking Machines Corporation.
SPARC and SPARCstation are trademarks of SPARC International, Inc.

Sun, Sun-4, and Sun Workstation are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

The X Window System is a trademark of the Massachusetts Institute of Technology.

Copyright © 1993 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street

Cambridge, Massachusetts 02142 -1264
(A1TT\ 724 _100nN

Ccmtnts

About This Manualciiiiiniiiii it tioieeeaneeneonenosneosononconnnens vii
CuStOMET SUPPOTL ..t v v vttt eere e ionnnsanoneseesessssasnnnnnnsnnnens ix
Chapter 1 Introductiont 1
1] PartitionSciitiiir it ietiei et et e e e e e, 2
111 CM-5VectorUnitsooveievinniiienenennancnnenannnns 2
1.2 Software Versions Documentedcciiiiiiiiniennnneennn. 3
1.3 Usinga CM-5SyStem ...uvnirenninirrnisennnetsenneonnansannns 3
131 The USer’s VIEWcivviiiinieeenneceacennrecaenseanss 4
1.3.2 Keeping Up with System Statuscoinnnnnnnn.. 5
14 WhyUseThisManual?ooiuiriitiiniiiinininnnnnennnnns 8
1.4.1 Softwareto Know Aboutcoiviiiiiiirnnnennne. 8
1.42 Organizationof the Manualcovveeiienennnn. 9
Chapter 2 Creating Message-Passing Programs 11
2.1 Basic Components of a Message-Passing Program 11
2.2 Hostless PTOGramS . ..vvvvviieiiinnnneanuneereeeeeensesseannnns 12
2.2.1 Computation and Communicationccveevuunn 12
2.2 JJO i e et titie it s 13
223 Terminationccveveieennerennnneeennnneenaaanans 13
2.3 Host/Node Programsoieiieiiuiuniiininneeencennnnnnes 14
24 AFew Caveatscvvitniiienineerinrtuaatasscearsesenacasnsns 15
2.5 Fortran JJO ISSuesiiiie i iiiiieiiiieeetanneasnanearanassenns 16
251 CMMD JJOMode Restrictionsooveveenneneeaasennns 16
Synchronous fOModescocvviviiiiiiiininn, 16
Global Independent /OModecovvvennennn. 17
Local JOMode . .. ovv ittt iiriieeenneraasnnnns 18
2.5.2 Other Fortran I/O Considerationscccvveeieeen. 18
Initializing Standard J/Occciiiiiii it 18
Using the ~£ Option in Fortran 77 18
Don’t Mix F77/Oand CMFI/O.........ccivivinnnnn. 18
Version 3.0, May 1993 i

Copyright © 1993 Thinking Machines Corporation

CMMD User s Guide

TR

Chapter 3 Compiling and Linking CMMD Programs 19
31 Include Files ... oottt e i ittt ittt 19
3.2 HostleSSPIOZTAMSocveviennnrennnoesnenoneeronnnnssonseonnss 20

3.2.1 Compiling and Linking Hostless Programs 20
Compileas Usualcoviiiiniiininennnenenn 20
Linkwithemmd-1dooiiiiiiiiiiiiiiinann., 21

3.2.2 Important Note for VU CM-5 Sites:cciiiviiiiinnn. 22

3.3 Host/Node Programsc..cueueuiiieeeneseneeereensnnnanseeenns 22

3.3.1 Executing Host/Node Programsc.covveinnn.n. 22
Starting the Programsccoviiiiinninnnnn. 22
The /O SEIVer ..o ivtiiiii ittt ieereaacnnnnnnns 23
Terminating the Programsoovvevevneenennnn. 23

3.4 Compiling CM Fortranand C* Programscceeviieevrrnenns 24
3.5 Fortran 77 PrOGIams . . .o oo vveviitnnereernsneeesonesennnseannenss 24
3.5.1 Use ~Nx Option to Increase Symbol Table Limit 24
3.5.2 Use ~£ Option to Align Double Precision Data Correctly 25
3.6 Writing Version-Independent CMMD Codeccovvnuunnnnn 25
3.6.1 Important Differences Between Versions 2.0 and 3.0 25
3.6.2 CMMD_VERSION Preprocessor Symbol 25
3.7 Sample PrOgramsc.ovvvennesveaneareeunneessonaenennsennnns 26

3.7.1 HostlessExamplescciiiiiiiiiiiiiiiiieinnnns 26

3.7.2 Host/Node Examplesccvvvireiiiiiiinninennnns 26

Chapter 4 Executing Programs, 27

. 4.1 The Execution Environmentcceeiiviieiiinnnnnnnnnnans 27
42 Gaining ACCESS .. ouunurnnrereneneseeeeesessnssnnsnaneesesseacans 28
4.3 Checking System Statusoovviiiiiiirenrnniinneensireennns 28
44 Executing a Programccvoiiiininiiieennnereannnnennans 29
4.5 ExecutingaBatchJobwithNQScooiiiiiiiiiiiine, 30
4.5.1 SubmittingaBatchJob...........cccvvviiiiiiiiiiin, 30

452 CheckingonNQS ..ottt 31

46 Timing aProgramccveiuiortennninreresrnenrnnnannnanns 31
46.1 UsingCMOSTTIMETS . .covvtnrerrunnnnrennnsnranonsenns 32

Version 3.0, May 1993

Copyright © 1993 Thinking Machines Corporation

4

Contents
D

Chapter 5 Error Handling and Error Diagnosis 33
5.1 EmorHandlingoeveennreeeeennnneeeeaaiieeeeaneeaeaainnan, 33
5.1.1 Default ErrorHandlingccciviiiiiennninnnnnnns 34
5.1.2 Customized Error Handlingoviveoaan... 35
52 CMMD Safety ROUtINEoviiiininniiirenenennneneneeeenns 35
5.3 When Your Program Is Terminatedoooiiiiiiannienn., 36
53.1 Usingprintf ...t 36
532 TheEmorsFileooviiiiiiiiiiiiiiiiiiiiiiiiennn,s 36
533 CoreFilescoviiiiiiiii ittt it 37
534 CMTISDFIES ...uuiiiiiiiiiireieninnnianeeeenananns 37

5.4 Fortran Tracebacks:
A Warning about Synchronizationovoiiiiiiiiiiiiiiie, 37
Chapter 6 Debugging Your Programcoiivnnn. 39
6.1 INtroduConcviviieiruininneennneecnnnesennnnnvannnnens 39
6.2 High-Level dbx Features Supportedc.coviiiiiiinieeenennnns 40
6.2.1 The Essential Commandscoovviiviinienennnnnn. 40
622 Other Commandscvviiiitiinnneeernnnerennnnas 41
6.2.3 Commands Not Supportedcccvviiiiiniiinnnnnnnnn 41
6.3 Summary of EXtensionscceuiiiiiiiiiiiiniiaaceenaninns 41
6.4 Commands for Low-Level Debuggingccovviivenna.., 42
6.5 Compiling and Linkingcooiiiiiiiiiiiiiiiiiniiiiian, 44
6.6 Starting Up pndbXciiiiiiiiiiiieiiiiiinerrensansaneennnn 44
6.6.1 USINgPrSmMcvniienniriereeennanannnenssansennenns 4
662 Using @bovviininiiiinneeniinnernnaeneennnaness 45
6.7 Monitoringthe Nodesccoiieiiiiiiiiiiiiiiieniiiieneennns 45
6.7.1 Asynchronous Monitoringcoeeeveteiviinnnnnnns 46
6.8 ExitingfrompndbXc.ciiiiiiiiiiiiiiiiiiii it 46
6.9 UsSIngDNADX .. .oiviiiiiiiiiiiiiiiettitttiennnantererrraesnns 46
6.9.] DPRSLALUSivtiiiiiirireearreriteatiiaaaaas 47
6.9.2 Interrupting Nodesccivruiuiiiiniiniinnneennn 48
6.9.3 Waiting for Breakpoints and Errorsccovvune. 48
6.9.4 Using pndbxtoDebug Core Filescovvvviieennane, 49
6.9.5 Debugging CM Fortran Programs withpndbx 49
6.10 Submitting a BUg Reportcoviiiiniiiiiiiii ittt 51
6.11 A Sample pndbX Sessionoiiiiiiiiiiiiieiaereii e 52

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

ALl round trip.....cciiiiiiiiiiiiiiii i e 61

Round-trip message (host program)c.cccuunn. 61

Round-trip message (node program) 62

N0 . 5. -V« AP 63

One-dimensional ringccovviiiiiiniiennennnnnns 63

Al3 redist blockcoiiiiiiiiiii e 64

Al4 redist momblock...........ciiiiiiiiiiiiiiiien., 65

A.l5 redist monblk hndlrcoiiiiinn., 66

. N T < 5 < 68

A2 Fortran 77 EXamplesottt ittt e eas 71

Appendix B Non-RTS Parallel Memory Allocation 75

B.1 The Parallel Stack and Parallel Heapc.coiiviiiinenennnne, 75

B2 VU REZIONS ...t tiiiiiiiiiiiiiiiiiiiieeetstnnntanneseeseeeeeens 76

B.3 Expanding the StackorHeapcciviiiiiiiiiiiiiiiniannn.. 76

B.4 Translating Stack and Heap Addressescoviviiiinnennan.. 78

B.5 Usingpmallocto Allocate MemoOryovvivinnnernenneennnns 79
Version 3.0, May 1993

Copyright © 1993 Thinking Machines Corporation

B (‘/’g

ha

About This Manual

Objectives of This Manual

The CMMD User s Guide is written for programmers who are writing or porting
message-passing programs to run on the Connection Machine model CM-5. The
User's Guide does the following:

=]t introduces the components and environment of the CM-5 system, as
they are used for message-passing programming.

» It provides a brief description of the host/node programming model, and
describes how that model is currently implemented on the CM-5.

= It introduces the tools currently provided on the CM-5 to assist in the
development of message-passing programs.

i1}

» It provides a useful “do’s and don’t’s” for the successful creation and
execution of message-passing programs on the CM-5.

This user’s guide is intended to be used in conjunction with the CMMD Reference
Manual, which describes the functions provided by the CM-5’s message-passing
library, CMMD. Both manuals assume that the programmer has some experience
in writing message-passing programs in the language of his or her choice.

This edition of the manual documents Version 3.0 of the CMMD library and
Version 7.2 of the CMOST operating system.

Version 3.0, May 1993 v
Copyright © 1993 Thinking Machines Corporation

" Notation Conventions

CMMD User s Guide

;

The table below displays the notation conventions observed in this manual.

Convention

Meaning

bold typewriter

italics

typewriter

% bold typewriter
regular typewriter

CMMD functions and UNIX and CM System Soft-
ware commands, command options, and filenames,
when they appear embedded in text. Also program-
ming language syntax statements, and language
elements such as keywords, operators, and func-
tion names, when they appear embedded in text.

Argument names and placeholders in function and
command formats.

Code examples and code fragments.

In interactive examples, user input is shown in
bold typewriter and system output is shown in
regular typewriter font.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

¢

ustomer Support

Thinking Machines Customer Support encourages customers to report errors in
Connection Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help
us identify and correct the problem. A code example that failed to execute, a
session transcript, the record of a backtrace, or other such information can
greatly reduce the time it takes Thinking Machines to respond to the report.

If your site has an applications engineer or a local site coordinator, please contact
that person directly for support. Otherwise, please contact Thinking Machines’
home office customer support staff:

Internet
Electronic Mail: customer-support@think.com
uucp
Electronic Mail: ames ! think!customer-support
U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264
Telephone: (617) 234-4000

Version 3.0, May 1993 .
Copyrigiit © 1993 Thinking Machines Corporation V1

Chapter 1

Introduction

This manual provides information on CMMD, the CMOST operating system, and
associated utilities for programmers who are interested in node-level, message-
passing programming on the CM-5 supercomputer.

Two current models exist for such programming on the CM-5:

» The host/node model: a host program executing on the host starts up and
monitors a node program running in multiple copies on each of a number
of processing nodes. This programming model is currently supported for
the C, C++, and Fortran 77 programming languages.

Implementation Note: Currently, the host/node programming model is
not supported in C*.

® The hostless model: a single node program executes in multiple copies on
the processing nodes, while the host runs a CMMD-supplied I/O server
program. This programming model is currently supported for the C, C++
and Fortran 77 programming languages, and for the parallel CM program-
ming languages CM Fortran and C*, when executing in “on-a-node” style.

In both of these programming models, the number of processing nodes is deter-
. mined by the size of the CM-5 partition in use (see below).

CMMD is the software libréu'y used for interprocessor communication — that is,
for the message passing between nodes in the hostless model, and between host
and nodes in the host/node model.

Message-passing programming is supported for the following languages: C,
C++, and Fortran 77. Message-passing programming is also supported for the
following parallel programming languages: CM Fortran and C*.

Version 3.0, May 1993 1
Copyright © 1993 Thinking Machines Corporation

1.1

1.1.1

CMMD User’s Guide

Partitions

The CM-5 is a highly scalable parallel processing computer. The number of com-
putational processors (or nodes) on a CM-5 ranges from fairly small to very large.

No matter what its size, however, a CM-5 provides for both space-sharing and
timesharing.

® Space-sharing occurs when the system administrator partitions the CM-5,
allotting so many nodes to one partition, so many to another. The system
administrator also decides which users have access to a given partition.

Administrators can change partition sizes or access rules as needed to
meet the needs of their sites.

= All partitions run the CMOST operating system, an enhanced UNIX operat-
ing system. Therefore, timesharing is the natural mode on all partitions.

Users of the CM-5 have access to all UNIX facilities that normally form part of
the SunOS version of UNIX. In addition, they have access to special tools and
utilities provided by CM software to facilitate parallel programming.

CM-5 Vector Units

In a CM-5 with vector unit accelerators (VUs) installed, each processing node
has four associated VU accelerators. In this case, you have two options:

® You can run your code without the VUs (in any of the supported lan-
guages).

® You can run your code with VUs (in the parallel programming languages
C* and CM Fortran, or by calling a DPEAC routine from C).

The VU accelerators provide enhanced performance for parallel programs that
are largely arithmetic in nature.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

}

uﬁ:,‘ ’

LIy
I3 ’
J I

Chapter 1. Introduction 3
?},ﬁf KWWNMW s Wy O A AN M R e e b SRR SRR 45 s 22

1.2

1.3

Software Versions Documented

This edition of the CMMD User s Guide documents tools and utilities that are part
of Version 7.2 of the CM operating system, CMOST.

It does not document the cc or £77 compilers, which you would use for compil-
ing message-passing programs written in these languages; please see SunOS
documentation for that information.

Using a CM-5 System

The CM-5 is a massively parallel supercomputer. It contains tens, hundreds, or
thousands of processors. These processors are divided into two categories: pro-
cessing nodes and control processors.

Processing nodes (PNs) make up the vast majority of processors inside the CM-5
system. They are the processors that do the actual computations on parallel data,
communicating with each other to share data as necessary. System software
occasionally refers to these processors as processing elements, or PEs. (Note: On
CM-5’s with vector units, the four VUs associated with each node are considered
part of the processing node.)

Control processors (CPs) manage the CM-5’s processing nodes and IJO devices.
These processors provide major OS services for the system, handling the sys-
tem’s user interface, its I/O and network interfaces, and its system administration
and diagnostic interfaces.

A group of processing nodes under the control of a single control processor is
called a partition. The control processor managing. the partition is known as the
partition manager (PM). In message-passing programming, the partition man-
ager is the host, while the processing nodes are — naturally — the nodes.

Interprocessor communication networks connect all processors, of both types, to
provide rapid, high-bandwidth communication between processors.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

4 CMMD User s Guide

1.3.1 The User’s View

Figure 1 illustrates a sample CM-5 system as it appears to a user. This particular
system has two partition managers, which have been named Mars and Venus.
Each of these PMs is currently managing a partition of 256 nodes. The system
also has control processors managing some 1/O peripherals, and one that is dedi-
cated as a system console, for the system administrator’s use.

“User i+
Workstation

User
Workstation Ethernet

. .User .-
Workstation

“User.:..
Workstation

ataVault(s

any network

Partition #1
Partition #2

Interprocessor communications networks

User
Workstation

Figure 1. A sample CM-5 system.

Users (shown here at workstations “somewhere on the network™) access the
CM-5 system by accessing one of the PMs. They can log in remotely or use
remote shells to run programs on either partition, assuming they have been
granted access. Two examples might be:

A program runs on a single partition, using all the nodes on the partition for its
parallel operations. If a program needs access outside the partition — to read

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

Chaprer 1. Introduction

1.3.2

from an I/O device, for example, or to pass data to a process running on another
partition — it goes through the partition manager to do so. (The partition man-
ager, running in supervisor mode, can access any address in the system. The
nodes, running the user’s program in user mode, can access only addresses
within their own partition.)

Keeping Up with System Status

Partitions are not immutable. They are defined by the system administrator to
meet the site’s needs, and can be changed as needed. The system shown in
Figure 1, for example, could be reconfigured as a single partition, with Venus
controlling all the parallel nodes and Mars either inactive or acting as a stand-
alone compile server. Similarly, if some nodes needed to be taken out of service
temporarily, the partition could be reconfigured around them.

The cmps command, given on a partition manager, tells users how many nodes
the PM currently controls and what jobs it is running. For more information on
this command (which is modeled after the UNIX ps command), see Chapter 4.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

6 CMMD User's Guide {" '

* SIMD stands for Singie Instruction, Multiple Data, and MIMD stands for Multiple Instructions, Multiple
Datz. These terms are sometimes used to describe programming styles as well as hardware. They are not,
however, entirely accurate as software descriptors. Data parallel programming, as implemented on the
CM-5 system, includes MIMD as well as SIMD capabilities, while message-passing programming often { .
makes use of SIMD techniques.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

CMMD Users Guide

1.4 Why Use This Manual?

1.4.1

This manual describes the CMOST tools and utilities that support message-pass-
ing programming on the CM-5. It should be used in conjunction with the CMMD
Reference Manual, which describes the message-passing library itself.

Software to Know About

This manual explains the following commands and tools, which are useful to
programmers writing message-passing programs on the CM-5 system.

cmps The CM version of the UNIX ps command, cmps tells you how
large a partition is and what processes are currently running on
it. See Chapter 4, or the on-line man page.

cmmd-1d The CMMD version of the UNIX 14 linker, documented in Chap-
ter 3 of this manual and in an on-line man page.

pndbx The CM’s node-level debugger, documented in Chapter 6 of this
manual and the on-line man page.

gsub The NQS command by which users submit jobs for batch execu-
tion on the CM-5. See Chapter 4, or the on-line manual page, or
NQS for the CM-5, Version 2.0.

CMMD timers
Node-level timers, which allow timing of code running on indi-
vidual nodes. See Chapter 4, or the on-line man page for any of
the timer commands.

CM panic

CMPN_panic
CMOST calls that handle errors in host and node processes; by
default, they halt the program, print an error message, and dump
core. See Chapter 5, or the on-line man page.

CMMD_error
The CMMD interface to the CM_panic and CMPN_panic func-
tions. See Chapter 5, or the on-line man page.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

4y

‘(k

SRR

) Chapter 1. Introduction 9

=%

core dump files

error files
Files created by CMOST to help diagnose program errors, docu-
mented in Chapter 5 of this manual.

rlogin The standard UNIX remote login command, used to log in to a
CM partition.

rsh The standard UNIX remote shell execution command, used to
run a program interactively on a CM partition without logging
in.

1.4.2 Organization of the Manual
Within this user’s guide,

® Chapter 2 describes the basic components of a message-passing program
and explains what happens during program execution.

0

T ® Chapter 3 describes how to compile and link message-passing programs.

= Chapter 4 describes how to execute your programs. It also describes the
CMMD timers and the ecmps command.

® Chapter 5 describes some OS facilities for handling and diagnosing pro-
gram errors.

® Chapter 6 describes how to debug message-passing programs using
padbx in conjunction with Prism or with dbx.

9
pT™

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 2

Creating Message-Passing Programs

........

This chapter discusses the mechanics of creating a message-passing program,
and describes briefly what happens when such a program runs on the CM-5.

The next chapter discusses compiling and linking message-passing programs.

‘\“’;‘,L, ’ 2.1 Basic Components of a Message-Passing Program

The source code for a CM-5 message-passing program depends on the program-
ming model in use:

® For a hostless program there is a single set of source code files for the
nodes. In the hostless programming model, the host merely initiates
execution of the node program, and thereafter acts as an I/O server for the
nodes. This is the recommended method for writing CMMD programs.

® For a host/node program there are two sets of source code files, one for
the host and one for the nodes. The host program must explicitly start and
monitor the execution of the node programs.

These two methods for constructing CMMD programs are described in the sec-
tions below.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corpor. 11

CMMD User s Guide
s

2.2 Hostless Programs

2.2.1

Hostless programming is the recommended method for using CMMD in a mes-
sage-passing program. In hostless mode, the user writes a single node program,
which will run on all the nodes. This program does all computation and commu-
nication; it does not communicate explicitly with the host.

Each node executes its code asynchronously, fetching data and instructions from
its local memory. It synchronizes with other nodes only when required to do so
for message-passing purposes (e.g., to send or receive a synchronous message,
or to participate in a global instruction, to do I/O, etc.).

What runs on the host, in this mode, is an internal server program provided by
the CMMD library itself. This program

= Enables CMMD.
" Downioads the user code to the nodes, which then begin executing it.

= Goes into a polling loop as an I/O server, so that it can communicate with
1/O devices on behalf of the nodes. This allows node programs to do I/O.

Hostless CMMD programming is supported for the following languages: C, ‘

C++, Fortran 77, CM Fortran, and C*.

Computation and Communication

The code that runs on the nodes performs all the normal tasks of an application
program. Computation on each node is written normally.

Communication among nodes uses CMMD function calls. Communication can
be point-to-point, when one node sends a message to a second node; or it can be
global, with all nodes contributing to the message (and, usually, with all nodes
receiving the result). Global communications synchronize all the nodes; point-to-
point communications can be either synchronous or asynchronous.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

"

Chapter 2 Creatzng Message—Passmg Programs 13

2.2.2

2.2.3

/0

CMMD provides four modes of I/O:

= local independent — each node opens and accesses files directly

= global independent — a single file is opened on all nodes simultaneously,
with each node having its own, independently-moveable file position indi-
cator.

» global synchronous broadcast — a global file is accessed by all nodes
simultaneously, with each node reading (or writing) the same data

= global synchronous sequential — a global file is accessed by all nodes
simultaneously, with each node reading (or writing) its own portion of the
file.

A file or stream opened in any one of the three global modes can be changed to
one of the other global modes at any time; in fact, a single node can indepen-
dently change its own view of the mode of a file to facilitiate its own purposes,
without affecting the mode of the file as seen by other nodes.

The global modes allow all nodes to open and access a file simultaneously, using
only a single UNIX file descriptor. (In local independent mode each node can
potentially access a different file, and a separate file descriptor is needed for each
file opened by each node.) Because UNIX sets a limit on the number of files that
can be open at any one time, the global file modes provide a significant increase
in flexibility, allowing the nodes to access multiple files simultaneously without
the threat of running out of file descriptors.

The usual UNIX streams — stdin, stdout, and stderr — are available to the
nodes. Since a CMMD program is a single process, all nodes share the same
streams. Therefore, they must take care not to overwrite each other’s contribu-
tions to the streams. This is usually accomplished by putting the streams into
append mode; see the CMMD Reference Manual for details.

Termination

To terminate a hostless program normally, all nodes should call exit () . Execu-
tion of this call on all nodes releases the host from the /O server and allows the
host program to exit normally. Note that exit () is called automatically when
the main routine returns.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

CMMD User’s Guide

2.3 Host/Node Programs

Host/node programs have a user-written main program that runs on the host (that
is, on the partition manager).

In this model, the host program starts parallel operations by calling
CMMD_enable (). This function:

= gathers argv, arge, environment variables, and process data in a process
control block.

= downloads node code, and thus allows the nodes to start running.
® downloads the process control block.

= starts up the CMMD J/O server, which goes into a polling loop, waiting for
1/O requests from the nodes. The server stops only when (1) it is explicitly
disabled, or (2) the program terminates abnormally.

If any other CM node activity has taken place, the user must
ensure that the activity has finished before calling
CMMD_enable.

The node program must have all nodes call CMMD_enable_host () . This func-
tion disables the host I/O server, and allows the host to return from the
CMMD_enable call and execute the rest of the user-written host program.

In order to perform I/O, the node program will have to re-enable the I/O server.
CMMD provides server functions for this purpose, as explained in the chapter on
host/node programming in the CMMD Reference Manual.

Code that runs on the host (that is, on the partition manager) may contain any-
thing ordinarily included in a program running on a Sun computer. This includes
system calls, /O calls, X11 routines, and calls to other specialized libraries.

Host programs, when used, generally perform computations, make CMMD calls
to communicate with the nodes (perhaps to provide input or receive output from
them), and make calls to other libraries or routines.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 2. Creating Message-Passing Programs

The CMMD library provides specific functions for communication between host
and nodes; these are discussed in the CMMD Reference Manual, in the chapter

on host/node programming.

Host/node programs terminate only when the host program calls exit (). Hav-
ing the node program call exit () merely puts the nodes into a busy-wait state
in the OS dispatch loop.

Host/node CMMD programming is supported for these languages: C, Fortran 77,
and CM Fortran. Note: Host/node programming is not yet supported for C*, and
for CM Fortran programs the host program cannot be written in CM Fortran.

2.4 A Few Caveats

1. If your program hangs, a node is probably waiting for a message that has
not been sent.

2. Allowing host code to become disordered so that the host calls for results
(e.g., via CMMD_reduce_from_nodes) before invoking the node routine
that contains the matching call (e.g., CMMD_reduce_to_host) is a sur-
prisingly common method for achieving such program hangs.

3. If your program fails with the message:

Ts~daemon failed to set up user memory on PE
Error: Couldn’t register with the TS daemon!

it means your program requires more memory than is currently available
on each node.

4. In host/node programs, the host is responsible for periodically polling the
network for I/O client requests. Neglecting to do this is a frequent source
of problems. (See the CMMD Reference Manual for more information.)

5. For the reasons mentioned above, we recommend that before formulating
any program in a host/node style, you consider whether it is possible to
write your program in a hostless style. This avoids many of the potential
problems involved in host/node programming.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

2.5 Fortran 1/O Issues

2.5.1

CMMD J/O is based on UNIX I/O. UNIX expects file I/O to be unbuffered, and
expects user applications to have a relatively high degree of control over the tim-
ing of opens, reads, writes, etc. Fortran I/O, on the other hand, is based on
buffered I/O. This causes certain problems for synchronous IO, as explained
below.

CMMD I/O Mode Restrictions

Buffered I/O, by its nature, removes the user’s control over when the underlying
read or write occurs. For instance, if stdio is used to write to a file, the actual
UNIX write call will occur when the total number of bytes written to the file
reaches the buffer size (typically 8K), rather than at each call to a stdio library
routine. This means that it is difficult or impossible for the programmer to guar-
antee synchronous calls across the partition to the underlying I/O routines.
Situations in which contributions to a write from some nodes fit into the I/O
buffer, while contributions from other nodes overfill the buffer, and thus require
multiple writes, are particularly troublesome.

Synchronous I/O Modes

This restriction results in a difficulty for Fortran I/O under synchronous sequen-
tial and synchronous broadcast modes, as the only provided Fortran I/O
mechanisms are built on top of a layer of buffering. (Synchronous broadcast
mode may work correctly, as long as the number of bytes read or written, and any
line buffering done, is identical on each node.)

Two workarounds are possible for I/O in synchronous modes:

» Fortran 77 programs may be able to modify their I/O buffer sizes so that
an entire read or write for each node fits into the buffer. (Use the Sun
fileopt='BUFFER=n’ extension to the open statement, where » is the
desired buffer size.)

s To allow Fortran programmers to access the underlying, unbuffered,
UNIX I/O calls, CMMD provides global routines that resolve to these read
and write calls.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

ow
b, ’

Chapter 2.

Version 3.0,
Copyright © 1993 Thinking Machines Corporation

The global /O CMMD routines are global read and write calls:

INTEGER FUNCTION CMMD_global_read(unit, buffer, length)
INTEGER FUNCTION CMMD_global_write(unit, buffer, length)
character* (*) buffer
integer unit, length

The unit argument is a standard Fortran file unit number; 1ength is the number
of bytes to be read or written. On success, these functions return the number of
bytes written or read; they return -1 on error. A program can use standard Fortran
I/O functions to write data into character buffers, and then call the global CMMD
I/O functions with the character data buffers as arguments.

Programmers should note the following issues regarding these functions:

= These functions take unit numbers as arguments. Any flags (for example,
status=new) that are checked at the time the units are opened are still
checked. Any other flags that affect writing to the unit (such as record for-
mat, etc.) are ignored.

= The global I/O functions can be called only on file units in synchronous-
sequential or synchronous-broadcast mode. They will return errors if
called on file units that are in local or in global independent mode.

® You can access any given file unit either by Fortran read and write
statements, or by these CMMD functions, but not by both. (Using both
may work, but this usage is not supported.)

® The files created by cMMD_global_write will be normal UNIX files,
not standard Fortran files; in particular, they won’t have record separators.
(This may or may not be a problem for a given application.)

Global Independent /O Mode

There also can be problems using global independent mode from Fortran 77 and
CM Fortran.

In Fortran 77 you can handle any buffering problems by explicitly using the
fileopt=’BUFFER=n’ option. (While this may not always be necessary, it is
good practice to set this flag explicity, nevertheless.)

In CM Fortran the proper method to avoid potential problems is to state explicitly
the number of bytes being read or written in the read and write commands. (In
other words, don’t use the “*” specification.)

May 1993

18 CMMD User s Guide
B R
Local /O Mode
I/O in local mode is not affected by these buffering problems.
2.5.2 Other Fortran I/O Considerations

Initializing Standard 1/O

CM Fortran initializes standard I/O on demand, rather than at the beginning of
a program. Thus, the user cannot change the I/O mode of the standard units until
they are used. An application should, therefore, use a standard unit once with its
default mode; then change it to the desired mode.

The default mode for the standard I/O ports is sync_bc_mode; independent
mode is generally preferred for stdout and stderr.

Note: This problem will be fixed in a forthcoming release of CMFE.

Using the —f Option in Fortran 77

It is possible for a Fortran 77 program to contain double precision data which is
not doubleword aligned in memory (Fortran 77 does not force double alignment
by default). The Fortran 77 versions of certain CMMD routines will get a bus
error and crash the program if they are called on such data. (This is because
CMMD 3.0 routines always attempt double loads when dereferencing double
pointers.) To avoid this problem, compile with the -f option.

Don’t Mix F77 1/O and CMF 1/O

If your main program is in Fortran 77, you should use Fortran 77 for all I/O; if
your main program is in CM Fortran, you should use CM Fortran I/O throughout.
Do not try to mix Fortran 77 IO with CM Fortran I/O.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

v

)

Chapter 3

Compiling and Linking CMMD
Programs

In CMMD Version 3.0, there are two kinds of programs:
® hostless programs

® host/node programs

The compiling and linking steps for these two program types are described in
detail in the sections below. (Note that compilation of CM Fortran and C* pro-
grams is described in a separate section below.)

3.1 Include Files

For both hostless and host/node programs, the include files required by CMMD
are the same:

For C-based programs (that is, programs written in C, C++, and C*), the include
file to use is:

#include <cm/cmmd.h>

For Fortran-based programs (programs written in Fortran 77 and CM Fortran),
the include file is:

#include <cm/cmmd-fort.h>

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corpor: 19

20

CMMD Users Guide

3.2 Hostless Programs

3.2.1

In hostless mode, the user writes a single C, C++, or Fortran 77 program, which
will run on all the nodes. The program does all computation and communication
on the nodes; it does not communicate explicitly with the host.

Note: See Section 3.4 for special information about compiling CMMD programs
written in CM Fortran or C*.

‘What runs on the host, in this mode, is a server program provided by the CMMD
library itself. This program

= Enables CMMD.
* Downloads user code to the nodes, which immediately start processing it.

®* Goes into a polling loop as an J/O server, so it can communicate with I/O
devices on behalf of the nodes. This allows user programs to do node I/O.

To terminate a hostless program normally, all nodes should call exit (). Execu-
tion of this call on all nodes releases the host from the I/O server and allows the
host program to exit normally. Note that exit () is called automatically when
the main routine returns.

Compiling and Linking Hostless Programs

Compile as Usual

You compile a hostless program just as you would an ordinary C, C++, or
Fortran 77 program. You use whatever compiler (Sun or GNU) you would nor-
mally use, and you supply your own makefile. The following compiler versions
are supported:

= Sun F77 versions 1.* are supported. Version 2.0 will compile and run, but
is not supported by the pndbx debugger.

= All Sun bundled C compilers are supported. Versions of acc (unbundled
Sun C) prior to version 2.0 are supported. Version 2.0 will compile and
run, but is not supported by the pndbx debugger.

= All versions of GNU C up to and including version 2.3.3 are supported.
The Sun CFront (C++) compiler version 1.0 is supported. The GNU G++
(C++) compiler version 2.3.3 and earlier is supported.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

Uy

el

i

Chapter 3. Compiling and Linking CMMD Programs
' SO S S S

3

Link with cmmd-Id

After compiling your program, you must link it using the customized linker,
cmmd-1d. Some options are:

-comp comp Required. Specifies the command to be used for linking
(emf, gec, £77, etc.)

-comphost comp
Optional. Selects different command to be used for host
files in host/node linking (see Section 3.4 below).

-vu Optional for CM-5 systems with vector units. Indicates
that code should be linked with a VU-compatible library.

-node object_code.o library.a ...
Required. Specifies the object code and library files that
you want linked for the node programs.

-host object_code.o library.a ...
Optional. Specifies alternative object code and library
’ files that you want linked for the host program.

-o executable-name
Optional. Specifies executable name (default a.out).

-g Optional. Links in the CMMD debugging libraries.

-v Optional. Requests verbose descriptions of the linking
process.

-1, -L, etc. Optional. Pathnames of any required user libraries. (Same

as corresponding argument of Sun 1d.)

-cmos_root path
Optional. Tells the linker where to find the CMOS system
software, if not in /usxr/11ib.

~cmmd_root path

Optional. Tells the linker where to find the CMMD library,
if not in /usr/1ib.

cmmd-1d first uses the specified compiler to link the program in the normal man-
ner; it then customizes the resulting file for execution with CMMD, adding its

. own host program. An on-line manual page is available for cmmd-1d.
#

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

3.2.2

3.3

3.3.1

CMMD Users Guide

S

Usage Note: If you attempt to compile a program with many source files or very
long pathnames, you may run into cmmd-1d’s command line length limit, which
is currently 4K characters. A simple workaround for this limit is to collapse a
number of the object files you are linking by using 1d:

1d -r -o <output>.o <list of input .o’s>

Important Note for VU CM-5 Sites:

If your CM-5 has Vector Units, you can use the -vu switch to cause cmmd-1d
to link with the VU version of the software, and thereby make use of the VUs.
Note: You must supply this switch when linking a CMMD program written in
a parallel language like CM Fortran or C*.

Host/Node Programs

You compile and link host/node programs in almost the same way as hostless
programs. For host/node programs, howeyver,

* You must specify your own host program.

= When you compile the host program, you must specify -bcP_CODE. This
allows the use of appropriate include files for the control processor, rather
than those for the nodes.

® When linking, you must specify the -host option as well as the ~node
option. (The ~host option specifies the host objects to be linked.)

Note: See Section 3.4 for special information about compiling CMMD programs
written in CM Fortran or C*.

Executing Host/Node Programs

Starting the Programs

Host programs must start parallel operation by calling cMMD_enable (). The
node program cannot run until the host program has made this call.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

Chapz'er 3 Compzltng and Lmkmg CMMD Programs 23

Node programs must similarly call CMMD_enable_host () ; until they make this
global call, the host program cannot progress beyond its own CMMD_enable ()
call. The reasons for this concern the CMMD I/O server, and are explained in the
section on the server, below.

The |/O Server

When a host program starts running on the partition manager, it must call
CMMD_enable.

CMMD_enable, when called, does the following:

= It gathers argv, argc, environment variables, and process data in an pro-
cess control block.

= It downloads node code, and thus allows the nodes to start running.
=]t downloads the process control block.

- = Tt starts up the CMMD J/O server, which goes into a polling loop, waiting
' ’ for I/O requests from the nodes. The server stops only when (1) it is explic-
itly disabled, or (2) the program terminates abnormally.

While the server is running the host processor cannot do anything else; in partic-
ular, it cannot run any code in your host program. ‘

CMMD_enable_host (), when issued by each of the processing nodes, turns off
the server, and thus allows user-written host code to execute.

If the node program needs to do I/O, it must either supply its own I/O server pro-
gram, or re-enable the CMMD server program. Use the server routines described
in the CMMD Reference Manual to do this.

Terminating the Programs

A host/node program terminates normally when the host program calls exit ().
A call to exit () made on a node merely terminates the node program.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

3.4

3.5

3.5.1

Guide

Compiling CM Fortran and C* Programs

To compile and link a hostless CMMD program written in CM Fortran (that is,
to use CM Fortran “on-a-node”), use the CM Fortran compiler (emf) as usual,
and specify the ~node switch to indicate on-a-node CM Fortran execution.
(When compiling on a CM with vector units, you must also supply the -vu
switch to insure proper linking of the program.)

To compile and link a host/node CMMD program written in CM Fortran, you can
use the parallel compiler (cm£) to compile and link the host and node programs
by preceding each host source file with the ~host switch, and supplying the
-comphost switch to specify the compiler to be used for the host program.
(Important: The host program currently cannot be written in CM Fortran, and
the —comphost argument cannot be the cmf compiler.)

To compile and link a hostless CMMD program written in C*, use the C* com-
piler (¢s) as usual, and specify the ~-node switch to indicate on-a-node
execution. (When compiling on a CM with vector units, you must also supply the
-vu switch to insure proper linking of the program.)

Note: In a hostless C* program, the node program’s main routine must be written
and compiled in C* so that C*-specific initializations are included.

The host/node programming model is currently not supported for C*.

Fortran 77 Programs

Use —Nx Option to Increase Symbol Table Limit

Fortran 77 programmers may find that the default Fortran 77 symbol table size
is not large enough to contain the symbols used in a CMMD program. You can
tell this is the case if you see the following error when you try to compile a
program:

£77 program.pn.F ...
Compiler error: Too many external symbols.

A simple workaround is to specify the -Nx option to increase the
size of the symbol table:

£77 program.pn.F ... -Nx500

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

P

B

3.5.2

3.6

3.6.1

3.6.2

hapter 3. Co.

Use —f Option to Align Double Precision Data Correctly

It is possible for an Fortran 77 program to contain double precision data which
is not double aligned (Fortran 77 does not force double alignment by default).
The Fortran 77 versions of certain CMMD routines will get a bus error and crash
the program if they are called on such data. (This is because CMMD 3.0 routines
always attempt double loads when dereferencing double pointers.) To avoid this
problem, compile with the -£ (or -dalign) options.

Writing Version-Independent CMMD Code

Important Differences Between Versions 2.0 and 3.0

CMMD 3.0 programs must not include the header file cmmd-io.h (a compile-
time error is signalled if this is done). The cmmd-io.h file is automatically
included by emmd. h.

The Version 2.0 error function cmmd_error is called cMMD_error in Version
3.0.

Functions that have handlers (eg. CcMMD_send_async) are extended in 3.0 to
include an extra argument that is passed to the handler function when it is called.
This extra argument is specified as void #*, and thus can be a pointer to any-
thing that the programmer wishes.

Handler functions in C are passed a pointer to a CMMD_mcb, thus requiring an
extra level of indirection than was required in Version 2.0. This is in contrast to
Fortran handler functions, which are passed a cMMD_mcb instead. The reason for
this difference is Fortran’s call-by-reference strategy, which implicitly includes
the extra level of indirection. By providing the same extra indirection in C pro-
grams, CMMD can use the same internal interface for both languages.

CMMD_VERSION Preprocessor Symbol

There is a C preprocessor symbol, CMMD_VERSION, that you can use to make
your code compatible with both Version 2.0 and Version 3.0 of CMMD.

Version 3.0 defines it as: #define CMMD_VERSION 30

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

3.7

3.7.1

3.7.2

er s Guide

s

Version 2.0 defines it as: #define CMMD_VERSION 20

This allows you to include constructs like the following in your code:

#if CMMD VERSION == 20
#include <cm/cmmd-io.h>
#endif

Sample Programs

A number of sample CMMD programs are included with this release, and can be

found in the directory:

/usr/examples/cmmd/ {hostless, hostnode} /language /example

Hostless Examples

C Examples:

am_fetch ring am_performance

channel perf parallel channel perf serial
hello int_parallel perf

io master

mp_serial perf performance
port_perf_serial redist_nonblk hndlr
Fortran 77/CM Fortran Examples: simple

am_store_ring
channel wave
int_serial perf
mp_parallel perf
port_perf parallel
subset_broadcast

hello

io-workaround n-body-bc

C++/G++ Examples: potato

Host/Node Examples

C Examples:
cmmd_canned_host global perf
io_plus performance

Fortran 77 Example: simple

hello

X_io_server

Version 3.0, May 1993

Copyright © 1993 Thinking Machines Corporation

-,

Chapter 4

This chapter discusses
= checking system status
® executing programs interactively
® submitting batch jobs
® timing programs
jW ’ ® printing output

4.1 The Execution Environment

The program execution environment on the CM-5 is similar to that of any UNIX
system, with enhancements to handle parallel processing.

As with any system, you
® gain access
= perhaps check system status

" run your program

e
%, .

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corpor: 27

4.2

4.3

Gaining Access

To gain access to a CM-5, you must know the name of one of its partition manag-
ers. In addition, you must have been granted access rights by the system
administrator.

The CM-5 is usually accessed across a network, either by logging in remotely
(via the UNIX rlogin command), by running a remote shell (via the rsh com-
mand), or by submitting a batch job (via the gsub command).

Once you have logged in or established your shell, you are operating in the
CMosT timesharing environment, with the following resources available to you:

= A partition manager (equivalent to a UNIX workstation). You initiate pro-
gram execution on this processor, which utilizes parallel nodes and 1/O
devices as needed.

= All the parallel nodes in the partition. Under the CMOST timesharing envi-
ronment, all the nodes are available to, and used by, all the parallel
programs running on that partition.

* All the /O devices on the CM-5 (assuming the system administrator has
" granted you access to the appropriate file systems).

Checking System Status

The two most common questions about system status on a CM-5 are
* How large is this partition at this time?

* How many users are running on it?

You can use the cmps command (modeled after the UNIX ps command) to
answer these questions. The cmps command provides information about the
partition on which the command runs. If you’re logged on to Mars, the command
cmps provides information on Mars. To find out about conditions on Venus, you
would use a remote shell and type rsh venus cmps.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

b
J

PN

Chapter 4. Executmg Programs

In either case, the cmps output would look something like this:

The first line of the cmps output provides general information about the parti-
tion, including the number of nodes (or PNs) it contains. The columns give
information about each process.

The time column indicates the amount of time that the CMOST timesharing dae-
mon has made available to the process, regardless of whether the process actually
utilized the nodes. For timing information on how your program uses the nodes,
use the timer functions described later in this chapter.

The memory columns refer only to the nodes. The stack is the UNIX process
stack on each node, while pstack and pheap refer to parallel memory allocated
for user data. To find comparable data for the partition manager use the UNIX
ps command.

4.4 Executing a Program

The CMOST operating system treats the partition manager and its nodes as a
single unit. Thus, you execute a message-passing program, or other parallel pro-
gram, simply by executing the host program on the PM, as you would any UNIX
program on any UNIX system:

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Cerporation

30

SO Y R P PR E e N A

4.5

4.5.1

CMMD User’s Gulde

You can also execute a program in the background or by means of the at or
batch command, as on any UNIX system, or via the NQS batch system’s gsub
command (described in the next section).

Executing a Batch Job with NQS

In a batch system, you submit one or more programs as a request to a queue. The
batch system in turn submits the queued requests for execution. Your request is
generally executed when it reaches the head of the queue. The CM system admin-
istrator is in charge of configuring queues to meet the needs of the site, and of
informing users what queues are available when.

The CM batch system is based on the standard Network Queueing System (NQS).
NQS provides four user commands:

gsub Submit a batch request.

gdel Delete a batch request.

gstat Display the status of queues and batch requests.

qlimit Display the resource limits that can be placed on batch
requests.

The following sections present a very brief introduction to the gsub and gstat
commands. For full information on using the NQS batch system, please see NQS
for the CM-5. You can also refer to the on-line manual pages for information on
specific NQS commands.

Submitting a Batch Job

To submit a program for batch execution, you first create a script-file. A script-
file is simply a file containing one or more program names. It may also contain
instructions as to how NQS is to handle the program queueing and execution.

You then invoke NQS with the gsub command, and give it the name of the script-
file. For example,

% gsub myscript

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 4.

A

4.5.2

4.6

Version 3.0,

Executing Programs

You can add options to the gsub command that supplement or override those in
the script-file. For example,

% gsub -g marsil myscript

This command line submits the script-file myscript to the queue marsi, no
matter what queue the script-file specifies.

When your programs execute, output and error messages are written to files. By
default, these files are placed in your current working directory. However, you
can use gsub options to control their names and placement.

Checking on NQS

To find out the status of all your NQS requests, type
% gstat

To narrow your request to jobs on a specific queue, specify the queue name. To
request status on all jobs (not just yours), use the -a option. Thus, to see the
status of all jobs on queue marsi, type

% gstat -a marsi

For information on the queues themselves, use the -b option. See the on-line
manual page and NQS for the CM-5 for information on these options and on
gstat in general.

Timing a Program

To time a message-passing program, insert calls to the CMMD timers within the
program. These timers are much like the CM timers used to time data parallel
code; but where those timers treat all the nodes as a unit, the CMMD timers treat
each node separately. Each node can have up to 64 timers active (identified by
integers from 0 - 63). Each node’s timers record times only for that node.

Note that these timers execute on the nodes only. CMMD no longer offers timers
that execute on the host.

May 1993

Copyright © 1993 Thinking Machines Corporation

4.6.1

CMMD Users Guide

23 soasseae sy
i SRR

Timers measure three values:

® Busy time is the time during which the user program is executing user
code.

= Idle time is the time during which the user program is looping in the oper-
ating system’s dispatch loop. By design, this does not occur in CMMD.

® Elapsed time is the sum of busy time and idle time. It represents the
amount of time during which the process was scheduled for execution on
the CM-5. Thus, it measures time only during this program’s timeslices.

Timers give most accurate results when the program being timed has exclusive
use of the partition. System load under timesharing can affect program timings.

Note: The CMMD timers do not measure wall-clock time. The UNIX functions
gettimeofday () and ctime (), callable on the node (or on the host), can
provide this measure.

The CMMD timing functions are

int CMMD_node_timer_clear (int timer)
int CMMD_node_timer_start (int timer)
int CMMD_node_timer_stop (int timer)

double cMMD_node_timer_busy (int timer)
double cMMD_node_timer_elapsed (int timer)
double cMMD_node_timer_idle (int timer)

For more information on using timers, see the CMMD Reference Manual, or the
on-line manual pages.

Using CMoST Timers

It is also legal to use CMOST timing routines (CM_timer_start,
CM_timer_clear, CM_timer_stop) in your CMMD code — the two sets of
timers are separate and compatible, and operate similarly. When called from CM
Fortran, for example, the CMOST functions gather timing information indepen-
dently on each node. You must, however, remember to include the appropriate
CMOST header files for the timers you use. For example, the CM Fortran inter-
face to the CMOST timers is given by the header file

#include <cm/timer-fort.h>

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

N

Chapter 5

5.1

Error Handling and Error Diagnosis

There are several features built into the CM software that make debugging and
error handling more convenient. The node-level debugger, pndbx, discussed in
the next chapter, is one such feature. Various files that contain helpful informa-
tion in the event of errors are another. Those files are discussed briefly in this
chapter, along with the CM condition-handling routines, CM_panic and CMPN_
panic, and their CMMD interface, CMMD_error.

Error Handling

The Connection Machine operating system provides two error handlers:
CM_panic (“error_message”) for host programs
CMPN_panic (“error_message”) for node programs

CMMD provides an equivalent function,
int CMMD_error (“error_format”, [args] ...)

The syntax of this function is the same as the syntax of the UNIX function
printf. The “error_format” argument can contain a character string (that is,
an error message) that is copied into the output stream; it can also contain con-
version specification for the optional args. (See the on-line man page for
printf for details regarding args.) If successful, CMMD_exrxor does not return.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corpor. 33

5.1.1

CMMD User’s Guide

The cMMD_error function can be used on either host or node programs; it calls
the appropriate OS function in either case. Users are encouraged to use
CMMD_error, rather than the OS functions. It provides the cleanest method for
terminating a program in case of error.

Both the OS functions and the CMMD function allow you to supply your own
error message. You can word your error messages to be as helpful as possible.
Using different prefixes for different routines, for example, or otherwise identi-
fying the source (and, to the extent possible, the cause) of the error is often
useful, especially if you are writing code for others to use.

Having any node call the exit routine (EXIT or STOP in Fortran,
exit () in C) does not terminate the program; it merely halts
that particular node, which then waits for all other nodes to exit.

Default Error Handling

The default behavior for the panic routines is to abort the currently running pro-
cess after printing the specified error message to the user’s stderr and
producing core dumps for the node and host processes. Both routines use the PM
and the timesharing daemon to do this. (For details of the default behavior, see
the cM_panic (1) man page.)

If you are running your code in the debuggers (Prism or dbx for the host code,
plus pndbx for the node code), the debuggers will trap the error signal and halt
your code. This allows you to examine and analyze the state of the failed pro-
gram. (See Chapter 6 for information on using the debuggers.)

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

P

5.1.2

5.2

Chapter 5. Error H ndlmg and Error Dzagnoszs 35

Customized Error Handling

You can alter the default behavior of cM_panic and CMPN_panic (and therefore
of CMMD_error) in a number of ways.

® You can set the environment variable CM_NO_PN_CORE, to disable the
creation of the errors file and the node core dumps, stack file, and heap
file. (The command line setenv CM_NO_PN_CORE accomplishes this.)

® The default behavior of both routines culminates in the host process
receiving a SIGTERM signal. You may choose to install a different error
handler for SIGTERM, or, alternatively, to have your program ignore the
SIGTERM signal. (If the signal is ignored, the cM_panic routine simply
returns; the program may or may not be able to recover.)

Please note that only experienced UNIX programmers (wizards, in other words)
should use these methods, and regardless of level of experience should consult
the manual pages for CMOS_abort and cM_longjmp.

CMMD Safety Routine

CMMD 3.0 includes a pair of routines that can be used to enable and disable
safety-checking in your program:

CMMD_enable safety ()
CMMD_disable_safety ()

These two functions enable and disable CMMD safety mode. When invoked,
they set a global variable and return immediately, with no return value. When
safety mode is enabled, CMMD send and receive functions, channel functions,
and associated utility routines signal errors if the user either passes recognizably
illegal arguments or calls the functions under illegal circumstances. For a list of
the errors signalled by safety checking, see the CMMD Reference Manual.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

5.3

5.3.1

5.3.2

CMMD

Users Guide

SRR

When Your Program Is Terminated

If your program is terminated by a SIGTERM signal, you will usually get at least
two things: PN (node) core dump(s), and a PN errors file. In addition to those
files, Fortran programs may also get a Fortran traceback. The data contained in
these three files, combined with some well-placed printf statements in your
code, plus the host core file, if any, should help you to track down the cause of
the error.

Using printf

Any node can call the printf routine to print out data. The output is printed to
stdout. It is important that the user set the I/O mode for stdout and stderr
(unit 6 and unit 1 in Fortran 77) to independent while debugging. In fact, it
is always a good idea to have stderr set to independent mode.

Note that this behavior differs from programs run in back-compatibility mode.
For such programs, output from printf is stored into the file
CMTSD_printf.pn.pid in the current directory (where pid is the process ID of
your program). Using this form of printf will slow down your program a great
deal, so it is best used only for debugging purposes.

Warning: The printf routine, like all IO functions, does polling, so if your
CMMD program depends on explicit polling for its operation, incautiously
inserting printf statements may have unexpected effects.

The Errors File

In the directory from which you executed your program, you should find a file
called cMTSD_errors.pid. This file is generated by the timesharing daemon
when a user program crashes; it contains a list of the status of each node (and of
the PM, if an error was detected there). The errors file will tell you which nodes
crashed, and give you some information about the crash, such as what memory
address the node was trying to reference, whether the error was caused by a seg-
mentation fault, and so on.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

b

5.3.3

5.3.4

54

Chapter 5. Error Handling and

B R

Core Files

You should also find one or more node core files. These files are named
CMTSD_core_pnX.pid, where pid is again the process ID, and X is the node
identifier. In some circumstances, you may also see a regular core file, from the
host process.

To save disk space, only unique cores are dumped. Thus, if several nodes have
the same error, only the core for the first node with that type of error is dumped.
The first node with no error (if there is such a node) will also dump core.

If you don’t want PN core files generated (generating them does take time and
disk space), set the environment variable CM_NO_PN_CORE to a non-null value.

You can look at PN core files with pndbx; see Section 6.9.4.

CMTSD Files

You may also see two files called cMTSD_heap.pid and cMTSD_stack.pid.
These files contain the contents of the parallel stack and heap for the failed pro-
cess. They are unlikely to be of much use to you. You can simply delete them,
if you wish.

Fortran Tracebacks:
A Warning about Synchronization

When a Fortran program dies, it may generate a traceback. The traceback file
will be called prog.trace, where prog is the name of your host program. The
file is appended to every time your Fortran program dies, so if you crash multiple
times, there will be multiple traces in the file. The last trace in the file is the
newest one.

The traceback may give you an indication of which routine the code died in.
However, the information may not be reliable. Remember that the host and the
nodes are not necessarily synchronized. If a node has an error, the host may con-
tinue working for a while before the error status is propagated to it and your
program halts. Therefore, the routine or instruction that is executing on the host
when the nodes die may have nothing to do with the error.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

o

(9

Chapter 6

Debugging Your Program

6.1

Introduction

When you debug a message-passing program using the host/node model on the
CM-5, you are actually debugging two programs simultaneously but separately.
Even when you use the hostless model, you must still invoke a debugger on the
CMMD-supplied main program in order to get the node program started. There
are two methods for doing the debugging:

® You can debug your host program inside the Prism programming environ-
ment. You use Prism’s own windowed debugger to debug the host
program (or the CMMD-supplied main program) and pndbx (invoked
from within Prism) to debug the node program. You can use Prism for both
C and Fortran main programs; you cannot use it for C++ programs.

® You can use gdb or the standard UNIX debugger dbx to debug the host
program, and the pndbx debugger to debug the node program.

Note: dbx and gdb have problems with some internal symbols of the
CMMD debugging (-g) library — you may not be able to use these two
debuggers with the debugging library.

Section 6.6 explains these two methods. Note that both use pndbx to debug the
node program; pndbx is specifically designed for node programs.

The pndbx debugger has the same interface as dbx, with a few important exten-
sions to handle parallelism. Because nodes may be operating asynchronously,
pndbx works with one node at a time and allows the user to move among nodes
at will.

For example, breakpoints are set on a per-node basis. You can set identical break-
points on all nodes, or set different breakpoints for each node. However, you can

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corpor: 39

6.2

6.2.1

CMMD User s Guide
RS

see a particular node’s breakpoints only if you have set that node as your current
node.

This chapter presents an overview of pndbx. Sections 6.2 through 6.4 list the
features that pndbx provides for both high-level and low-level debugging. Sec-
tions 6.5 through 6.9 discuss how to use pndbx. Section 6.11 provides an
annotated sample debugging session.

The discussion in this chapter assumes that you are already familiar with dbx.
If you have not used dbx, and you find the discussion here insufficient, please
consult your SunOS or other UNIX documentation.

High-Level dbx Features Supported

This section lists dbx commands that are supported and extended in pndbx.
Extensions are listed in Section 6.3.

The Essential Commands

The following list highlights key commands used in high-level language debug-
ging. Note that these commands, when given in pndbx, apply only to the current
node (see Section 6.3).

stop in procedure Sets a breakpoint at start of procedure.

stop at line Sets a breakpoint on the specified source line.
cont Continues after being stopped by a brealcpbint.
step, next Single-steps into or over subroutines.

print exp Prints value of variable or an expression.
assign var = exp Assigns a value to a variable.

where Provides a stack trace.

file name Changes the current source file.

use directory-list Sets list of source file search directories.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 6. Debugging

‘ R

6.2.2 Other Commands

Your

Program
R S

SHER R

Features of dbx that involve querying the symbol table or source file, such as
func, 1ist, and whatis, are also supported. In general, these commands are
not node-specific. See the on-line pndbx man page for details.

6.2.3 Commands Not Supported
Features of dbx: that are inappropriate in the parallel context of a message-pass-

ing node program are not supported. These include tracing, watchpoints, and
conditional breaks. Signal-handling control is also disabled.

6.3 Summary of Extensions

The pndbx utility extends the dbx command set by adding the following com-
’ : mands:
pnn Changes the “current node,” that is, the node to

which node-specific pndbx commands refer. 7
is the node identifier for the node you wish to
make current.

pnstatus [all] Prints out the status of the current node, or of all
nodes. Possible states are running, break, and
error.

interrupt Stops the current node and identifies the place
in the source code at which the code was inter-
rupted.

Note: Many other pndbx commands, such as
where, print, stop in, and stop at, also
cause the current node to stop execution.

wait Causes pndbx itself to wait (without displaying
the pndbx prompt) until the current node
reaches a breakpoint or encounters an error,
thus notifying the user of the change in node
’ status.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

Three new arguments to dbx and pndbx commands also exist:

command all

command stopped

command running

Causes a pndbx command, such as where or
interrupt, to operate on all nodes, rather than
on just the current node.

Causes a command to affect all stopped pro-
cesses (that is, all those having a pnstatus of
either break or error).

Causes a command to affect all running pro-
cesses.

These arguments apply to any commands for which they make sense. For exam-

”» &,

ple, you could request “pnstatus all”, “where all”, “where running”,
“where stopped”, “interrupt running”, or “cont stopped”; but you
could not reasonably request “pn all”.

6.4 Commands for Low-Level Debugging

Low-level debugging support in pndbx includes the following commands:

address [,address] / format

address / [count] format

print register

Shows contents of a memory location (or range
of locations).

Shows contents of count memory locations, in
a given format. Default count is 1.

Shows contents of a register in hex.

register [, register] / format

register / [count] format

stopl at address

stepl
nexti

Shows contents of a register (or a range of reg-
isters), in a given format.

Shows contents of count registers, in a given
format. Default count is 1.

Sets a breakpoint at a code address.

Single-step by machine instruction, either into
or over calls.

» Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 6. Debugging Your Program

assign address = value
assign register = value

number = format

Writes a value into a memory location.
Writes a value into a register.

Performs a radix conversion.

The formats for these commands are as follows:

d 2-byte decimal
o 2-byte octal

x 2-byte hex

£ float

i instruction

4-byte decimal
4-byte octal
4-byte hex
double

H M OU

The default format is initially X. Specifying a format for any pndbx command,
however, changes the default to the newly specified format. Thus, if you type
“1000/D”, you automatically set the default format to “D”.

Register names are as follows:

$g0 - $g7

$00 - $07

$10 - $17

$io0 - s17

$f0 - sf31

$psr Pprocessor status register
$pc program counter

$npc next program counter

Some examples of legal commands are:

0x1000/10X

print $pe
$pc/D

0x2000/101

$g0/32Xx
1000=X

Ox3e8=D

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

Show ten hex words starting at virtual address
hex 1000.

Show current PC in hex.
Show current PC in decimal.

Show ten instructions starting at virtual address
hex 2000.

Show 32 registers, $g0 through $17.
Convert decimal 1000 to hex.

Convert hex 3e8 to decimal.

6.5

6.6

6.6.1

User’s Guide
2 ,.‘«?Qm%

CMMD

N

Compiling and Linking

If you intend to use dbx and pndbx, it is important to compile the source code
for your host program (if you are using one) and your node program with -g.

Important: Don’t use the -g option when linking your program! Linking with
the —g option causes your program to link with the debug versions of the CMMD
libraries; this will cause the debugger to try to find the CMMD library sources.
The debug versions of the libraries are useful only for debugging CMMD
sources; they are of no use to user applications.

Starting Up pndbx

How you start pndbx depends on whether or not you are using Prism. Using
Prism makes the startup much simpler.

Using Prism

For complete information on Prism itself and how you use it, see the Prism
User s Guide.

To use pndbx within Prism, follow these steps:

1. Start by invoking Prism and giving it the name of the program you wish
to debug. For example,

% prism master

2. A Prism window appears on your screen, displaying the specified host
program or the CMMD-supplied main program. Set a breakpoint in the
program just after initialization by issuing this command on the Prism
command line:

stop in cmmd_debug

3. Run to this breakpoint by clicking on Run, or by issuing the run com-
mand with the appropriate command-line arguments.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

4.

5.

Click on the Utilities menu and choose PN Debug. A new window opens
containing pndbx, already invoked and active on your node program.

Click on Cont in Prism to continue execution of the host program or
CMMD-supplied main program.

6.6.2 Using dbx

To debug a program using dbx and pndbzx, follow these steps:

1.
2.

6.

In one window, load your host program (if any) into dbx.

Issue the command stop in cmmd_debug to set a breakpoint just after
initialization.

Start the host program (either your own or the CMMD-supplied host
server program) by issuing the dbx command run.

In a separate window, issue the cmps command to obtain the process ID
of the stopped process.

Invoke pndbx in the second window by specifying the name and process
ID of the program. For example:

pndbx master 14640

Continue execution of the host program with the dbx command cont.

See the sample session at the end of this chapter for an example of this procedure.

6.7 Monitoring the Nodes

With pndbx, you monitor one node at a time. When you first start up, you are
monitoring node 0; the pndbx prompt identifies which node you are monitoring.
For example:

(pndbx 0)

You can switch to a different node by using the pn n command, where 7 is the
number of the node you want.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

6.7.1

6.8

6.9

CMMD Users Guzde

R s e

Asynchronous Monitoring

Because the nodes execute their programs asynchronously but simultaneously,
pndbx is asynchronous with respect to the overall program being debugged. You
can be typing commands at the pndbx prompt while some (or all) of the node
processes being debugged are running.

Error handling in pndbx reflects this asynchronous operation. If one node
encounters an error, that node goes into an error state and suspends execution at
the point of the error. The other nodes, however, continue to execute the user
program.

You can use pndbx to see which nodes are in an error or break state, switch to
one of those nodes, and use debugger commands to see what is going on. If the
node was in a break state (that is, if it was stopped because it hit a debugger-set
breakpoint or was interrupted by the debugger), you can use the cont command
to resume execution on the node.

Exiting from pndbx

The quit command in pndbx causes pndbx to exit. It also causes pndbx to
clean up after itself by deleting all breakpoints on all nodes and continuing all
stopped nodes.

A quitfast command also exists. This command causes pndbx to exit without
cleaning up after itself.

Using pndbx

Like dbx, pndbx displays a prompt when it starts up. Unlike dbx, pndbx dis-
plays a prompt even when the current node is executing code. This is similar to
running a process in the background from the shell. In general, you will always

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 6. Debugging Your Program 47

B e s

6.9.1

SN Y\w"””/ DR
S

have a pndbx prompt, no matter what the node is doing. There are a few excep-
tions:

® The step and next commands do not display the prompt until the com-
mands complete. They usually complete quickly, but sometimes they take
a long time. When that happens, the prompt vanishes for a long time.

® The wait command (described later in this chapter) does not display the
prompt until the next breakpoint is reached or an error occurs.

In any of these cases, typing ctrl-c redisplays the prompt.

pnstatus

Since pndbx always displays a prompt, you need a way to find out whether the
node is running, stopped at a breakpoint, or stopped with an error. You can find
out what a node is doing by using the pnstatus command, which tells you the
status of the current node. You can also use pnstatus all to find out the status
of all nodes. (Note that this may take a minute or two on a large partition.)

NOTE

The output for pnstatus all (and some other commands) by
default is not paginated. If you have long output, you may want
to have pndbx paginate the output by printing a more? prompt
after a specified number of lines. You can change the pagmatlon
with the pndbx command

set $page _size = number-of-lines

Setting page size to O (the default) disables pagination and
allows the output to scroll freely.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

6.9.2

6.9.3

Interrupting Nodes |

One important thing to remember when using pndbx is that many of the normal
debugging commands you use (in particular, any command that reads or writes
memory in the node) interrupt the nodes. When this happens, the nodes are not
automatically restarted.

For example, if you want to find out where the current node is, and type where,
you will get the expected information. After the command executes, the node
remains stopped, regardless of whether it was stopped before you executed the
command. You must explicitly type cont to let the node continue executing.

In general, therefore, you should be careful to check the status of a node after
doing any pndbx commands, to be sure the node is in the state you think it is.
If you forget to resume execution of a node, you (and the node) will simply sit
there and wait, and nothing will happen.

You can also use the pndbx command interrupt to interrupt a node. This is
similar to hitting ctrl-c under regular dbx, to interrupt the process being
debugged.

S

IMPORTANT!

If you interrupt a node while it is handling a message, and then
call a routine that uses the CM-5 networks, you may crash the
timesharing daemon.

Waiting for Breakpoints and Errors

Because of the asynchronous nature of the debugger, no message is printed out
when a node reaches a breakpoint. This could make it inconvenient to work with
breakpoints, because you would not know if a node had reached its breakpoint
unless you repeatedly used the pnstatus command.

To solve this problem, use the wait command. This command takes away the
pndbx prompt. It causes pndbx to sit and wait until the current node reaches a
breakpoint or encounters an error, at which time it restores the prompt.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

6.9.4

6.9.5

Chapter 6. Debugging Your Program

To break out of a wait, hit Ctr1-c. This restores the pndbx prompt. Doing this
will have no effect on the node; if the node is running, it will keep running.

There is currently no way to sit and wait until any node hits a breakpoint or error;
you can only wait for the current node to do so.

Using pndbx to Debug Core Files

See Section 5.3.3 for a discussion of core files. You can invoke pndbx on a PN
core file by specifying its name on the command line, after the name of the
executable program with which it is associated. For example:

% pndbx myprog CMTSD_core.pnl.l1906
Welcome to Pndbx version 1.1

Type ’'help’ for help.

Current partition size is 64
reading core file ...

reading symbolic information ..
(pndbx 0)

When you use pndbx on a core file, you are restricted to examining the state of
the single node that was captured in the core file; you cannot switch nodes via
the pn command. Also, as with dbx, these restrictions apply:

= You cannot issue execution commands (run, cont, etc.).

* You cannot issue commands that write to memory (assign, stop in,
etc.).

Apart from these restrictions, full debugging capabilities are available. In partic-
ular, you can examine the state of the node with commands like where, print,
and so on.

Debugging CM Fortran Programs with pndbx

You can use pndbx to debug CM Fortran programs. To do this, compile and link
the program with the debug “~g” flag, to ensure that the proper debugging
information is included and that the debugging version of the CMMD library is
linked in. (Note: The debug flag disables some compiler optimizations.)

Version 3.0, May 1993

Copyright © 1993 Thinking Machines Corporation

CMMD User's Guide (

s

You can then debug your program as usual using pndbx. The pndbx debugger
understands all standard CM Fortran data types (integer, real, double,
complex, and double complex). Arrays are printed in their entirety, one
element per line. (The built-in variable $print_width can be used to change
this default). Array sections can be specified using CM Fortran syntax. Arbitrary
expressions can be evaluated, with some restrictions. The “assign” command can
be used to modify variables.

Users who need to get at the lower level details of CMF array descriptors can use
the construct *&array to view the contents of the array descriptor itself.

The following example illustrates these features:

pndbx 0) whatis u
CM based) double precision U(1:6)

(
(
(pndbx 0) print u
(

1) 1.1

(2) 1.1

(3) 1.1

(4) 1.1 e‘
(5) 1.1

(6) 1.1

(pndbx 0) print u(1l:4)
(1) 1.1

(2) 1.1

(3) 1.1

4) 1.1

pndbx 0) set $print width = 2
pndbx 0) print u

1:2) 1.1 1.1

(3:4) 1.1 1.1

(5:6) 1.1 1.1

(pndbx 0) print u(l:4)+1

(1:2) 2.1 2.1 ‘
(3:4) 2.1 2.1 |

(pndbx 0) assign u = 2.2
(pndbx 0) print u

(1:2) 2.2 2.2
(3:4) 2.2 2.2
(5:6) 2.2 2.2

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 6. D

6.10

ebugging Yo

(pndbx 0) print &u

CM array, descriptor address = 0xb8aa4 (print *&U to see
the entire descriptor)

(pndbx 0) print *gu

(desc_or_object_kind = 1025, debug_info_ptr = 0xbsa9s,
element_type = 5, sparel = 0, spare2 = 0,

cm_location = 1342187272, user_rank = 1,

spared4 = 757192, spare 5 = 757084, home = 3,
initial_data = -1, is_modified = 0,

array_geometry = 1468752, spare6é = -1, spare7 = 1,
spare8 = 757080, spare9 = -1, is_slicewise = 1,
element_size = 8)

Submitting a Bug Report

If you’re experiencing a persistant, inexplicable problem with a program, and
wish to send a bug report to Thinking Machines Corporation Customer Support
for assistance, here is the information you should include:

= Whether the program worked correctly with previous CMMD releases,
and if so, which version of the software you were using then.

= The version of the CMMD software you are using now.

= If the program is small enough, a copy of it and instructions for compiling
and running it. (Alternatively, if you can reduce the problem to a small
section of code that runs on its own, provide that instead.)

® If your program produces a CMTSD_errors output file, cut and paste the
text for each node that signaled an error. The node error reports should
look like this:

e Je Jo g Kk Kk Sumary rom pe N *kkdkkkkkx

------ PN Status —---—--—-
Program counter = 0x43e98
Stack pointer = 0xf7fe3648
Processor status = 0x11401081
Floating point status = 0x60000

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

6.11

CMMD User s Guide
R

————————— PN Faults ----—---
Error detected in this PN...

(more information follows)

= If your program produces any CMTSD_core . pnnnn output files, for each
one of these files, do the following:

% pndbx your-program CMTSD core.pninn.pid

where

$g0/32X

print $pc

(XXXXYYYY> <—=-- retype this number below:
print <xxxxXyyyy>-32

<zz2zzzzz2z> <--- retype this number below:
<zzzZzZzz>/101

<a series of instructions will be printed out>
quit

And include the information you see printed out by pndbx.

* Finally, if your program uses the VUs, include the contents of the
cMTSD_dp .pnnnn.pid file, for each node that signalled an error. (Note:
This should follow any other information you have collected above.)

By gathering this information before you report a problem, you’ll make it much
easier for Customer Support to expedite a solution to the problem.

A Sample pndbx Session

This session shows how to use some pndbx commands in debugging a hostless
CMMD program called master, which approximates pi using a Monte Carlo
method. Assurne two windows, one for running dbx to start the CMMD-provided
main program, and one for debugging the nodes with pndbx.

We begin by starting up dbx on the PM and executing to the start of
cmmd_debug. (The arguments to run specify first, the number of trials, and
second, the number of trials per work period.)

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 6. Debugging Your Program 53
dbx Window

We can then find out the process ID:

pndbx Window

And start up pndbx:

pndbx Window

By default we are monitoring node 0, which in this program is the master node.
We do a status and list some source code:

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

54 CMMD User s Guide

pndbx Window

We then set a breakpoint. Note how as a side effect of setting a breakpoint, the
node goes into a “break” state.

pndbx Window

Since the CMMD-provided main program is stopped, we must continue it to
allow the nodes to proceed:

dbx Window

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 6. Debugging Your Program

#

The main program will continue to run until the process exits. To continue execu-
tion, we do a cont on node 0, which runs the master process:

pndbx Window

This causes the following output to be displayed in the dbx window:

dbx Window

Now, going back to the node window, we wait for node O to reach its breakpoint
at line 85, then display its call stack:

pndbx Window

We print the value of a variable that shows the number of trials left, then continue
and print the value after node 0 hits its breakpoint again:

Yersion 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

'MMD User s Guide

pndbx Window

We can also look at what’s happening in other nodes:

pndbx Window

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 6. Debugging Your Program

=

A cont all continues all the nodes until node 0’s breakpoint is reached again:

pndbx Window

We can continue node 0 twice more to complete the specified number of trials
and end execution of the program:

pndbx Window

The results appear in the dbx window:

dbx Window

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

58 CMMD User s Guide

We then exit both debuggers:

dbx Window

pndbx Window

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

Appendix A

Sample Programs

This appendix contains a number of examples of CMMD programs. These pro-
grams, plus their makefiles, are also available on-line.

Examples provided in C are as follows:

® round_trip: Round-trip message (host/node).

The host and all nodes synchronize clocks. Then the host sends a message
. (zero) to node 0, which receives it and adds one to it; then sends it to node
1, etc., until the message travels around all the nodes and comes back to
the host. The host checks if the message is correct (equal to the number
of nodes) and prints the result. In addition the host prints the time at which
’. each node received the message.

! ® ring: One-dimensional ring (hostless).

The nodes communicate in a ring pattern using the synchronous
CMMD_send_and_receive function. At the end the communications
% rate is computed and printed.

= redist1: Global redistribution using synchronous functions (hostless).

Node 0 (master) generates n = (num_nodes-1)*100 random integers in
the range (1, num_nodes-1) and redistributes them in such a way that a
given node receives only the numbers that are equal to its node address.
The global asynchronous “or” flag is used to test for completion.

" redist2: Global redistribution using asynchronous functions (hostless).

Each node generates n = 100 random integers in the range (0,

num_nodes-1) and redistributes them in such way that a given node

receives only the numbers that are equal to its node address. The global
’ asynchronous “or” flag is used to test for completion.

Version 3.0, May 1993 59
Copyright © 1993 Thinking Machines Corporation

CMMD

SRRy Te S,

Users Guide

2=

redist3: Global redistribution using asynchronous functions and a handler
(hostless).

Node 0 (master) generates r» = (num_nodes-1)*100 random integers in
the range (1, num_nodes-1) and redistributes them in such way that a
given node receives only the numbers that are equal to its node address.
A handler function counts the number of messages delivered. The global
asynchronous “or” flag is used to test for completion.

sort: Enumerate-pack sort (parallel radix) (host/node).

This sort performs the following operations for each bit of the key: All the
elements with a 0 in that bit position are enumerated with a scan with add.
Then a second scan does the same for elements with a 1. A scan with max
(downward) broadcasts the sum of elements with a 0 to all nodes. This
sum is added to the result of the second scan and these values are the new
node addresses for elements with a 1 in the bit position. The new node
addresses for elements with a 0 is just the enumeration obtained from the
first scan. The initial number in each node is randomly generated.

Two Fortran 77 examples are also provided:

simple_io: A host/node version of a “hello world” program, demonstrating
the I/O service loop.

redist_block: Global redistribution using synchronous functions (hostless)

Node O (master) generates » = (num_nodes-1)*100 random integers in
the range (1, num_nodes-1) and redistributes them in such way that a
given node receives only the numbers that are equal to its node address.
The global asynchronous “or” flag is used to test for completion.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

A.1 C Examples

A.1.1 round_trip

Round-trip message (host program)

The host and all nodes synchronize clocks. Then the host sends a message (zero) to node
0, which receives it and adds one to it; then sends it to node 1 etc., etc., until the message
travels around all the nodes and comes back to the host. The host checks if the message
is correct (equal to the number of nodes) and prints the result. In addition each node prints
the time at which it received the message.

#include <stdio.h>
#include <sys/types.h>
#include <cm/cmmd.h>
#if CMMD _VERSION <= 20
#include <cm/cmmd-io.h>
#endif

main ()
{ int msg_len=4, message, tag=0, i, num nodes, pid = getpid();
double times[1024];

printf ("\n Executing host program... (pid=%d}”, pid);
CMMD_enable() ;
num_nodes=CMMD partition size():

printf (“\n Executing node programs...”);
CMMD_sync_host_with _nodes () ; /* Global sync. to synchronize clocks */

/* send message to node 0, receive message from node num_nodes-1 */

message = 0;
CMMD_send (0, tag, &message, msg_len);

CMMD_receive (num nodes-1, tag, &message, msg_len);
/* Read timers */
CMMD_gather_from nodes(times, sizeof (double));

if (message == num_nodes) {
printf(”\n All done ok, message = %d\n”, message):;
for (i = 0; i < num _nodes; ++i)
printf ("\n Node %d: msg received ok, time= %f secs”, i, times[il);
}
else
printf (”“\n Error: number of nodes = message = %d\n”, message);

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

62 CMMD User s Guide

Round-trip message (node program)

#include <stdio.h>
#include <cm/cmmd.h>
$if CMMD VERSION <= 20
#include <cm/cmmd-io.h>
#endif

main()
{ int src, dest, msg_len=4, message, tag=0, num nodes, my_address;
double time;
CMMD_enable_host () ;
/* Compute self address, source and destination */
my_address = CMMD_self_address():
num_nodes = CMMD partition_size():
src = (my_address == 0) ? CMMD host node() : my_address - 1;
dest = (my_address == num nodes-1) ? CMMD_host_node() : my_address + 1;
/* Synchronize clocks *
CMMD_sync_with_host () ;
CMMD_node_timer_clear (0) ;
CMMD_node_timer_start(0);
/* Receive message */
CMMD_receive(src, tag, &message, msg_len);

/* Get time */

CMMD_node timer_stop(0);
time = CMMD node_timer_elapsed(0);

/* Add one to the message and send it to the next guy */

message++;
CMMD_send (dest, tag, &message, msg_len);

/* Host accumulates all times */

CMMD_concat_elements _to_host(&time, sizeof (double));

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

AppendzxA Sample Programs 63

A.1.2 ring

One-dimensional ring

The nodes communicate in a ring pattern using the synchronous cMMD_send_
and_receive function. At the end the communications rate is computed and printed.

#include <stdio.h>
#include <cm/cmmd.h>
#1f CMMD_VERSION <= 20
#include <cm/cmmd-io.h>
#endif

main ()
{ int src, dest, msg_len=24000, tag=0, num nodes, i, niter=10, my_address;
char *msg_in, *msg_out;
/* Get self address and number of nodes. Allocate msg. buffers */
my_address = CMMD_self address(};
num_nodes = CMMD partition size();
msg_in = (char *) malloc(msg_len);
msg_out = (char *) malloc(msg_len);
/* set independent IO mode */
CMMD_fset_io_mode (stdout, CMMD_independent) ;
CMMD_fset_io_mode(stderr, CMMD_independent);
if (my_address == 0) printf(”\n Executing ring ...\n”);
/* Compute source and destination */
src = my_address -~ 1;
dest = my_address + 1;
if (src < 0) src += num_nodes;
if (dest >= num nodes) dest -= num_nodes;
/* Synchronous send and receive loop (repeat niter times) */
CMMD_node_timer_clear (0);
CMMD_node timer_start(0);
for (i = 0; i < niter; i++) {
CMMD_send_and_receive(src, tag, msg_in, msg_len,
dest, tag, msg_out, msg_len);
CMMD_sync_with_nodes () ;
}
CMMD_node_timer_stop(0) ;
if (my_address == 0) /* comm. rate = (total bytes in plus out)/time */
printf (*Time=%f [secs], Comm. Rate=%f [Mb/sec/node] \n”,
CMMD_node_timer_busy (0) /nitez,
2.0*niter*msg_len*1.e-6/CMMD_node_ timer_busy (0));

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

64 CMMD Users Guide

A.1.3 redist_block

Global redistribution using synchronous (blocking) functions

Node O (master) generates n = (num_nodes-1)*100 random integers in the range (1,
num_nodes-1) and redistributes them in such way that a given node receives only the
numbers which are equal to its node address. The global asynchronous “or” flag is used
to test for completion.

#include <stdio.h>
#include <cm/cmmd.h>
#if CMMD_VERSION <= 20
#include <cm/cmmd-io.h>
#endif

main() { int msg_len=4, tag=0, i, n, rand num, bufferin, recv_count=0, total;
int my_address=CMMD_self_ address(), num_nodes=CMMD partition size();

/* set independent IO mode */

cMMD_fset_io_mode (stdout, CMMD_independent);
CMMD_fset_io_mode (stderr, CMMD_independent);

if (my_address == 0) { /* Node 0: sender node */
printf(”\n Executing redist_block ...\n”);

CMMD_set_global_or (1) ; /* set global “or” to 1 (not completion) */
while (!CMMD_get_global oz ()); /* wait for setting */

CMMD_sync_with_nodes () ; /* ready to start */

srand(1234) ; /* initialize RNG */

n = (num nodes-1)*100; /* each node will get 100 msgs on average */
for (i = 0; 1 < n; i++) { /* send n random numbers to nodes */

rand num = 1 + (rand() % (num nodes-1)); /* generate random number */

CMMD_send (rand num, tag, &rand_num, msg_lén);

}

CMMD_set_global_or (0); /* set global ”or” to 0 (completion) */
printf(”\n Total msgs generated (node 0)= %8d\n”, n);

total = CMMD reduce_int (recv_count, CMMD_ combiner_add) ;

printf(”\n Total msgs received by nodes (1-- num nodes-1)= %8d\n”, total);

}

else { /* Nodes (1 -~ num_nodes-1): recipients */
CMMD_set_global_or (0) ; /* node 0 will control completion */
CMMD_sync_with nodes () ; /* ready to start */
Version 3.0, May 1993

Copyright © 1993 Thinking Machines Corporation

Appendix A. Sample Programs

while (CMMD_get_global oz ()) { /* loop until all done */

if (CMMD_msg_pending (CMMD ANY NODE, tag)) { /* poll for incoming msgs */
CMMD_receive(0, tag, &bufferin, msg_len):
Iecv_count++;

}
}

/* print results */

printf (“PN %4d, msgs received = %6d \n”, my_address, recv_count);
total = CMMD_reduce_int(recv_count, CMMD_ combiner_add);

A.1.4 redist_nonblock

Global redistribution using asynchronous (nonblocking) functions

Each node generates n = 100 random integers in the range (0, num_nodes-1) and redis-
tributes them in such way that a given node receives only the numbers which are equal to
its node address. The global asynchronous “or” flag is used to test for completion.

#include <stdio.h>
#include <cm/cmmd.h>
#if CMMD_VERSION <= 20
#include <cm/cmmd-io.h>
#endif

main ()
{ int msg_len=4, tag=0, rand num, send_ok, n, recv_ok, bufferin;
int send_count=0, recv_count=0, send_done=0, total;
int my_address=CMMD_self address(), num_nodes=CMMD partition_size();

/* set independent IO mode */

CMMD_fset_io_mode(stdout, CMMD_ independent);
CMMD_fset_io_mode(stderr, CMMD_independent) ;

if (my_address == 0) printf(”\n Executing redist_nonblock ...\n");
n = 100; /* each node will get 100 msgs. on average */
srand (my_address) ; /* initialize RNG */

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

CMMD User’s Guzde
eSS]

S

CMMD_set_global_or (1) ; /* set global “or” to 1 (not completion) */
while(!CMMD_get_global or()); /* wait for setting to take place */

/* send and receive loop */
while (CMMD_get _global or()) { /* is everybody done ? */

if (send_count < n) { /* more sending ? */
rand_num = (rand() >> 10) % num nodes; /* generate random number */

send_ok = CMMD_send_noblock(rand num, tag, &rand num, msg_len, NULL);
if (send_ok == 0) send_count++;
}

send_done = (send_count == n); /* sending done */
if (CMMD_msg_pending (CMMD_ANY NODE, tag)) { /* poll for incoming msgs */

recv_ok = CMMD receive (CMMD_ANY NODE, tag, &bufferin, msg_len);
if (recv_ok == 0) {
. Tecv_count++;
if (bufferin != my_address) {
printf (" Error: received wrong msg: %d instead of %d\n”,
bufferin, my_address);

}
}
if (send_done &&% CMMD all msgs_done()) /* am I done ? */
CMMD_set_global orx (0);
}

/* print results */

printf ("PN %4d, msgs received = %6d \n”, my_address, recv_count);
total = CMMD_reduce_int(recv_count, CMMD_combiner_add);
if (my_address == 0) {
printf (*\n Total msgs generated (all nodes) = %$8d\n”, n*num_nodes) ;
printf(”\n Total msgs received (all nodes) = %8d\n”, total):
}

A.1.5 redist_nonblk_hndir

Global redistribution using asynchronous (nonblocking) functions and a handler

Node O (master) generates n = (num_nodes-1)*100 random integers in the range (1,
num_nodes-1) and redistributes them in such way that a given node receives only the
numbers which are equal to its node address. A handler function counts the number of
messages delivered. The global asynchronous “or” flag is used to test for completion.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

Appendix A. Sample Programs
e s SR

#include <stdio.h>
#include <cm/cmmd.h>

#if CMMD_VERSION <= 20
#include <cm/cmmd-io.h>
#endif

#ifdef _ STDC__
volatile
#endif

int msgs_delivered = 0;

main()
{
int tag=0, i, n, bufferin, recv_count=0, total;
int my_address=CMMD_self_ address(), num _nodes=CMMD_partition_size();
CMMD mcb mcb;
int *rand_num; /* Where to put the random nums. */

void my_handler () ;
/* set independent IO mode */

CMMD fset_io_mode (stdout, CMMD_independent) ;
CMMD_fset_io_mode(stderr, CMMD_independent);

if (my_address == 0) { /* Node 0: sender node */
printf("\n Executing redist_nonblk_hndlr ...\n”);
CMMD_set_global_or(1); /* set global "or” to 1 (not completion) */
while(!CMMD_get_global or()): /* wait for setting */
CMMD_sync_with _nodes() ; /* ready to start */
srand(63924) ; /* initialize RNG */
n = (num_nodes-1)*100; /* each node will get 100 msgs on average */

rand_num = (int *) malloc(n * sizeof (int));

for (i = 0; i < n; i++) { /* send n random numbers to nodes */
rand num[i] = 1 + (rand{) % (num nodes-1)); /* generate random number */
CMMD_send_async(rand num{i], tag, &rand num[i], sizeof(rand num[i]),
my_handlexr, 0);

/* the handler takes care of counting the number of msgs. being
delivered */
while (msgs_delivered {= n); /* wait until all msgs have been delivered */

CMMD_set_global_or (0); /* set global ”"or” to 0 (completion) */
printf (“\n Total msgs generated (node 0)= %8d\n”, n):

total = CMMD_reduce_int(recv_count, CMMD_combiner_add);

printf(“\n Total msgs received by nodes (1-- num nodes-1)= %8d\n”, total);

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

CMMD User s Guide

RS R

else { /* Nodes (1 -- num nodes-1): recipients */
CMMD_set_global or (0} ; /* node 0 will control completion */
CMMD_sync_with nodes!{) ; /* ready to start */

while (CMMD_get_global or()) { /* loop until all done */
if (CMMD_msg_pending (CMMD_ANY NODE, tag)) { /* poll for incoming msgs */
CMMD_receive_block (0, tag, &bufferin, sizeof (bufferin));
Iecv_count++;
}
}

/* print results */

printf ("PN %4d, msgs received = %6d \n”, my_address, recv_count);
total = CMMD reduce int(recv_count, CMMD_combiner_add)
}
}

void my_handler (mcb, arg)
CMMD_mcb *mcb;

int arg;

{

/* free the mcb and add one to the counter of msgs. delivered */

CMMD_free mcb (*mcb) ;
msgs_delivered++;

}

A.1.6 sort

Enumerate-pack sort (parallel radix)

Here’s an example of a CMMD program written in the host/node programming style. This
sort example performs the following operations for each bit of the key: All the elements
with a 0 in that bit position are enumerated with a scan with add. Then a second scan does
the same for elements with a 1. A scan with max (downward) broadcasts the sum of ele-
ments with a 0 to all nodes. This sum is added to the result of the second scan and these
values are the new node addresses for elements with a 1 in the bit position. The new node
addresses for elements with a 0 is just the enumeration obtained from the first scan. The
initial number in each node is randomly generated.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

Appendix A. Sample Progra

Host Program:

#include <stdio.h>
#include <sys/types.h>
#include <cm/cmmd.h>
#if CMMD _VERSION <= 20
#include <cm/cmmd-io.h>
#endif#

main ()
{ int *numbers, *sorted, i, num nodes, pid = getpid():

printf(”\n Executing host program... (pid=%d)”, pid):

CMMD_enable() ;
num_nodes = CMMD_partition_size();

numbers = (int *) malloc (num_nodes*sizeof (int));
sorted = (int *) malloc (num nodes*sizeof (int));

CMMD_gather_from nodes (numbers, sizeof (int));
CMMD_gather_from_nodes(sorted, sizeof (int)):
printf(”\n\n %8s %11s\n”, "numbers:”, ”after sort:”):

for (i = 0; i < num nodes; i++)
printf(”"\n %8d %11d”, numbers[i], sorted[i]):

printf (”“\n All done \n”);

Node Program

#include <stdio.h>
#include <cm/cmmd.h>

#if CMMD _VERSION <= 20
#include <cm/cmmd-io.h>
#endif

main{()

{ int seed = 1234, msg_len=4, tag=0, tempo, number, k=0;
int my_address=CMMD_self_ address(), num_nodes=CMMD_partition_size(}:
int mask_zero, mask_one, enum one, enum zero, sum, new_pos;

CMMD_enable_host () ;

srand (my_address*seed) ; /* initialize RNG */
number = (rand() >> 10) % num_nodes; /* generate random numbexr */

CMMD_concat_elements_to_host (&number, sizeof (int));

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

CMMD User s Guide

for (k = 0; 1 << k < num_nodes; k++) {
mask_one = number >> k & 1;
mask_zero = ~(number >> k) & 1;
enum_one = CMMD_scan_int (mask_one, CMMD_combiner_add, CMMD_upward,
CMMD_none, NULL, CMMD_inclusive) =~ 1;

enum_zero = CMMD_scan_int (mask_zero, CMMD combiner_add, CMMD_upward,
CMMD_none, NULL, CMMD_inclusive) - 1;

sum = CMMD scan_int (enum_zero + 1, CMMD_combiner_max, CMMD downward,
CMMD_none, NULL, CMMD_inclusive);

enum_one += sum;
new_pos = enum one*mask_one + enum_zero*mask_zero;

CMMD_send_and_receive (CMMD ANY NODE, tag, &tempo, msg_len,

new_pos, tag, &number, msg_len);
number = tempo;

CMMD_concat_elements_to_host (&number, sizeof (int));

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

Appendix A. Sample Programs 71
et S R R R R PR 3% 4

A.2 Fortran 77 Examples

Global redistribution using synchronous (blocking) functions

Node 0 generates n random integers in the range (0, num_modes-1) and redistributes
them in such way that a given node receives only the numbers which are equal to its node
address. A global asynchronous “or” flag is used to test for completion.

program redist_block

include ”/usr/include/cm/cmmd_fort.h”

integer n, msg_len, tag, i, rand num, bufferin, seed, total
parameter (tag = 0, msg_len = 4, n = 1000)

integer my_address, num_nodes, msg_ok, ret_val, recv_count

total = cmmd set_io_mode(6, cmmd independent)
my_address = cmmd_self_ address()

num nodes = cmrd_partition_size()

recv_count = 0

c node 0: sender node
if (my_address.eq.0) then
c set global "or” to 1 (not completion)

ret_val = cmmd set_global or (1)

c wait for setting
do while (cmmd_get_global_or () .eq.0)
end do

c ready to start

call cmmd_sync_with nodes()
seed = my_address
c distribute (send) random numbers to nodes

doi=1,n
c generate random number
rand num = 1 + int({(num _nodes-1) *rand (seed))
msg_ok = cmmd_send(rand num, tag, rand num, msg_len)
end do

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

CMMD User s Guide

c set global ”"or” to 0 (completion)
ret_val = cmmd_set_global oz (0)
print *,” Total msgs generated (node 0)= ”, n
total = cmmd_reduce_int (0, CMMD_combiner_add)
print *,”Total msgs received by nodes (1--num_nodes-1)=",total
call flush(6)

else
c nodes (1 -- num nodes-1): recipients
c node 0 will control completion

ret_val = cmmd_set_global_or (0)

c ready to start
call cmmd_sync_with nodes ()

c loop until all done
do while {(cmmd _get_global_or () .ne.0)
c poll for incoming msgs .

if (cmmd_msg_pending (CMMD ANY NODE, tag).ne.0) then
mesg_ok = cmmd_receive(0, tag, bufferin, msg_len)
recv_count = recv_count + 1
end if
end do
print *, ”"PN”", my_address, " msgs received = ”, recv_count
total = cmmd reduce_int (recv_count, CMMD_combiner_add)

end if

call flush(se)
end

Simple 1/O
Here’s an example of a host/node program written in CM Fortran:

Host Program:

program simple_io
include ”/usr/include/cm/cmmd_fort.h”

integer nodes, i, data, msg_ok
call cmmd_enable()

nodes = cmmd_partition_size()
print *, “start”

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

Appendix A. Sample Programs

B2z

100

call cmmd _bc from host(nodes, 4)
call cmmd_service_loop ()

do 100 i = 0, nodes-1

msg_ok = cmmd receive(i,0,data,4)
print *, “PE ”, i, “ Sent “, data
continue

end

Node Program:

program simple io

integer data, msg_ok, ret_code, dummy
integer host

include ”/usr/include/cm/cmmd_fort.h”
call cmmd enable_host ()

call cmmd_receive_bc_from host (dummy, 4)

ret _code = cmmd_set_open mode (CMMD_independent)
write (*, *) ”hello world”
call cmmd_global_ suspend servers()

data = cmmd_self address() * 2
host = cmmd_host_node ()

msg ok = cmmd_send(host,0,data,4)
end

73

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

Appendix B
Non-RTS Parallel Memory Allocation

For some special-purpose applications, it is necessary to allocate parallel CM
memory on a CM-5 with VUs without using the standard memory allocation and
deallocation routines provided by the CM Run-Time System (CMRTS). An
example of this is CMMD applications that include DPEAC subroutines.

Methods for allocating parallel memory without use of the CMRTS are described
in the sections below.

B.1 The Parallel Stack and Parallel Heap

Paralle] VU memory can be mapped into two general regions of memory, the
parallel stack and the parallel heap.

Both the stack and the heap regions grow upward, toward higher memory
addresses. Initially, no pages are allocated. When you allocate new space in these
regions, it is as a stripe of memory across the physical memory of the four VUs.
Thus, allocating a page of stack or heap actually allocates 4 pages of physical
memory.

Version 3.0, May 1993 75
Copyright © 1993 Thinking Machines Corpor,

B.2

B.3

CMMD User s Guide

VU Regions

The stack and heap are each actually mapped as seven regions in memory in
order to make the memory accessible in parallel or by individual VUs for the
purpose of data or instruction access. (See the DPEAC Reference Manual for a
description of VU space virtual addressing.)

By convention, pages of parallel memory are referenced by their All-DP,
Instruction Space address. This is the address in the region of VU memory that
causes all four VUs to execute a DPEAC instruction simultaneously. CMMD
routines that take parallel memory addresses take such addresses (just as RTS
routines do).

Whether coding in assembly (DPEAC) or C, you need to include this header file:
#include <cmsys/dp.h>

This header file defines a number of constants that are essential in navigating the
VU memory regions. For example, the base of the parallel stack (in All-DP
Instruction Space) is given by the symbol DPV_STACK_INST_PORT_ALL
(0x50000000), and the base of the parallel heap region is given by the symbol
DPV_HEAP_INST PORT_ALL (0x70000000).

You can construct an address within these regions by adding a byte offset to these
base addresses.

Important: Before you can access a stack or heap word, the memory region
must have been expanded to include the address (that is, you must first allocate
the memory before you can legally access it).

Expanding the Stack or Heap

When you want to expand the stack or heap, you make a CMOST system call to
manipulate the pointer of the appropriate memory region. You can do this either
from the partition manager or from a processing node. If you do this from a node,
only one processing node must (and should) make the allocation call.

To access the appropriate CMOST routines, include the header file:

#include <cmsys/cm_memory.h>

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

gt

Appendix B. Non-RTS Parallel Memory Allocation 77

The memory pointer system calls from the partition manager are:

CM_memaddr_t
CM_set_dp stack ptr (CM memaddr t new_limit)

CM_memaddr_t
CM_set_dp heap_ptr (CM memaddr t new_limit)

CM memaddr_t CM get dp stack ptr ()
CM_memaddr_t CM get_dp heap_ptr ()
The equivalent calls from the node are:

CM_memaddr_t
CMPE_set dp_stack ptr (CM memaddr_t new_limit)

CM_memaddr_t
CMPE set_dp heap ptr (CM_memaddr_t new_limit)

CM_memaddr_t CMPE_get dp_stack ptr ()
CM_memaddr t CMPE_get_dp_heap ptr ()

All of these routines return a cM_memaddr_t value, which is an All-VU, Instruc-
tion Space address, representing the current position of the memory pointer (in
the case of the set routines, this is the value of the pointer after you have modi-
fied it). The value of the pointer is always one more than the highest allocated
address in the memory region.

You cannot access allocated memory using the cM_memaddr_t values returned
from these system calls, because they are in All-VU instruction space. You must
translate this value into a Single-VU Data Space pointer, as described in Section
B.4 below. '

To use the set system calls, you pass in the highest address that you want to have
allocated. The pointer value the call returns will always be greater than this value
(unless there is insufficient memory remaining, in which case zero is returned),
but it may not be exactly one more than the address you passed in.

Important: Don’t make a “copy” of the stack or heap pointer and expect the
copy to remain valid. Stack and heap memory can be allocated for other reasons
than explicit system calls from your program. Thus, the stack and heap pointers
can change without warning. You should always use the current value returned
by the system calls mentioned above when determining the current size of the
stack or heap.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

B.4

CMMD User s Guide

If you want to deallocate parallel memory (in other words, shrink the stack or

~ heap regions), call the appropriate set function with the new lower limit.

Note: CMOST currently does not allow the regions to shrink, and thus the above
call will have no effect, and the current limit will be returned. Nevertheless, it
is sensible to include deallocation calls, for compatibility with later software ver-
sions.

Translating Stack and Heap Addresses

You can change CM_memaddr_t values into valid data space addresses using the
following C macro, which is defined in cmsys/dp.h:

data_address = TOGGLE_DPV_SPACE (instruction_address);

Note that the returned data space address is still an All-VU address. It cannot be
used to read from memory, and if used to store to memory, the stored value will
be written to all four VUs (broadcast).

You can change the data space address to point to a single VU by using one of
the following macros:

VU_0_address
VU_1 _address
VU_2_address
VU_3_address

]

CHANGE_DP (data_address, DP_0);
CHANGE _DP (data_address, DP_1l);
CHANGE_DP (data_address, DP_2);
CHANGE_DP (data_address, DP_3);

L}

]

The resulting addresses are pointers to single word/doubleword in stack or heap
memory and can be used, for example, as a C pointer value to read or write
memory values. :

Note: Parallel memory, accessed by the node processor is always mapped with
caching disabled. Thus, access to words/doublewords in the above fashion will
be 2 to 3 times slower than normal cached accesses.

Also, all attempts to read/write parallel memory using pointers that are not word
aligned will result in memory faults.

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

S 503t

‘ . Appendix B. Non-RTS Parallel

B.5 Using pmalloc to Allocate Memory

There is a sample C routine, pmalloc. An example of its definition and use can
be found in the file:

/usz/examples/cmmd/hostless/c/mp_parallel perf/parray.c

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

a.out, 29
access
to devices or processes, 4
to the system, 4, 28
administrator, system, 2
at, 30

batch, 30

batch job execution, 30
breakpoints, 39, 48
busy time, 32

Cc

CM_NO_PN_CORE, 35, 37

CM_panic, 33

cmmd-1d, 21

CMMD_enable, 23
CMMD_enable_host(),23

CMOST, 3, 28

CMPN_panic, 33

cmps, 28

CMTSD_core_pnX.pid, 37
CMTSD_errors.pid, 36

compiling a program, to allow debugging, 44
compiling and linking host/node programs, 22
compiling and linking hostless programs, 20
control processors, 3

core files, 37

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

81

D

dbx, commands, 40
debugging a program, 39

E

elapsed time, 32
errors

diagnosing, 36

file, 36

handling, 33
executing a batch job, 30
executing a program, 29

F

files
core files, 37
errors file, 36

H

handling errors, 33

host, 3

host/node programs, 14
host-node programming model, 1
hostless programming model, 1
hostless programs, 12, 20

o
global independent mode,
(cMMD_independlent), 13
global synchronous broadcast mode,
(cMMD_sync_bce), 13
global synchronous sequential mode,
(cMMD_sync_seqp), 13
local mode, (CMMD_1local), 13
I/O Server, 23
idle time, 32
interprocessor communication, 1
interprocessor communication networks, 3

L
logging in, 4

massively parallel, 3
memory, 29
message-passing programs. See programs

N

nodes, 28
NQS, 30

P

partition, 2, 3, 5, 28
partition manager, 4, 28
PN, 3
PN Debug, 45
pndbx
commands, 41
sample session, 52
starting, 44
using, 45
printf, 36
Prism programming environment, 39, 44
processing elements, 3
processing nodes, 3

CMMD User s Guide

programs
compiling, for debugging, 44
components of, 11
creating, 11
debugging, 39
executing, 27, 29
running on the host, 11
terminating with errors, 36
timing, 31

ps, 28, 29

Q

gdel, 30
glimit, 30
gstat, 30, 31
gsub, 30

R

remote shells, 4
rlogin, 4,28
xrsh, 4, 28

S

script file, for batch requests, 30
SIGTERM signal, 35
space-sharing, 2

stderr, 13

stdin, 13

stdout, 13

supervisor mode, 5

system administrator, 2

system status, 5, 28

T
timing a program, 31
tracebacks, 37

U

UNIX facilities, 2
user mode, 5

Version 3.0, May 1993
Copyright © 1993 Thinking Machines Corporation

