THINKING MACHINES CORPORATION

TECHNICAL SUMMARY

The Connection Machine
CM-5 Technical Summary

PRI BN 0 NN 01005 02t GBI G0 10 oai nts ccsrhin e een SN

October 1991

Thinking Machines Corporation
Cambridge, Massachusetts

ST TS DI S5 AR

October 1991

3 ek ok ok 3 3k 3k ok 3k ok 3k 3k e ok 3k ke 3k 3 3k ok o 3k o 3K 3K 3 3 3 3k 3k 3K 2K 3k ok ke 3k 3 e 3k 2k ok ok 2k ok ok ok 3k ok ok ok ok Ak kK KkkKk

THINKING MACHINES CONFIDENTIAL

The information in this document is confidential and proprietary to Thinking Machines Corporation. It is the
property of Thinking Machines Corporation and shall not be disclosed to persons outside the company or
generally distributed within the company.

The information in this document is subject to change without notice and should not be construed as a commitment
by Thinking Machines Corporation. Thinking Machines Corporation assumes noresponsibility for any errorsthat
may be contained in this document.

*’%k

%%k 0k 3k 3k 3k 35 25 ok 3 e 3K 3k 3k 3 K * 33 3 e ke 3k 3k 3 3K ok ok kK

Connection Machine® is a registered trademark of Thinking Machines Corporation.

CM, CM-1, CM-2, CM-2a, CM-200, CM-5, and DataVault are trademarks of Thinking Machines Corporation.
CMosT and Prism are trademarks of Thinking Machines Corporation.

¢*®is a registered trademark of Thinking Machines Corporation.

Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.

C/Paris, Lisp/Paris, and Fortran/Paris are trademarks of Thinking Machines Corporation.

CMMD, CMSSL, and CMX11 are trademarks of Thinking Machines Corporation.

Thinking Machines is a trademark of Thinking Machines Corporation.

VAX, ULTRIX, and VAXBI are trademarks of Digital Equipment Corporation.

Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.

Sun, Sun-4, SunOS, Sun Workstation, and SPARCstation are trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.

The X Window System is a trademark of the Massachusetts Institute of Technology.

Motif is a trademark of The Open Software Foundation, Inc.

StorageTek is a registered trademark of Storage Technology Corporation.

Ethernet is a trademark of Xerox Corporation.

VMEDbus is a trademark of Motorola Corporation.

AVS is a trademark of Stardent Computer Inc.

Explorer is a trademark of Silicon Graphics, Inc.

Copyright © 1991 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation

245 First Street

Cambridge, Massachusetts 02142-1264
(617) 234-1000/876-1111

Contents

- S oA R PR R S R e e e eee nT e B R LTI

PartI Introduction

Chapter 1 Supercomputing and Parallelism 3
L1 Parallelismoooetniit i i i e e e 4
1.2 Paralle] Programmingccomiiiininiininneninninrneeennn. 5
1.3 Advantages of a Universal Architecture 9
14 Looking Aheadt iriiiiiii i 11
Chapter 2 The Basic Components of the CM-5....................... 13
2.1 PIOCESSOTIS .. i vttt ittt et et et e 13
2.2 NetWOTKS ...t i i e i e et e 15
2.3 HO (i e e e 17
24 A Universal ATCHIteCTUIet itiiii ittt iieienneenaennns 18
Chapter 3 Data Parallel Programming 19
3.1 Data Sets and Distributed Memorycouiiiniiieiennennen. 19
3.2 Intercomnected Data Structuresccoviiiiii .. 21
3.3 Interprocessor COMMUNICAIONS . .t vt e vrveveerennnnennenneeeanes 22
34 Conditionalsceiiiiiiitii i i i e 27
3.5 D SUIDATY . o o ittt e e 27
3.6 More Information To COmMEt vvrt ittt it e ieiainnnnnenn 29

THINKING MACHINES CONFIDENTIAL
October 1991 il

iv

Chapter 4

4.1
4.2
4.3

Chapter 5

5.1
52
5.3
54

Chapter 6

6.1
6.2
6.3
6.4

Chapter 7

7.1
7.2
7.3
7.4

Chapter 8

8.1
8.2
8.3
84

Connection Machine CM-5 Technical Summary

n
R

PartII CM-5 Software

Connection Machine Software 33
Base System Softwareiiiiiiiiii i i i i 33
Languages and Librariescovveninnnin i i iieiiiennennnn, 33
CM Software Summarizedccvveeininneriiiiiiiie e 35
The Operating System: CMOSTccvnnen.. . 37
CMOST and the CM-5 Architectureoviivevvennnnrennnennnns 38
CMOST and the USerS .. oot vt ittt iereiiie i ieseeinnaeenanennnns 40
CMOST and the Administratorccviiiiinreiireennrennn. 41
VO and File Systemscuniiminntin it iiereeeananennnnnnns 41
The Programming Environment: Prism 45
L8131 170 25 T ¢+ S 46
Analyzing Program Performancec.cviviiiiiinennnnnn. 47
Visualizing Datacitiiitinet ittt eiier et 48
On-Line Help and Documentationc.cceiiineennrnnnnnennn.. 49
The Program Execution Environment 51
1031103 1703141 T O P 51
8 1T A 52
Timesharingot i i i it e 52
0 1 53
The CM Fortran Programming Langunage 55
Structuring Paralle]l Dataeenneenneeennereeeaeeannnnns 55
Computing in Parallelcon..... R 57
Communicatingin Paralleloooiiiiiiiiiiiiii i, 58
Transforming Parallel Datacoiiiiiiiiiiiieennnnnnnn. 60

THINKING MACHINES CONFIDENTIAL
October 1991

Contents v

Chapter 9 The C* Programming Language 63
9.1 Structuring Parallel Dataccovuiiiiiiiiiiiiiiiinenn.. 63

9.2 Computingin Parallel 65

9.3 Communicating in Parallelot 67

9.4 Transforming Parallel Data e 68

Chapter 10 The *Lisp Programming Language 71
10.1 Structuring Parallel Datacc.iiiiiiiiiii i 72

10.2 Computing in Parallel it 74

10.3 Communicating in Parallelcooiiiiiiiiiiiiin i 76

10.4 Transforming Parallel Data oo, 77
Chapter 11 CM Scientific Software Library 79
11.1 Linear Algebra RoOUtinesc.ivirneinemnerneunennenannnnann 79

11.2 Fast Fourier Transformsottt iiinean 86

11.3 Random Number Generatorsceeeumieeeneeneenaennen. 87

11.4 Statistical ANalysisvviir ittt et it 88
Chapter 12 Data Visualization 89
12.1 A Distributed Graphics Strategycc.ieiiiiiinenieeann.. &9

12.2 An Integrated Environmentciiiiiiininniineneenannn. 90

12.3 The X11 Protocolc.ie it et et et 91

124 The CMXII Library . .o vv ittt it e e e an 91

12.5 Visualization Environmentsciiiuiniuieernennneeannn. 92
Chapter 13 CM Message Passing Library 93
13.1 Imitializationiiinniiiie ettt iee i iie i eeann 94

132 Message Passing .. .vvvir ittt i e e et e e 94

13.3 Informational ROUtNESottt ittt iiie s 95

13.4 Global Synchronizationc.iiiiiiiiiiiiinenrnrrnnaiann 95

13.5 Global Operationscovvvveuneennenn.... IO 97

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 14

14.1
14.2
14.3

Chapter 15

15.1
15.2
153

Chapter 16

16.1
16.2
16.3

Chapter 17

17.1
17.2
17.3

Chapter 18

18.1
18.2
18.3
18.4
18.5
18.6
18.7

Part I CM-5 Architecture

Architecture Overview it 101
Processoré .. 101
Networks and /O . ooivinrtii i e it i ia et 103
Further Information...........oooiiiiiiiiiii 105
The User-Level Virtual Machine 107
Communications Facilitiesooviiiiiiiiiiiiiiinnan, 108
Data Paralle]l Computationsccceiiiiiiiieniiiiinnnennensn. 110
Low-Level User Programming P 114
Local Architecture il 115
Control Processor Architecturecovineiniieerannnnenns 115
Processing Node Architecturecooiiiiiiiiiniiennnnenn. 116
Vector Unit Architecturec.coiiiiiiiinniiianreonnnnenn. 120
Global Architectureo.. i, 131
The Network Interfacecoiiiiiiiiniiiiiiiiinin s, 131
The Control Networkottt iian e 133
The Data NetWorkcouieiiiiinnroiennnneennensersonnsennnas 137
System Architecture and Administration 139
The System ConsOle .. .covviieennnntenriernerneeanernenanennns 139
Allocation of Resourcescoviiiiieiiiiniiiieneiianennnn, 140
Partitions and Networkscoiiiiiiiiiiiiiiiinninnnenanns 141
Resource Allocation and Managementc.ccieveinnennnnnns 143
Accounting, Monitoring, and Error Reportingo ... 143
Physical Monitoring SyStemsccoieiineivirnrenennnrenennnnns 144
Fault Detection and RECOVETYuiviiiiniireninnrinnennnnnns 144

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 19 Input/Qutput Subsystem 147
19.1 T/O Architecturecovviverrnunnneaeseeneennnncerseainnnn, 148

19.2 File System EnvIrOnmentcovevnervnninnrernrnnecarannnians. 149

19.3 1O Interfaces and Device Implementation e 152

THINKING MACHINES CONFIDENTIAL
Netnher 1991

Part 1
Introduction

THINKING MACHINES CONFIDENTIAL
October 1991 1

Chapter 1

Supercomputing and Parallelism

The Connection Machine system CM-5 provides high performance plus ease of
use for large, complex, data-intensive applications. Its architecture is designed to
scale to teraflops or teraops performance for terabyte-sized problems. It features

independent scalability of processing, communication, and I/O
extremely high floating-point and integer execution rates

high processor-memory bandwidth

efficient execution of high-level languages

multiple job execution, both timeshared and partitioned
multi-user network access

security between users

flexible high-bandwidth I/O

balanced scalar and parallel execution

balanced I/O, processing, and memory

high reliability and high availability

The CM-5 continues and extends support for the parallel programming model that
has proved so successful in the CM-2. To achieve its goals, the CM-5 takes advan-
tage of the latest developments in high-speed VLSI, new compiling technologies,
RISC microprocessors, operating systems, and networking. It combines the best
features of existing parallel architectures — including fine- and coarse-grained
concurrence, MIMD and SIMD control, and fault tolerance — in a single, inte-
grated, “universal” architecture.

THINKING MACHINES CONFIDENTIAL

October 1991

jon Machine CM-5 Tec.

1.1 Parallelism

One of the most notable advances in computing technology over the past decade
has been in the use of parallelism, or concurrent processing, in high-performance
computing. Of the many types of parallelism, two are most frequently cited as
important to modern programming:

® control parallelism, which allows two or more operations to be performed
simultaneously. (Two well-known types of control parallelism are
pipelining, in which different processors, or groups of processors, operate
simultaneously on consecutive stages of a program, and functional
parallelism, in which different functions are handled simultaneously by
different parts of the computer. One part of the system, for example, may
execute an IO instruction while another does computation; or separate
addition and multiplication units may operate concurrently. Functional
parallelism frequently is handled in the hardware; programmers need take
no special actions to invoke it.)

® data parallelism, in which more or less the same operation is performed
on many data elements by many processors simultaneously.

While both control and data paralielism can be used to advantage, in practice the
greatest rewards have come from data parallelism. There are two reasons for this.

First, data parallelism offers the highest potential for concurrency. Each type of
parallelism is limited by the number of items that allow concurrent handling: the
number of steps that can be pipelined before dependencies come into play, the
number of different functions to be performed, the number of data items to be
handled. Since in practice the last of these three limits is almost inevitably the
highest (being frequently in the thousands, millions, or more), and since data par-
allelism exploits parallelism in proportion to the quantity of data involved, the
largest performance gains can be achieved by this technique.

Second, data parallel code is easier to write, understand, and debug than control
parallel code.

The reasons for this are straightforward. Data parallel languages (such as the
Connection Machine system’s CM Fortran, C*, and *Lisp) are nearly identical
to standard serial programming languages. Each provides some method for
defining parallel data structures: CM Fortran uses the Fortran 90 array features,
while the other two languages add a new data type. Once the data sets (arrays,
matrices, structures, etc.) are defined, a single sequence of instructions, as in
serial code, causes operations to be performed concurrently either on the full data

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 1. Supercomputing an

ot

sets or on selected sections thereof. Very little new syntax is added: the power of
parallelism arises simply from extending the meaning of existing program syntax
when applied to parallel data.

The flow of control in a data parallel language is also nearly identical to that of
its serial counterpart. Since this control flow, rather than processor speed, deter-
mines the order of execution, race conditions and deadlock cannot develop. The
programmer does not have to add extra code to ensure synchronization within a
program; the compilers and other system software maintain synchronization
automatically. Moreover, the order of events, being essentially identical to that
in a serial program, is always known to the programmer, which eases debugging
and program analysis considerably.

1.2 Parallel Programming

Prior to the CM-5, the most successful implementation of the data parallel
programming model was the so-called SIMD (Single Instruction, Multiple Data)
architecture. As implemented on the Connection Machine model CM-2, the SIMD
architecture has shown itself to be extremely efficient and powerful. Arrays that
are hundreds or thousands of elements in size are laid out across hundreds or
thousands of processors, one element per processor, in a format whose logical
structure matches that of the data set itself and the operations to be performed on
it. (See Figure 1.) When there are more array elements than processors, the
processors subdivide themselves into “virtual processors” and give each element
its own virtual processor. Instructions are then executed upon each element
simultaneously. For example, given three 400 x 400 arrays, A, B, and C, the
statement C = A + B is a single statement — and is executed as such — in data

parallel programming.

But “data parallel” and “SIMD” are not necessarily synonymous terms. Consider,
for example, finite difference codes. Boundary elements in these codes usually
require special treatment, which means conditional branching. In data parallel
languages, such branching is frequently coded along the lines of

where (boundary_elements)
do_a

elsewhere
do_ b

end where

THINKING MACHINES CONFIDENTIAL
October 1991

nnection Machine CM-5 Technical Summary

6 Co j

R

Al i+1, k| A 1, k41 /| Ai1, 41, k41
Ak /] Avink /] Ak
Al | A ke Amrﬂ,m

Ay, 1L /T Apj e Aj1, 5,141
Aiyix [/TALjx Aix

Ayt A i'jl'k—l Al -\iII',k—l
Aj-1, -1 A1, 1/ Al je1,k41
Ai,i-Lk |/ A1,k A, Lk

A1,k ALkl A,k

VA WA

Figure 1. Examples of data sets,

Some problems involve data sets organized as multidimensional grids. The calculation for each data
point relies on the values of neighboring data pieces. The pattern of interaction is both local and regu-
lar. Finite difference methods are typical of this category.

Other problems, exemplified by finite element methods, operate on data that is less rigidly structured.
The calculation for each data point again relies on the values of nearby data points, but the pattern of
interaction is irregular. In some cases the pattern of interaction may change over time, as dictated by
the content of the data (for example, to make the mesh finer in regions of interest).

For tasks such as sorting, the manner in which data points interact depends greatly on the data values;
the pattern of communication will be both nonlocal and irregular,

The communications networks of the CM-5 are designed to support both regular and irregular patterns
of communication. Patterns that are predominantly local are rewarded with higher throughput.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 1. Supercomputing and Parallelism
e ST e

A pure SIMD implementation of such code will execute the where branch for all
boundary elements, and then execute the elsewhere branch for all interior
elements. A MIMD (Multiple Instructions, Multiple Data) implementation will
execute both branches simultaneously, with each processor making its own
decision whether to fetch and execute instructions for the where branch or for
the elsewhere branch for each element. When all processors have finished
execution, the program will proceed to the next statement. Note that both
implementations use the same code; both are undoubtedly data parallel
programming. The only externally visible difference will be in performance; the
second implementation, by using functional parallelism in support of data
parallelism, can run faster than the first.

Note that the order of events in either case is identical to the order that would
obtain for serial code. Even if the where branch takes several times as long as
the elsewhere branch to execute, no processors will proceed to the subsequent
statement until all have finish executing the where block. System software im-
plements this control; the programmer does not have to worry about it. Only
where events have no dependencies on each other, so that their order does not
matter, will the order be unknown. (Figure 2 illustrates the combined indepen-
dence and synchronization of program execution in this MIMD implementation
of the data parallel programming model.)

Extensions to the Data Parallel Model

Although data parallel programming provides the biggest gains among known
techniques of parallelism, it may sometimes be usefully extended by mixing in
other parallel techniques. For example, some applications may perform best
when divided into sections, each section making use of data parallel program-
ming and all sections together acting as a pipeline. Thus, one process might
gather data and do some preliminary selecting or compacting; it would then pass
its results to a second process, which would do more intense computing on the
smaller data set; and that process would then pass its results to a third process,
which would perform some visualization or reporting function. On the CM-5, all
three processes can run in parallel, either timesharing on a single partition or
perhaps each having exclusive use of a separate partition. In the latter case, each
process has its own physical computing resources; /O for the first process and
computation for the second occur simultaneously, with no impact on each other
or on the third process.

THINKING MACHINES CONFIDENTIAL
October 1991

S A

Connection Machine CM-5 Technical Summary

Code Data

A: 1, 3' cey 77 S
B: 15, 20, ..., 6, 2

Processing Nodes

"""" T I S independent
XK= fsum{a)]t Computation
If . thisg ' (no synchroni-
“do. that’ zation needed)
1 9
15 Application 6 2
Data . .
Cooperative
Computation
(synchronization
needed)

Figure 2. Code running on a CM-5.

A partition manager loads identical code onto every processing node in a partition. Data is distributed
across the nodes: Given an array of m values and a partition of » nodes, each node handles m/n values.

Each node executes its program independently, branching according to its own data values. As long as
computation remains local, no synchronization or communication is needed.

When data needs to be transferred among processors — for example, when processors must each
contribute values to a global sum — the communications networks carry the data and enforce
the necessary synchronization. (For global combining operations such as sum, the Control Network
performs the reduction.)

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 1. Supercomputing and Parallelism 9

1.3

NV RIS PR A J Y T T P A o RN

The CM-5 thus extends the data parallel programming model developed for the
CM-2 to incorporate an even broader and more widely useful mix of parallel tech-
niques. Optimized for data parallelism, the CM-5 nonetheless supports other
forms of parallelism that can either enhance data parallelism or allow the porting
of programs from other architectures. This extended model, which we may call
coordinated parallelism, represents the best that is known about parallel pro-
gramming today.

Advantages of a Universal Architecture

In the past, programmers of supercomputers were forced to choose between
MIMD machines, which were good at independent branching but bad at syn-
chronization and communication, and SIMD machines, which were good at
synchronization and communication but poor at branching. The CM-5 supports
the full data parallel model by providing high performance for branching and
synchronization alike — and, indeed, for all aspects of both SIMD-style and
MIMD-style architectures.

This extended data parallel model allows new flexibility in writing programs spe-
cifically for use on the Connection Machine system. It also allows the use, on the
CM-5, of programs and libraries written with other architectures in mind.

Figure 3 shows some of the ways in which applications originally written for oth-
er systems can migrate to the CM-5. (The illustration is based on the Fortran
language, but the CM-5 supports C and Lisp as well.)

= Existing CM-2 Fortran programs can be moved directly onto the CM-5; re-
compiling is all that is needed.

= In some cases, partial recoding of CM-2 programs can bring better per-
formance by taking advantage of new compiler features.

= Applications written using a message-passing programming model for dis-
tributed memory computers can run on the CM-5 by substituting calls to
a CM-5 message-passing library for the original calls.

= With some additional recoding, message-passing programs can be tuned
to take advantage of the superior hardware facilities for cooperative com-
putation offered by the CM-5.

THINKING MACHINES CONFIDENTIAL
October 1991

rion Machine CM-5 Technical Summary

port using

CM-5 .
communication K 7
libraries B

‘
Rejuvena
using ool

Figure 3. Transporting Programs 10 the CM-5.

the CM-1, Fortran 77 programs written for execution 0B serial

CM Fortra programs written for
only architectures are all easily

computers, and message—passing P
ported to ¢he universal architecture of the CM-5.

THINKING MACHINES CONFIDENIIAL
October 1 991

Chapter 1. Supercomputm g and Parallelism

* Existing Fortran 77 codes can be migrated to Fortran 90, using commer-
cially available tools supplied by third-party vendors, and then compiled
by the CM Fortran compiler. This allows many widely used codes to
function effectively on the CM-S.

1.4 Looking Ahead

The next two chapters explain further what coordinated parallelism on the CM-5
offers. Chapter 2 shows how the CM-5 hardware is optimized to support coordi-
nated parallelism, while Chapter 3 provides further explanation of the features to
be found in data parallel languages.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 2

21

The Basic Components of the CM-5

At its best, parallel processing brings many processors, working in close coordi-
nation, to bear on large quantities of data. An effective parallel-processing
system must provide a large amount of memory to hold this data and must pro-
vide effective access to the data for hundreds or thousands of processors. The
CM-5 system meets this goal. Moreover, it allows its memory and processor re-
sources to be applied equally effectively to a single large problem or to job
requests from dozens of simultaneous users.

Traditional computer architectures, such as the generic system diagrammed in
Figure 4, link one or a few processors to a shared memory via a system bus. This
worked well when processing speeds were slower and the number of processors
was small. Nowadays it is much more cost-effective to use many processors than
to try to make the processors faster. With many processors, a simple bus is a
bottleneck, and the complex switches that can provide fast access to a shared
memory for every memory reference are both expensive and complicated. Two
more changes to the early model are therefore needed to balance communication
speed with processing speed: memory must be distributed, rather than shared;
and a high-bandwidth network, rather than a bus, must be used. Figure 5 dia-
grams this second architecture as it appears in the CM-5.

Processors

A CM-5 system may contain hundreds or thousands of parallel processing nodes.
Each node has its own memory. Nodes can fetch from the same address in their
respective memories to execute the same (SIMD-style) instruction, or from
individually chosen addresses to execute independent (MIMD-style) instructions.

THINKING MACHINES CONFIDENTIAL
October 1991 13

Connection Machine
e

CM-5 Technical Summa

Figure 4. Organization of a traditional computer.

The processing nodes are supervised by a control processor, which runs an
enhanced version of the UNIX operating system. Program loading begins on the
control processor; it broadcasts blocks of instructions to the parallel processing
nodes and then initiates execution. When all nodes are operating on a single
control thread, the processing nodes are kept closely synchronized and blocks are
broadcast as needed. (There is no need to store an entire copy of the program at
each node). When the nodes take different branches, they fetch instructions
independently and synchronize only as required by the algorithm under program
control.

To maximize system usefulness, a system administrator may divide the parallel
processing nodes into groups, known as partitions. There is a separate control
processor, known as a partition manager, for each partition. Each user process
executes on a single partition, but may exchange data with processes on other
partitions. Since all partitions utilize UNIX timesharing and security features,
each allows multiple users to access the partition while ensuring that no user’s
program interferes with another’s.

Other control processors in the CM-5 system manage the system’s I/O devices and
interfaces. This organization allows a process on any partition to access any VO
device, and ensures that access to one device does not impede access to other

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 2. The Basic Components of the CM-5 15

SRS

‘HIPREOE:

VME interface’

Hundreds or thousands of processing Onesortens High
nodes, each with its own memory of control bandwidth
processors: o
used for interfaces
logins, 1/0, and
administration

Figure 5. Organization of the Connection Machine system.

devices. (Figure 6 shows how this distributed control works with the CM-5’s in-
terprocessor communication networks to enhance system efficiency.)

2.2 Networks

Every control processor and parallel processing node in the CM-5 is connected
to two scalable interprocessor communication networks, designed to give low
latency combined with high bandwidth in any possible configuration a user may
wish to apply to a problem. Any node may present information, tagged with its
logical destination, for delivery via an optimal route. The network design pro-
vides low latency for transmissions to near neighboring addresses, while
preserving a high, predictable bandwidth for more distant communications.

The two interprocessor communications networks are the Data Network and the
Control Network. In general, the Control Network is used for operations that in-
volve all the nodes at once, such as synchronization operations and broadcasting;

THINKING MACHINES CONFIDENTIAL
October 1991

16 Connection Machine CM-5 Technical Summary
3 A R A R 0 S

UNIX OS services
Code Management
Partition Services

Partitions

Muttipie copies of
user code

%\"f"'r——'*r'——-r

Partition n R4

In-use data sets

Partition 2 —/

Partition 1

File systems,
device drivers,
interfaces

DataVault, HIPPI,
ethernet

o

{ Users’ data store

it e s

Figure 6. Distributed control on the CM-5.

Functionally, the CM-$ is divided into three major areas. The first contains some number of partitions,
which manage and execute user applications; the second contains some number of YO devices and in-
terfaces; and the third contains the two interprocessor communication networks that connect all parts
of the first two areas. (A fourth functional area, covering system management and diagnostics, is han-
dled by a third interprocessor network and is not shown in this drawing.)

Because all areas of the system are connected by the Data Network and the Control Network, all can
exchange information efficiently. The two networks provide high bandwidth transfer of messages of all
sorts: downloading code from a control processor to its nodes, passing /O requests and acknowledg-~
ments between control processors, and transferring data, either among nodes (whether in a single par-
tition or in different partitions) or between nodes and VO devices.

THINKING MACHINES CONFIDENTIAL
October 1991

2.3

the Data Network is used for bulk data transfers where each item has a single
source and destination.

A third network, the Diagnostics Network, is visible only to the system
administrator; it keeps tabs on the physical well-being of the system.

External networks, such as Ethernet and FDDI, may also be connected to a CM-5
system via the control processors.

I[e]

The CM-5 runs a UNIX-based operating system; it provides its own high-speed
parallel file system, and also allows full access to ordinary NFS file systems. It
supports both HIPPI (high-performance parallel interface) and VME interfaces,
thus allowing connections to a wide range of computers and /O devices, while
using standard UNIX commands and programming techniques throughout. A
CMIO interface supports mass storage devices such as the DataVault and enables
sharing of data with CM-2 systems.

I/O capacity may be scaled independently of the number of computational
processors. A CM-5 system of any size can have the /O capacity it needs, whether
that be measured in local storage, in bandwidth, or in access to a variety of
remote data sources. Communications capacity scales both with processors and
with I/O. Customers may choose both the processing power and the /O capa-
bilities that meet their needs, and the CM’s communications capacity is
automatically scaled to match.

Just as every partition is managed by a control processor, every /O device is
managed by an input/output control processor (IOCP), which provides the soft-
ware that supports the file system, device driver, and communications protocols.
Like partitions, /O devices and interfaces use the Data Network and the Control
Network to communicate with processes running in other parts of the machine.
If greater bandwidth is desired, files can be spread across multiple /O devices:
a striped set of eight DataVaults, for example, can provide eight times the I/O
bandwidth of a single DataVault.

The same hardware and software mechanisms that transfer data between a parti-
tion and an I/O device can also transfer data from one partition to another
(through a named UNIX pipe) or from one /O device to another.

THINKING MACHINES CONFIDENTIAL
October 1991

e g e e

18 Connection Machine CM-5 Technical Summary

2.4 A Universal Architecture

The architecture of the CM-5 is optimized for data parallel processing of large,
complex problems. The Data Network and Control Network support fully gen-
eral patterns of point-to-point and multi-way communication, yet reward patterns
that exhibit good locality (such as nearest-neighbor communications) with
reduced latency and increased throughput. Specific hardware and software sup-
port improve the speed of many common special cases. Chapter 3 outlines the
nature of this support, which is discussed in even greater detail in later chapters.

Two more key facts should be noted about the CM-5 architecture. First, it depends
on no specific types of processors. As new technological advances arrive, they
can be moved with ease into the architecture. Second, it builds a seamlessly
integrated system from a small number of basic types of modules. This creates
a system that is thoroughly scalable and allows for great flexibility in configura-
tion.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 3

~

3.1

Data Parallel Programming

R T T L S A I 2

Connection Machine systems are designed to operate on large amounts of data.
These data sets may be richly interconnected or totally autonomous. A scientific
simulation data set, such as a finite-element grid, is highly interconnected, with
every node value connected to several element values and vice versa. Disparate
values are continually being brought together, computed on, and redispersed. A
document database, on the other hand, may be totally autonomous. The search
of any one document proceeds entirely without reference to any of the others.
There is no need to continually and repeatedly combine information from multi-
ple documents in a single computation.

The Connection Machine system is made up of large numbers of processors, each
with its own local memory. From the programming perspective, it is possible to
think of the memory in either of two ways. When computing on interconnected
data sets, it is easiest to think of the memory as a single multi-gigabyte data
space. When computing on autonomous data, it is easiest to think of it as many
local memories.

Efficient Connection Machine algorithms invariably combine both points of
view. When gathering data, one regards it as global. When computing on the
gathered data, one thinks of it as local data, and of the computations themselves
as being carried out in multiple local memories.

Data Sets and Distributed Memory

Data parallel programs can be expressed in terms of the same data structures used
in serial programs. Emphasis is on the use of large, uniform data structures, such
as arrays, whose elements can be processed all at once. A statement such as

THINKING MACHINES CONFIDENTIAL
October 1991 19

A = B + C, which in a serial language adds a single number B to a single num-
ber C and stores the result in &, can equally well indicate thousands of
simultaneous addition operations if &, B, and C are declared to be arrays.

In fact, the basic unit of data in a Connection Machine is the array, or some other
form of parallel variable. Arrays are spread across the distributed memory of the
Connection Machine system so that each element is in the memory of a separate
processor. If the number of elements in the array matches the number of physical
processors, then each local memory receives one element. If the number of ele-
ments in the array exceeds the number of physical processors, then several
elements are placed in the memory of each processor. The elements remain dis-
tinct. Each is considered to have its own “virtual processor” and is handled
accordingly.

The choice of parallel data structures is perhaps the most important aspect of data
parallel programming. Once data has been properly allocated, executable code
follows naturally. It is not necessary to use different operation names for different
cases. Parallel code can look just like serial code, in the same way that float-
ing-point arithmetic looks like integer arithmetic. A conventional compiler
examines the declarations of variables B and C to determine whether the expres-
sion B + Crequires an integer or floating-point add instruction. In the same way,
a compiler for a data paralle] language determines whether B + C requires a
single addition operation or thousands.

Array Layout

A user program runs within a partition of a CM-5. Defined by the administrator,
a partition may represent part or all of the CM-5 system. In order to allow a pro-
gram compiled with a CM compiler to run on a partition of any size, the precise
mapping of data elements to processors occurs at run time; the run-time system
lays out the array for best efficiency. Compiler directives in each language allow
programmers to request that the mapping be optimized for particular purposes.

Local Computations

Unless the programmer has specified otherwise, arrays of equal size and shape
will have identical layouts. Thus, identical elements of each such array will share
the memory of a particular processor. When a computational statement such as

THINKING MACHINES CONFIDENTIAL
October 1991

C = A + Bis executed, each processor locates and stores the needed data in its
OWD memory; no interprocessor data movement is required, and the operation
proceeds very quickly.

Interconnected Data Structures

The inherent structure of most data sets links each data element to some, but not
all, other elements. Often the linkages are to neighboring elements, in which case
the structure is said to be localized.

A matrix, for example, is generally thought of as having row and column struc-
ture. Elements that share one subscript are used in a connected way. If the matrix
is used as part of a finite-difference calculation, then the horizontal and vertical
neighbors are continually brought together for computation. If a data structure is
converted from the spatial domain to the frequency domain, then a butterfly pat-
tern may be required during the course of a Fast Fourier Transform (FFT).

1t is not possible to arrange interconnected data so that all the pieces of data will
reside in the processors that need to use them, because the same piece of data may
be used in more than one part of the computation, by more than one processor.
Interprocessor communication is required. Computations on data structures have
a definite rhythm: first data elements are brought together, then computations are
performed. Once the data elements have been brought together, the computations
are local. Even on very complex data structures, it is possible to have most of the
interacting elements located in the same processor memory. Typically, only a few
need to be brought in from another processor’s memory.

Establishing Linkages among Data Elements

Data parallel languages use pointers or array subscripts to establish connections
between processors and hence between their data elements. If the required pat-
terns are regular and local, such as processors sharing data with their nearest
neighbors, then each processor can easily calculate the address of its neighbors
as needed. For irregular arrays, an array of pointers, itself a parallel data struc-
ture, establishes an arbitrary pattern of intercommunication.

THINKING MACHINES CONFIDENTIAL
October 1991

ch

RS

ine CM-5 Technical Summary

ER

3.3 Interprocessor Communications

There are four important categories of interprocessor communications:
= replication
= reduction
® permutation
® parallel prefix

Each of these four types of data transfer can be applied to regular or irregular data
sets: to vectors, matrices, multidimensional arrays, variable-length vectors,
linked lists, and completely irregular patterns. All these combinations are sup-
ported by data parallel software within the CM-5. In addition, the most common
or otherwise important cases are supported directly by special hardware built into
the Control Network. In all cases, the CM-5’s high performance is a result of hav-
ing all the processors act cooperatively to achieve the needed data transfers.

Replication

Replication consists of taking some data values and making a larger number of
data values by copying them. (See Figure 7.) A single value, for example, may
be broadcast to all processors for use in a computation. A vector may be copied
into each column of a matrix, or into each row. (The general case of making many
copies of an array to fill a higher-dimensional array is called spreading.) A less
regular pattern is the division of a collection into arbitrary subsets of varying size,
and one may wish to broadcast a different value within each subset. If the subsets
are ordered and not interleaved, one may regard them as a collection of vectors
of various sizes; this common case can be implemented more efficiently than the
general case.

Most data parallel programming languages support broadcasting implicitly; if A
and B are arrays and X is a scalar quantity, the statementA = B + X implicitly
broadcasts X to all processors so that the value of X can be added to every element
of B. The general case of replication is typically supported through parallel array
indexing, that is, indexing the same array with many index values. If some of the
index values are the same, then the same array element will be copied to many
places. Intrinsic functions (such as SPREAD in Fortran) cover important special
cases.

THINKING MACHINES CONFIDENTIAL
October 1991

allel Programming

7 1 10111
] 2 20222
—
YYYYYYYY s| © |sle]e]e
7|7 |7|7|7|7|7] 4 4141414
Broadcasting Spreading
[7] E*‘E\
1 2 s |4 \7 [4]
NN N N ! 5
1112 2/6 6 6 6 6/4 4 4 3
[7]
Variable-length vectors '
Completely irregular

Figure 7. Replication.

Reduction

Reduction is the opposite of replication: Reduction consists of taking some data
values and making a smaller number of data values by combining them. (See
Figure 8. Note that it is similar to Figure 7 except that the arrows all point the
other way.) A single value, for example, may be produced by computing the sum
of a set of values; here the combining operation is addition. Other important
reduction operations include taking largest or smallest value (maximum or mini-
mum), logical AND (are all results true?), and logical OR (is any result true?). All
these start with a large collection of values and reduce them to a single result.

More complex patterns of reduction mirror related patterns of replication. The
rows of a matrix may be summed to produce the elements of a column-vector
result; this is the opposite of a SPREAD operation. A collection of variable-length
vectors may be reduced, producing a separate sum for each vector. Completely
general patterns may be specified by index values or pointers.

THINKING MACHINES CONFIDENTIAL
October 1991

24 Connecti

A

on Machine CM-5 Tech

R

nical Summary
ERERERE R

2

Most data parallel languages provide a collection of operators or intrinsic func-
tions for expressing various patterns of reduction. For example, the Fortran
statement X = SUM(A) sums all the elements of the array A and places the scalar
result in X. The same computation can be expressedin C* asx = (+= a); and
if the old value of X is to be included in the sum one may simply write x += a;
(which says that every element of a is to be added into x).

E 10 1/2|3]4
+ 2 1(0(0/|1

-
| | 1 22 6|(5(9]|2
1/2]5[/4(7]6]3]5] 15 4245
Global reduction Row/column reduction

['s E‘*‘T_O_l
361/52/02-465[264,| _\ﬂ \E]
w Vi w]
10 7 o 12 3 8

Completely irregular

1

Variable-length vectors

Figure 8. Reduction.

Permutation

Permutation rearranges its inputs to produce the same number of results; every
data value comes from one place and goes to one place. (See Figure 9.) Trans-
posing a matrix, reversing a vector, shifting a multidimensional grid, and FFT
butterfly patterns are all examples of permutation.

Data parallel languages usually express permutation through parallel array in-
dexing and special-purpose intrinsic functions. A typical example of use might

THINKING MACHINES CONFIDENTIAL
October 1991

be a finite-difference grid used in the discretization of Laplace’s Equation, in
which the average of four nearest neighbors is iteratively computed:

C =0.25 * (CSEIFT(A,1,+1)

& + CSHIFT(A,1,-1)
& + CSHIFT(A,2,+1)
& + CSHIFT (AIZI_l))

Here CSHIFT is a Fortran intrinsic that shifts (or rotates) an array with periodic
boundary conditions. Elements shifted off one edge are circularly shifted into the
opposite edge; thus no elements are lost in this operation. In constrast, EOSEIFT
performs an end-off shift that discards shifted-out elements and introduces a pad
value, usually zero, into vacated positions; this operation is thus technically a
hybrid of permutation (of array elements) and replication (of the pad value).

1/2]5/4j7]6)315S 1234 2]3]a]1
[/) [[afelo]1]|_ [o|o[1]1
-
//////// 65|92 519|126
2/5/4|716!13/51]1 41245 24|54
1-D nearest neighbor (shift) 2-D row/column shift
57‘—6—\10
11215(4{7|6|3|5 X !
e
2 5
> 5
5/4|11]2|3|5|7/|6 {:
1
Butterflies Completely irregular

Figure 9. Permutation.

THINKING MACHINES CONFIDENTIAL
October 1991

26

Connectzon Machme CM 5 Techmcal Summary

Parallel Prefix

A parallel prefix operation is a very specific compound operation; it produces as
many results as inputs, but each result may be a reduction of many inputs, and
each input may contribute to many results. There happens to be a rapid and effi-
cient parallel method for performing this complex compound operation; the
CM-5 supports it with a combination of hardware and library software. It is of
particular use in parallel computations because it permits rapid parallel execution
of operations that at first glance appear to be inherently sequential.

The simplest example of a parallel prefix operation is computing the running
totals of a list of numbers. The kth result is the sum of the first k inputs. (See
Figure 10.) There is a simple sequential implementation of such a computation:

RUNNING_TOTAL = 0.0

DO J = 1,1000
RUNNING_TOTAL = RUNNING_TOTAL + B(J)
A(J) = RUNNING_TOTAL

END DO

This would appear to be an inherently sequential process, scanning the array B
from one end to the other, but by bringing many processors to bear in parallel,
one can perform this computation in 10 steps instead of 1000 steps (10 is approx-
imately the base-2 logarithm of 1000).

112154 |7|6}3|5 172134 1136 (10
¢ 170;0)1 111112
>
615192 6 111]20]22
113]8112]18125128|33 41 2141)5 416110115
1-D sum-prefix 2-D row/column sum-prefix

16

: | [6
36 1 02465264 |[5 f ::] 10}~

¢ ¢ F) om0
CRE R

Variable-length vectors Linked lists

Figure 10. Parallel prefix.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 3. Data Parallel P

S IR

rogramming

R R ARt

3.4 Conditionals

Conditional operations are an essential part of data parallel programming, as of
serial programming. Some of the control constructs (IF, CASE) are identical; oth-
ers (WHERE, FORALL) are specific to parallel usage.

Data parallel programs implement conditionals by limiting the impact of opera-
tions to a certain subset of the data elements of a parallel data structure. A
conditional operation first tests a specified condition in all elements of a parallel
data structure. The specified operation is then performed only on elements for
which the condition is true, while either an alternate operation, or no operation,
is performed on the other elements. As in serial programs, conditionals may be
nested in very general ways.

3.5 In Summary

The data parallel model of computation makes it easy to program massively par-
allel computers. The model is also suitable for use on sequential computers,
including vector processors, and on shared-memory parallel computers. High-
level data parallel languages support the data parallel style. The CM-5 architec-
ture is specifically designed for efficient execution of data parallel programs on
large data sets.

Data parallel programming provides a practical framework for organizing inter-
processor communication. An analogy may be drawn with the way “structured
programming” has provided a practical framework for organizing control flow
in sequential programs. Each model begins with primitive computations and uses
a fixed set of standard combining forms to impose structure on the program.

Structured programming begins with simple assignment statements and observes
that most patterns of control flow can be expressed in terms of sequencing
(BEGIN-END), conditional branching (IF-THEN-ELSE), and looping (WEILE-
DO). If these structures are conventionally used wherever appropriate, then use of
a low-level construct such as a GOTO is a strong indication, and a useful one, that
something unusual is going on; maintenance programmers should pay special
attention, and language designers should ask whether the situation represents a
class of problems that could be addressed more generally. Conventional syntax
has evolved for certain frequently used compound patterns, such as CASE state-
ments and DO loops.

THINKING MACHINES CONFIDENTIAL
October 199!

Similarly, data parallel programming begins with local computations and
observes that most patterns of interprocessor communication can be expressed in
terms of replication, reduction, permutation, and paralle] prefix. If these struc-
tures are conventionally used wherever appropriate, then use of a low-level
construct such as explicit message-passing is a strong indication, and a useful
one, that something unusual is going on; maintenance programmers should pay
special attention, and language designers should ask whether the situation repre-
sents a class of problems that could be addressed more generally. Conventional
syntax has evolved for certain frequently used compound patterns, such as shift-
ing of regular grids, sorting, and fast transforms such as FFT.

As Figure 11 suggests, the data parallel model simplifies the programmer’s job
by providing for parallel programs the conventional structure and discipline that
structured programming provides for sequential programs. Indeed, the data par-
allel model is the only programming methodology yet put forward that provides
a coherent global organization for structuring programs that operate on thou-
sands of processors.

Data Parallel
Structured Programming Programming
Primitive . .
Computations assignment statements local computations
. BEGIN . . . END replication
Basic E THEN ELSE reduction
Patterns W!:II.L.E D.O. : T permutation
Tt T parallel prefix

Common DO loops regular grids, stencils
Compound CASE statements fetch-with-add
Patterns REPEAT ... UNTIL. .. sorting, fast transforms
Low-Level .
Mechanisms GOTO message passing

Figure 11. Structuring programs.

THINKING MACHINES CONFIDENTIAL

October 1991

Chapter 3. Data Parallel Programming

SRS

3.6 More Information To Come

This introduction barely begins to present the features and capabilities of the
CM-5. The remainder of this book presents them in somewhat more detail
(although still at a2 summary level). Part II discusses the software that supports
application programming on the CM-5. Part III discusses the various aspects of
the system’s architecture.

For information beyond this, you can turn to technical reports on Connection
Machine programming, and to the CM-2 and CM-5 documentation sets. Especi-
ally recommended for new users are the manuals Getting Started in C* and
Getting Started in CM Fortran.

THINKING MACHINES CONFIDENTIAL
October 1991

Part I1
CM-5 Software

THINKING MACHINES CONFIDENTIAL
October 1991 31

Chapter 4

Connection Machine Software

4.1

4.2

GRS

The Connection Machine system provides a well-designed, thoroughly inte-
grated software environment to facilitate applications programming. The
environment seamlessly blends industry standards with data parallel enhance-
ments to provide both high performance and ease of use.

Base System Software

The use of industry standards begins with the UNIX operating system and its net-
work file system (NFS). Full X11 support provides windowing capability; the
NQS batch system allows submission of batch jobs locally or across a network.
Networking support includes Ethernet and FDDI for local area networking, and
VME, HIPP], and UltraNet for high-performance networking.

Ease of use, meanwhile, is enhanced by Prism, the windowed, integrated devel-
opment environment for program editing, debugging, and performance analysis.
Another CM enhancement, a parallel, high-performance file system, provides ex-
cellent /O performance and allows use of extremely large files.

Languages and Libraries

For programming, users choose among the popular languages C, Fortran, and
Lisp. The CM offers data parallel versions of each language, extending the lan-
guages’ own constructs in intuitive ways to support the data parallel model.

THINKING MACHINES CONFIDENTIAL 33
October 1991

34 Connectzon Machine CM-5 Technical Summ
S R

In addition, specialized libraries offer support for graphics, communications, and

mathematical and scientific programming. All are available from the high-level
languages; low-level programming is not required to achieve high performance

on the Connection Machine supercomputer.

MWMW%W
7 ysERAPPLICATIo, \
ages C* C, . %
4 - M LY
& £ N Tools & / X
;‘? \Q / Libraries Utilities ‘?o "g Y
xf f fﬁ = CM Scientific = Prism % \Q&“ ”‘-‘a
4 ~ Software - % ;
§ 4 f Library = NQS Batch % % %
:N f g n Visualization ¢ ¢%~ System %, '%
}% g ¥ ; & Check- X i
§ ;™ CMMD pointing % : %
. % § §
% { File Systems % Networking § {
i 2@ ® High- = HIPPI i i
E performance ® UltraNet ;,é’ J
3)
3 paraliel . VME f/
le system ; Ethernet ;{
L ern g

g% fi
g% \ u NFS = FDDI o &

Figure 12. Layered software of the Connection Machine system.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 4. Connection Machine Sofiware 35
A R G v o T iis sy

4.3 CM Software Summarized

Figure 12 summarizes the layered software of the Connection Machine system.
This software is discussed in the following chapters:

Operating system, file systems, /O programming Chapter 5
Prism (the development environment) Chapter 6

NQS batch system, checkpointing,

the execution environmentc.0eunn.. Chapter 7
CM Fortran programming language Chapter 8
C* programming lafnguagec.ccieunannn.. Chapter 9
*Lisp programming language Chapter 10
CM Scientific Software Library

(linear algebra, Fast Fourier Transforms,

random number generation, histograms) Chapter 11
Visualizationccoiiiiiiiiiiiii.., Chapter 12
CMMD (message-passing communications library) Chapter 13

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 5

The Operating Syste

m: CMosT

_—

The CM-5 operating system, CMOST, is an enhanced version of the UNIX operat-
ing system. The enhancements optimize computation, communication, and
I/O performance within the CM-5 system itself, while the adherence to UNIX
standards allows the CM-5 to interact efficiently with other computers in a hetero-
geneous, networked environment.

Because the CMOST operating system is built upon standard UNIX, it can provide
all the services that any standard network server provides:

timesharing and batch processing

standard UNIX protection, security, and user interfaces

support for all standard UNIX-based communications protocols
exchange of data with other systems in an open, seamless fashion

the ability to access files on other systems via NFS protocols and to supply
data to other systems by acting as an NFS server

the Network Queuing System (NQS) and other standard network-oriented
programs

for scalar programs, binary compatibility with SunOS

Enhancements provide higher-performance services and expanded functionality
for users within the CM-5 system:

high-speed file access
fast parallel interprocessor communications capabilities

other parallel operations for optimal utilization of CM-5 hardware

THINKING MACHINES CONFIDENTIAL

October 1991

37

Connectio
R

R

n Machine CM-5 Technical Summary

R P

5%

= central administration and resource management for all CM-5 computa-
tional and /O facilities

* support for extended models of data parallel programming, such as data
parallel pipes

= support for other parallel programming models

® checkpointing

5.1 CMosT and the CM-5 Architecture

The computational nodes on a CM-5 are grouped into partitions. A partition can
be as small as 32 processors, or as large as the entire machine. The partitioning
is flexible and is controlled by the system administrator, who can create and alter
partitions as needed to meet site requirements. Each partition operates indepen-
dently under the control of a control processor acting as a partition manager
(PM). Users log into (or rsh onto) the PM and, once logged in, have full access
to the PM itself, to all the computational nodes it controls, and—through the
operating system—to all the I/O resources, partitions, and network connections
of the CM-5 system. Figure 13 shows a user’s-eye view of the CM-5.

Each partition manager runs a full version of the CMOST operating system. The
PM makes all operating system resource allocation decisions and all swapping
decisions for its partition, as well as most system calls for process execution,
memory management, and I/O.

Each processing node runs an operating system microkernel, which supports the
mechanisms required to implement the policy decisions made in the partition
manager. All operating system code operates in supervisor mode, allowing it to
access any network address and memory address in the machine.

‘When a user process begins running, its partition manager downloads code to the
processing nodes and broadcasts identical memory maps to each node. The nodes
then execute the provided code, each acting on its own data and executing com-
putations and branches accordingly.

All nodes in a partition operate on the same process at the same time. Interproces-
sor communication between nodes within an application is handled entirely by
user code, without any operating system overhead. For external communications
the user process calls on the operating system, which requests and supervises the

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 5. The Operating System: CMOST 39

“My” Partition
(timeshared)
r— ="
I Data !
Other
Partitions I !
] ’ l /O Devices
More Nodes I3 “My” Parallel . .] (and HIPPI
Processing Nodes interfaces)
~ A
AN |
£ 1 =2 T
I |
~=dJ L= |
v
\v/ l A
/O Control
Other
Partition ! - Processors
Managers Ethernet or
FDDI interfaces
A A
T 0
| External !
g network(s) :
wh thy
v Y v
(other (the rest of
users) tﬁ:;' the world)

Figure 13. A user’s view of a CM-5.

Users access a CM-5 system by running rlogin or rsh commands on a specific partition manager. A
user program begins execution on the PM, downloads code to the nodes, then runs on nodes and PM
both, passing data as needed among processors.

If a program needs to exchange data with an IO device or with another process, the PM arranges the
transfer, via system calls to other control processors. Data then flows directly between the nodes and
the VO device, nodes of another partition, or external network interface, thus ensuring that a parallel

process gets the full benefit of the CM-5 Data Network bandwidth.

THINKING MACHINES CONFIDENTIAL
COctober 1991

40

5.2

Connection Machine CM-5 Technical Summary

S

transfer on behalf of the user process. Data may be transferred between two pro-
cesses running timeshared in the same partition or between two processes
running concurrently in different partitions.

Interprocess communication is based on parallel extensions to UNIX sockets and
pipes and is managed by the operating system. I/O transfers are handled in the
same manner as transfers between partitions.

CMOST and the Users

Users typically access the CM-5 through an external network, either in batch
mode, via the NQS gsub command, or interactively, via rlogin or rsh com-
mands.

Each PM and IOCP within the CM-5 is a separate host on the network. Users can
log in to any PM or IOCP for which they have appropriate privileges. Once logged
in, a user has access to the full resources controlied by that control processor and
to both local and networked file systems; the user can then run processes that use
a control processor alone or a full partition of PM plus processing nodes. Since
the set of control processors (PMs and IOCPs) within a CM-5 form a loosely
coupled network of UNIX computers, a user with appropriate privileges can also
run programs on any processor within the CM-5 using the normal UNIX network-
ing commands.

The Program Development Environment

The program development environment available to Connection Machine users
offers the full capabilities of UNIX and the X Window System. In addition, it
offers enhancements specific to CM parallel programming: paralle] languages,
specialized libraries, and tools for parallel debugging and performance analysis.
Prism, the CM-5’s integrated programming environment, facilitates program-
mers’ use of the machine (see Chapter 6).

THINKING MACHINES CONFIDENTIAL
October 1991

5.3

5.4

The Program Execution Environment

The program execution environment on the CM-5 supports both interactive, time-
shared program execution and batch execution using the NQS batch system.

Several facilities, such as automatic checkpointing and Prism, the CM program-
ming environment, aid program development and robustness during execution.
(See Chapter 7.)

CMoST and the Administrator

CMOST provides the administrator with tools for efficient and flexible resource
management. It allows the administrator to partition the CM-5 for spacesharing
among users, to set up the NQS batch system and the accounting system, and to
monitor system usage, error logging, and power and environmental concerns. In
addition, it provides all the standard UNIX capabilities, such as setting process
priorities for use with process scheduling, setting disk quotas to control disk
space usage, backing up and restoring user data, and setting up user permissions.

CM-5 administration is centralized at a system console, using commands that are
modeled on SunOS 4.1 commands. The commands execute through a set of dae-
mon processes that run (depending on their tasks) on the system console
processor, the diagnostic console processor, or the partition managers.

I/O and File Systems

/O programming on the CM-5 uses standard UNIX mechanisms, including sock-
ets, pipes, character devices, block devices, and serial files. All /O operations are
modeled as reads and writes to files, regardless of the type of device used for
storage.

CMOST extends the UNIX I/O environment to support parallel reads and writes
and to support very large files, including files above the size supported in most
current UNIX implementations. The virtual file system interface supports device-
independent file behavior and supports many different file system types,
including the standard UNIX file system, the Network File System (NFS), and the
CM’s own high-performance file system. Operating over the CM-5 Data Net-

THINKING MACHINES CONFIDENTIAL
October 1991

external networks, NFS supports distributed file system management, allowing
external devices to access CM files and CM-5 processes to access external files.

The CM-5 arranges communications to allow maximum simultaneous perform-
ance of computation and I/O. Transfers from one partition do not affect the
performance of other partitions. Simultaneous transfers from several partitions
see minimal interactions unless they require access to the same I/O device. Direct
I/O-t0-1/O transfers allow direct movement of data between a remote machine and
a CM-5 1/O device, or between primary and secondary /O devices on a CM-5,
without affecting activities in partitions.

The CM-5 File System

The CM-5’s high-performance file system manages the CM’s high-speed disk
storage, or DataVaults.

Within CM-5 files, data is stored in canonical (serial UNIX) ordering, thus allow-
ing its use by both serial and parallel systems and processes. When a serial
process does /O, data remains in canonical order throughout; for paraliel /O,
data moves between the canonical order and the ordering required by the compu-
tational nodes.

This reordering serves two important purposes. First, it allows a program to run
on partitions of any size without affecting its I/O: a file written by a process run-
ning on a partition of one size may be read with equal ease by a process running
on a partition of a different size. Second, it allows the same file to be read by
parallel or serial processes. A serial process may read a file written by a paraliel
process, and vice versa.

For further information on the CM-5 file system and I/O, see Chapter 19.

Network Communications

Data can travel through sockets directly between CM-5 processes and other ma-
chines on the network. A user process can create a socket, send parallel data to
it, and have that data received as a serial stream by a serial or vector computer.
The same socket can carry serial data from control processors; as with file /O,
network communication uses standard protocols and data ordering for transmis-
sion, and uses parallel ordering only within the parallel computational nodes.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 5. The Operating System: CMOST 43

The User’s View

From the user’s point of view, data from any file system, on any device, appears
the same and is handled in the same manner. A CM-5 control processor, accessing
data over the data network, sees no difference between data stored on any CM-5
/O device and data stored on any other UNIX file system.

Similarly, user processes are not concerned with the storage media on the CM.
Whether data is stored on a single device or striped across multiple devices, the
process accesses it as a single file. The only user-visible difference is in perform-
ance.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 6

The Programming Environment:
Prism

The Prism programming environment is an integrated Motif-based graphical
environment within which users can develop, execute, debug, and analyze the
performance of programs written for the Connection Machine system. It provides
an easy-to-use, flexible, and comprehensive set of tools for performing all
aspects of Connection Machine programming.

Users can either load an executable program into Prism, or start from scratch by
calling up an editor and a UNIX shell within Prism and using them to write and
compile the program.

Once an executable program is loaded into Prism, users can (among other
things):

= Execute the program. Users can simply start the program running or
single-step through it. Execution can be interrupted at any time.

* Debug the program. Users can perform standard dbx-like debugging op-
erations such as setting breakpoints and traces, printing the value of a
variable or expression, and displaying and moving through the call stack.

®* Analyze the program’s performance. Data on execution time, broken
down by procedures or by lines of source code, may be displayed as histo-
grams. See Section 6.2.

= YVisualize data. The values of interactively specified variables or expres-
sions may be displayed in a variety of textual and graphical formats. See
Section 6.3.

Prism operates on terminals or workstations running the X Window System.

THINKING MACHINES CONFIDENTIAL
October 1991 45

Connection Machine CM-5 Technical Summary

6.1 Using Prism

Figure 14 shows the main window of Prism, with a program loaded. It is within
this window that users debug and analyze their programs. Users can operate with
a mouse, use keyboard equivalents of mouse actions, or issue text commands.

Clicking on items in the menu bar along the top of the window displays pulldown
menus that provide access to most of Prism’s functionality.

Frequently used menu items can be moved to the fear-off region, below the menu
bar, to make them more accessible.

The status: area displays messages about the program’s status.

R R R R R RN
e]
File CM Execute Debug Performance Events Utilities Doc Help
[Coad...] [Run] [Print...] [Continue] [Step] [Next] [interrupt] [Up] [Down] [Collection]
Program: primesix Status: not started
'Line Source File: primesl.fem
1 program findprimes
2 implicit none
3 integer 1, n, nextprime
4 parameter (n = 999)
5 logical primes(n), candid(n)
6 integer identity{n)
7
8
g c Initialization H
10 c !
11
12 adentity = [i:nd
13 primes = ,false.
14 candid = .true,
15 candid{1) = .false,
16
17 [of
18 c Loop: Find next valid candidaste, mark it as a prime,
19 c invalidate all multiples as candidates, repeat.
20 c
21
22 nextprime = 2
23 do while {(nextprime .le, sart{real(n)))
24 prames{nextprime) = ,true,
25 B candid{nextprime:ninextprime) = .false,
26 nextprime = minval(identity, 1, candid)
27 end do
28
29 C
go > g At this poaint, all valid candidates are prime
1
32
33 primes{nextprimesn} = candid{nextprime:n’
34
35 C
36 C Print results
U S P> |
(1) stop at “pramesi.fcm":25

Figure 14. The main window of Prism.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 6. The Programming Environment: Prism

6.2

Yonid e

The source window displays the source code for the executable program. The
user can scroll through this source code or display a different source file. When
a program stops execution, the source window is automatically updated to show
the code currently being executed. The user can click on variables or expressions
in the source code to print their values.

The line-number region is associated with the source window. Clicking to the
right of the line number sets a breakpoint at that line.

The command window at the bottom of the main window displays messages and
output from Prism. The user can also type commands in the command window,
rather than use the graphical interface.

Analyzing Program Performance

In cooperation with the compilers and run-time library routines, Prism provides
the performance data essential for effectively analyzing and tuning programs.
The data includes:

= control processor user and system time

" processing time

* time spent transferring data between control processor and nodes
* time spent in general Data Network communication

= time spent doing specific patterns of Data Network communications, such
as nearest-neighbor on a grid

* time spent doing reductions and parallel prefix

The performance data is displayed as histograms and percentages. For each type
of time measurement, the user can also see the data broken down for each proce-
dure and each source line in the program. The data on procedures is available in
two versions. One gives a flat per-procedure view of the utilization of the re-
source; the other shows utilization using the dynamic call graph of the program.

THINKING MACHINES CONFIDENTIAL
October 1991

48 Connection Machine CM-5 Technical Summary

6.3 Visualizing Data

In data parallel computing, it is often important to obtain a visual representation
of the data elements that make up a parallel variable or expression. In Prism, the
user can create visualizers for variables or expressions. Available representations
include:

= Text, where the data is shown as numbers or characters

= Pixel, where each data element is mapped to a single color pixel, based on
a range specified by the user

= Boolean, where each data element is mapped to a single pixel, either black
or white, based on a cutoff value specified by the user

A data navigator allows manipulation of the display window relative to the data
being visualized. If a parallel array is multidimensional, the visualizer displays
a slice through the array; the data navigator provides controls for selecting the
array axes to be displayed and the position of the slice. The user can update a
visualizer or save a snapshot of it.

Figure 15 shows a text visualizer for a two-dimensional array.

- ‘ a
jle Options lq i
11

F
01

Figure 15. A visualizer.

THINKING MACHINES CONFHDENIHL
October 1991

Chapter6 771 P grammmg Envzronment Pnsm 49

6.4 On-Line Help and Documentation

Prism features a comprehensive on-line help system. Help is available for each
pulldown menu and dialog box. Moreover, the Help Index, shown in Figure 16,
contains a list of entries on which the user can obtain information. Each help
topic has a list of related topics, subtopics, terms, and commands associated with
it; clicking on any of these opens a new window displaying information about the
selected item.

Prism also provides an interface to on-line documentation for the Connection
Machine system. The user can call up a man page for a CM command or library
routine, or view the portions of the Connection Machine documentation set that
are most relevant to a specific question.

54
3

R help ndex IR

Help Index

This is an index to Prism’s on~line help system. For
complete information on the heip system, choose the
selection Using Help in the Help menu,

Attach

breakpoints

call stack

CM, attaching and detaching
Collection

command window, using
commands list
compiling

Continue

current file

current function
customizing Prism
Delete

BE > |

Select l Cancel

Figure 16. The Help Index.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 7

The Program Execution Environment

71

The program execution environment on a CM-5 partition supports both interac-
tive program execution and batch execution, using the Network Queueing
System (NQS) batch system. In either case, the program executes on the partition
manager and accesses the associated set of processing nodes, plus I/O devices and
other devices, such as graphics workstations, as needed.

Access to the interactive environment is achieved through remote login or remote
shell commands. Access to the batch environment is achieved through NQS’s
gsub command, delivered either from the CM itself or from a remote machine.

The interactive environment is, by default, a timeshared environment. Access to
partitions may be limited by UNIX permissions, however, allowing exclusive use
of a given partition by some particular user, project, or batch queue. Thus, the
system administrator can choose not only how to partition the system, but which
partitions to make available as what sort of environment: open for general access,
open for exclusive access, or open to batch jobs only.

To further enhance the program execution environment, the CM-5 offers facilities
for performance analysis and for checkpointing programs. The Prism program-
ming environment (discussed in the previous chapter), and CM timers provide the
former; CM checkpointing routines provide the latter.

Checkpointing

Many applications that run on the Connection Machine system require extended
execution time. Users may need to be able to interrupt and later restart such a
program for any number of reasons: to allow it to run only when the system is

THINKING MACHINES CONFIDENTIAL
October 1991 51

7.2

7.3

Connection Machine CM-5 Technical Summary

B L T A S DR RPN S S Fa o

P T S DT TR P

not needed for other use, to allow for scheduled machine downtime, to protect
against unscheduled halts, or simply to allow for restarting the program from
some intermediate state during debugging. The Connection Machine system sup-
ports this need with a checkpointing facility.

Checkpointing a program lets the user save (and later restart) an executable copy
of a program’s state. This includes the program’s state on the partition manager
(PM) and nodes, a list of the files that the program has open at the time of the
checkpoint, and a stored copy of the checkpointed program.

The CM checkpointing facility offers three basic methods of checkpointing:
= inserting checkpoints at particular points in a program
* having checkpoints occur periodically

= having a checkpoint occur when a program is sent a particular signal, such
as the signal sent during a planned shutdown of the system

Checkpointing can be used from within batch jobs and interactive jobs, including
those running under emdbx and Prism. It can be used on programs that execute
on the PM only, as well as those that use both the PM and the nodes.

Timers

A CM timer calculates, with microsecond precision, both the total elapsed time
(wall-clock time) and the amount of time during which the nodes are active. Calls
to CM timers can be inserted anywhere in a program. A program can use (and
nest) up to 64 timers for simultaneous coarse-grain and fine-grain timing.

Timesharing

The Connection Machine system uses the UNIX timesharing mechanisms, with
all the administrative flexibility they provide. Each partition manager controls
timesharing on its partition, switching processes in and out as necessary. (Be-
cause a data parallel process running on the PM plus the nodes is a single process,
it is switching as a single entity.)

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 7. The Program Execution Environmen 53

b

7.4 NQS

The Connection Machine uses the Network Queueing System (NQS) batch sys-
tem, which is becoming standard for UNIX networks. This batch system supports
two types of queues: batch queues, which are directed to a specific PM, and
which run on the partition that is controlled by that PM at the time the job is sub-
mitted; and pipe queues, which feed jobs (via batch queues) to any suitable
partition that is available to run them. The pipe queue can be directed to any
available partition, or only to partitions that meet specified minimal resources.
NQS queries current partitions to find one suitable for running jobs from these
queues.

NQS allows the administrator to control the number and characteristics of queues
at a site and to define the hours during which each queue will accept and execute
jobs. Note that the two sets of hours are not necessarily identical: a queue might
accept jobs from 8 am till midnight, but execute jobs between 8 pm and § am. (A
queue that accepts jobs is said to be enabled; one that executes jobs is said to be
started.)

Creating and Configuring Queues

An NQS manager decides how many queues to create and what characteristics
each queue will have, thus tailoring the batch system to the needs of the particular
site. The administrator uses the gmgr utility to create each queue, naming and
describing the queue and defining

= the hours during which the queue operates (queues with restricted hours
start and stop automatically at designated times)

= the priority of this queue in relation to other queues
= the users or groups of users who can submit jobs to the queue
= time and size limitations for jobs executing from the queue

= the CM system resources available to jobs executing from the queue

THINKING MACHINES CONFIDENTIAL
October 1991

Connection Machine CM-5 Technical Summa

Submitting Batch Requests

Frequently, the NQS manager defines a number of queues with different charac-
teristics. Users can then choose the queue most suitable for each program. In
addition, users can further define the execution environment for a program by
using options to the job submittal command that

® request that execution be delayed until a particular time
= request the use of a specified shell
= request that all environment variables be exported with the job
= direct the method by which output is to be handled
® set various per-process limits
® assign a priority to the job
Users can also ask for notification by electronic mail of a job’s progress, and can

query the system for information on the characteristics and availability of queues
and on the status of queued requests.

Controlling Batch Queues

NQS operators can start and stop queues, enable and disable queues, and shut
down NQS. When necessary, they can also remove waiting and executing jobs
from queues.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 8
The CM Fortran

8.1

Fortran for the Connection Machine system is standard Fortran 77 supplemented
with the array-processing extensions of the ANSI and ISO (draft) standard Fortran
90. These extensions provide convenient syntax and numerous intrinsic func-
tions for manipulating arrays.

Newly written Fortran programs can use the array extensions to express efficient
data parallel algorithms for the CM. These programs will also run on any other
system, serial or parallel, that implements Fortran 90. CM Fortran also offers
several extensions beyond Fortran 90, such as the FORALL statement and some
additional intrinsic functions. These features are well known in the Fortran com-
munity and are particularly useful in data parallel programming,.

Structuring Parallel Data

Fortran 90 allows an array to be treated either as a set of scalars or as a first-class
object. As a set of scalars, array elements must be referenced explicitly in a DO
construct. In contrast, a reference to an array object is an implicit reference to all
its elements (in unspecified order). For example, to increment the elements of the
100-element array A by 1, a program can reference the array either way:

A as a set Aasan
of scalars object
DO I=1,100
A(I) = A(I) + 1 A=A+ 1
END DO

THINKING MACHINES CONFIDENTIAL
October 1991 55

56

Connectzon Mackme CM 5 Techmcal Summary

To operate on multidimensional arrays, DO loops must be nested to reference each
element explicitly. In the statement A = A + 1, however, A could be a scalar, a
vector, a matrix, or a higher-dimensional array.

CM Fortran takes advantage of this standard feature when allocating arrays on the
CM system. An array that is used only as a set of scalars is stored and processed
on the partition manager in the normal serial manner. Any array that is referenced
as an object is stored in node memory, one element per processor, and processed
in parallel. In essence, the partition manager executes all of CM Fortran that is
Fortran 77, and the nodes execute all the array extensions drawn from Fortran 90.
No new data structure is required to express parallelism.

Partition Manager

Scalar data

Processing Nodes
Subscripted :

arrays

— s B =

= Array objects

& Fortran 90 operations

|

The simple array reference A may be written more explicitly using a triplet sub-
script, 2(1:100:1), which resembles the control specification of a bo loop.
Using triplet subscripts, you can replace one or more DO loops with an array ref-
erence that indicates all the elements of interest — and thereby cause the array
to be processed in parallel.

An implicit triplet — that is, the array name alone — is usually used for whole
arrays. You can, however, explicitly specify any of the index variables, just as in
a DO loop, to indicate a section of the array. For example, some sections of array
B(4,6) are:

B(1:2,:) B(3:4,4:6) B(:,2:6:2) B(3,:)

THINKING MACHINES CONFIDENTIAL
October 1991

apter

8. The CM Fortran Programming Language

Ch

Array sections can be used anywhere that whole arrays are used — in expressions
and assignments and as arguments to procedures.

8.2 Computing in Parallel

The most straightforward form of data parallel computing is elemental comput-
ing, that is, operating on array elements all at the same time, each independently
of the others. An assignment statement where the entire array is referenced as an
object has this effect. For example, consider the following assignment statement
for an 8 x 8 x 8 array C:

C = C**2

The CM system allocates one element of € in each of 512 processors, and all the
processors operate on their respective elements of C at the same time.

An expression or assignment can involve any number of arrays or array sections,
as long as they are all of the same shape. Scalars can be intermixed freely in array
operations, since Fortran 90 specifies that a scalar is effectively replicated to
match any array. For example, the following statement assumes that D and E are
10 x 10 matrices and F is a 10 x 100 x 100 array:

D=E*2.0 + 1.0 + F(:,1:10,3)

Another form of array operation uses an elemental intrinsic function. Fortran 90
extends most of the intrinsic functions of Fortran 77 so that they can take either
a scalar or an array as an argument. If G is an array, this statement operates ele-
mentally:

G = SIN(G)

An array assignment can be performed conditionally if it is constrained by a
WHERE statement. This statement includes a logical mask; it behaves like a DO
loop with an embedded IF statement (except that the order in which elements are
processed is unspecified). For example, to avoid division by zero in an array
assignment, one might say:

WHERE (D.NE.O) E = E/D

THINKING MACHINES CONFIDENTIAL
October 1991

58

8.3

Technical Summary

05 <3

Connection Machin

e CM-5

RS

Finally, CM Fortran offers a form of elemental array assignment, the FORALL
statement, whose action is position-dependent. The syntax of a FORALL state-
ment resembles a DO construct, but the assignments can be executed in parallel.
For example, to initialize B as a Hilbert matrix of size N:

FORALL (I=1:N, J=1:N) H(I,J) = 1.0 / REAL({ I+J-1)

FORALL can use a mask to make its action dependent on either the value or the
position of the individual array elements. For example, to clear matrix B below
the diagonal, one can set a mask to select those positions where row index I is
greater than column index J:

FORALL (I=1:N, J=1:N, I.GT.J)} H(I,J) = 0.0
To initialize a table of integer logarithms:

FORALL (I=1:10) LG (2**(I-1):2**I-1)=I-1

Communicating in Parallel

A second form of data parallel computing requires processors to access each oth-
er’s memories, all at the same time. The pattern of interprocessor communication
can be either regular (grid-based) or arbitrary. Fortran 90 defines a number of
features that move data from one array position to another; these features map
naturally onto the communication mechanisms implemented in CM hardware.

Grid-Based Communication

Many applications, such as convolutions and image rotation, need to move data
in regular grid patterns. One way to specify such motion in Fortran 90 is by
assigning array sections. For example, to shift vector values to the left:

V(1:9) = Vv(2:10)

Vv(2:10)

THINKING MACHINES CONFIDENTIAL
October 1991

PR oo o pases S I

PP Y PR

Chapter 8. The CM Fortran Programming Language

To shift data on more than one dimension:

A(l:3,3:6) = A(2:4,1:4)

\] .

T~

Fortran 90 also defines intrinsic functions that perform grid-based data motion.
The function CSEIFT performs a circular shift of array elements, and EOSEIFT
performs an end-off shift. For example, the following statement shifts the ele-
ments on the second dimension of A by one position to the left and assigns the
result to B. (The SHIFT argument can also be an array, which shifts the rows by
different offsets.)

B = CSHIFT(A, DIM=2, SHIFT=1)

One notable use of CSHIFT is in so-called “stencils,” array expressions that
compute a weighted sum of neighboring points of a specific grid point. A simple
example would be

A=C3*B+ CLl*CSHIFT (B,DIM=1,SHIFT=-1) + C2*CSHIFT (B,DIM=2, SHIFT=-1)

The CM Fortran compiler includes optimizations that provide particularly high
performance for stencils.

General Communication

Processors must communicate in arbitrary patterns to map an unstructured
problem onto a grid or to index into arbitrary locations of an array. To perform
these operations in parallel, CM Fortran provides vector-valued subscripts and
FORALL.

A vector-valued subscript is a form of array section that uses a vector of index
values as a subscript. If A is a vector of length 10 and P is an array containing a
permutation of the integers from 1 to 10, then A =2 (P) applies this permutation
to the values in A. The statement A (P) = A applies the inverse permutation.

The index values can be repeated, which causes element values to be repeated in
the section. For example, if v is the vector (/2,6,4,9,9/),thena (V) isafive-

THINKING MACHINES CONFIDENTIAL
October 1991

8.4

order:

The FORALL statement provides the same arbitrary indexing into an array of any
rank. For example, the following statement uses the two-dimensional index
arrays X and ¥ to permute the values of a two-dimensional array B:

FORALL (I=1:N, J=1:M) C(I,J) = B(X(I,J), Y(I,J))

Transforming Parallel Data

Fortran 90 defines a rich set of intrinsic functions that take an array argument and
construct a new array (or scalar). All these transformational functions take only
array objects (not arrays subscripted in the Fortran 77 manner), and all are there-
fore computed in parallel on the CM.

One set of transformational functions is the reduction intrinsics, such as SUM or
MAXVAL. These functions apply a combining operator to the elements of an array
(or array section) and return the result as a scalar. For example, given a 100 x 500
matrix D, the following expression returns the sum of the elements in the upper
left quadrant:

SUM(D(1:50,1:250))

These functions can take a mask argument to make the reduction conditional. If
applied only to a specified dimension, they return an array of rank one less than
the argument array. For example, given the 100 x 500 matrix D, the following
expression returns a 100-element vector containing the sums of the positive
elements in each row.

SUM(D, DIM=2, MASK=D.GT.0)

A parallel prefix, or scan, operation applies a combining operator cumulatively
along a grid dimension, giving each element the combination of itself and all
previous elements. These operations, which are useful in such algorithms as

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 8. The CM Fortran Languag 61

S s e

line-of-sight and convex-hull, can be expressed with the FORALL statement and
a reduction function. For example, in the following add-scan (or sum-prefix)
operation, each element of B gets the sum of all elements up to and including the
corresponding element of A:

FORALL (I=1:N) B(I) = SUM(A(1:I))

The array construction functions transform arrays in a wide variety of ways. For
example, TRANSPOSE performs matrix transposition; RESHAPE constructs a new
array with the same elements as the argument but a different shape; PACK and
UNPACK behave as gather/scatter operations; and SPREAD replicates an array
along a new dimension. CM Fortran also provides the Fortran 90 array multiplica-
tion functions, DOTPRODUCT and MATMUL. In addition to the standard Fortran 90
intrinsics, CM Fortran also offers the functions DIAGONAL, REPLICATE, RANK,
PROJECT, FIRSTLOC, and LASTLOC.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 9

The C* Programmi

9.1

C* is an extension of the C programming language designed to support data par-
allel programming.

The C* language is based on the standard version of C specified by the American
National Standards Institute (ANSI). C programmers will find most aspects of C*
code familiar to them. C language constructs such as data types, operators, struc-
tures, pointers, and functions are all maintained in C*; new features of ANSI C
such as function prototyping are also supported. C* extends C with a small set
of new features that allow programmers to use the Connection Machine system
efficiently.

C* is well suited for applications that require dynamic behavior, since it allows
the size and shape of parallel data to be determined at run time. In addition, it
provides programmers with all the standard benefits of C, such as block structure,
access to low-level facilities, string manipulation, and recursion. C* also pro-
vides a straightforward method for calling Paris functions and CM Fortran
subroutines from a C* program, thus allowing access to these languages when
appropriate.

Structuring Parallel Data

In C*, data is allocated on the processing nodes only when it is tagged with a
shape. A shape is a way of logically configuring parallel data. C* includes a new
construct called left indexing that is used in declaring a shape. The left index
specifies the number of dimensions (or axes) in the shape and the number of

THINKING MACHINES CONFIDENTIAL
October 1991 63

Connection Machine CM-5 Technical Summary

e
S AR

positions along each dimension. Positions correspond to processors (or virtual
processors). For example,

shape [256][512]s;
declares a shape s that is laid out as a 256 x 512 grid on the processing nodes.

This shape is considered to be fully specified, since the number of dimensions and
positions are provided at compile time. Shapes may also be partially specified or
fully unspecified. C* lets the programmer dynamically allocate and specify
shapes, thus providing flexibility in the way they can be used. -

Once a shape has been fully specified, one can declare parallel variables of that
shape. Parallel variables have both a standard C data type and a shape. For exam-
ple, the code

shape [16384]¢t;
int:t parallel_intl, parallel_int2;
float:t parallel_floatl;

declares three parallel variables of shape t; each consists of 16384 elements, laid
out along one dimension. Parallel variables interact most efficiently when they
are of the same shape. In addition to the above method, paralle] variables can also
be allocated dynamically.

C* also provides parallel versions of arrays and structures. For example, the code

shape [16384]¢t;
int:t parray[l16]:;

declares a parallel array, parray, which consists of 16 parallel ints of shape t.
The code

shape [16384]t;
struct scalar_struct {
int a;
float b;
i
struct scalar_ struct:t pstruct;

declares a parallel structure, pstruct, that consists of the standard C structure
scalar_struct replicated in each of the 16384 positions of shape t.

C* includes pointers to both shapes and parallel variables. As in standard C, C*
pointers are fast and powerful.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 9. The C* Programming Language 65

«apoge wen e

&

e de b8 ae St s Gt bl be b s P A P

9.2 Computing in Parallel

Parallel Use of Standard C Operators

C* extends the use of standard C operators, through overloading, to apply to par-
allel data as well as scalar data. For example, if p1, p2, and p3 are all parallel
variables of the same shape, the statement

p3 = p2 + pl;

performs a separate addition of the values of pl and p2 in each position of the
shape and assigns the result to the element of p3 in that position. The additions
take place in parallel. If p1 or p2 were not a parallel variable, it would first be
promoted to parallel, with its value replicated in every element. Note that this line
of code looks exactly like standard C; the result differs, however, depending on
whether the variables are parallel or scalar.

The with and where Statements

C* adds new statements to standard C that allow operations on parallel data.

The with statement selects a current shape. In general, parallel variables must
be of the current shape before parallel operations can take place on them. For
example, code like the following is actually required to perform a parallel addi-
tion like the one shown above:

shape [16384]t;
int:t pl, p2, p3;

with (t)
p3 = p2 + pl;

C* also adds a where statement to restrict the set of positions on which opera-
tions are to take place; the positions to be operated on are called active. Selecting
the active positions of a shape is known as setting the context. The where state-
ment in the following example ensures that division by 0 is not attempted:

with (t)
where (pl i= 0)
p3 = p2 / pl:

Serial code always executes, no matter what the context.

THINKING MACHINES CONFIDENTIAL
October 1991

Programs may contain nested where statements; these cumulatively shrink the
set of active positions. The context is passed into functions called within the
scope of a where statement and is correctly reestablished when returning to an
outer level as a result of a break, continue, goto, Or return statement. Note
that the context does not affect the flow of control of a program. One can still use
standard C statements such as if and while to manipulate flow of control.

C* extends the standard C else statement for use in conjunction with the where
statement; using else after a where reverses the set of active positions. The new
everywhere statement makes all positions active.

New Operators

C* adds a few new operators to standard C. For example, the <? and >? operators
are available to obtain the minimum and maximum of two variables (either scalar
or parallel). The corresponding compound assignment operators <?= and >?=are
also included. The operator %% provides a true modulus operation (as compared
to the remainder operator %).

Parallel Functions

Functions in C* can pass and return parallel variables and shapes. If it is not
known what the current shape will be when the function is called, you can use
the new keyword current in place of a specific shape name within the function
declaration; current always means the current shape.

A useful feature of C¥* is overloading of functions. C* allows you to declare more
than one version of a function with the same name — for example, one version
for scalar data and another for parallel data. The compiler automatically chooses
the right version.

THINKING MACHINES CONFIDENTIAL
October 1991

s

Chapter 9. The C* Programming L.

S

anguage
S R A S R

9.3 Communicating in Parallel

C* provides two methods of paralle] communication: as part of the syntax of the
language and via an extensive library of functions. Both allow communication in
regular patterns within shapes and in irregular patterns both within and between
shapes.

Regular Communication

C* uses the intrinsic function pcoord to provide a self-index for a parallel
variable along a specified axis of its shape. For example, if p1 is of a one-
dimensional shape with 16384 positions (and the shape is current), pcoord
initializes p1 as shown in Figure 17.

Pl = pcoord(0);
Positions

0 1 2 3 4 5 6 7 8 16383

pl | o |1 |2 3|45 |6 |7]|8]... [16383

Figure 17. The use of pcoord with a one-dimensional shape.

The pcoord function is typically used to provide regular communication —
called grid communication in C* — along the axes of a shape. For example, the
following code sends values of source to the elements of dest that are one
coordinate higher along axis 0:

[pcoord(0) + l]ldest = source;

In the common case where pcoord is called within a left index expression, and
the argument to pcoord specifies the axis indexed by the left index, C* allows
a shortcut: the call to pcoord can be replaced by a period. Thus, for a two-
dimensional shape, the following provides grid communication along both axis
0 and axis 1:

[.+1][.-2]dest = source; (4 chess knight’s move)

THINKING MACHINES CONFIDENTIAL
October 1991

Connecnon Machzne CM-5 Techmcal Summary

9.4

Wrapping from one end of an axis to the other is provided by a standard C* pro-
gramming idiom that involves the use of peoord along with the new modulus
operator %% and the dimof intrinsic function, which returns the number of posi-
tions along an axis of a shape.

Library functions are also available to perform grid communication. For exam-
ple, the to_grid dim and to_grid functions can be used in place of the
statements above,

Irregular Communication

C* uses the concept of left indexing to provide communication between different
shapes, as well as within-shape communication that does not necessarily occur
in regular patterns.

A left index can be applied to a parallel variable. If the index itself is a parallel
variable, the result is a rearrangement of the values of the parallel variable being
indexed, based on the values in the index. If the index is of one shape and the
parallel variable being indexed is of another shape, the result is a remapping of
the parallel variable into the shape of the index. Thus, in the assignment

dest = [index]source;

the parallel variable dest gets values from source; the values in index indi-
cate which element of source is to go to which element of dest. The variables
dest and index must be of the current shape; source can be of any shape. This
is known as a get operation. Putting the index variable on the left-hand side spec-
ifies a send operation. Sends are roughly twice as fast as gets. The operations can
also be performed with the send and get functions in the C* communication

library.

Transforming Parallel Data

C* provides operators and library functions that enable programmers to easily
perform common transformations of parallel data.

C* overloads the meaning of several standard C compound assignment operators
to provide a succinct way of expressing global reductions of parallel data. For

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 9. The C* Programming Language 69
% SR B S B v rraspRpr Py

example, +=, when applied as a unary operator to a parallel variable, sums the
values of all active elements of the parallel variable. The resulting value can be
treated the same way as the result of a serial operation. Similarly, the | = operator
performs a bitwise OR of all elements of a parallel variable. The reduce and
global library functions provide similar capabilities for various operations.

The C* communication library contains many functions that perform other trans-
formations of parallel data. For example:

®* The scan function calculates running results for various operations on a
parallel variable.

= The spread function spreads the result of a parallel operation into ele-
ments of a parallel variable.

= The rank function produces a numerical ranking of the values of parallel
variable elements; this ranking can be used to rearrange the elements into
sorted order.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 10

The *Lisp Programming L.anguage

The *Lisp language is a high-level programming language for the Connection
Machine system. Based on the Common Lisp programming language, *Lisp al-
lows you to write data parallel programs for the CM using the data types,
programming constructs, and programming style of Lisp. Programs written in
*Lisp make full use of CM hardware, yet at the same time retain the clarity, ex-
pressiveness, and flexibility of Lisp.

The *Lisp language extends the Common Lisp language by providing parallel
equivalents for the basic operations of Common Lisp, along with operations that
are unique to data parallel programming, such as processor selection, parallel
prefix calculations, interprocessor communication, and data shape specification.

A *Lisp program is simply a Common Lisp program that includes calls to *Lisp
operators. A call to a *Lisp operator causes all active CM processors to execute
that operation in parallel. Thus, *Lisp is fully compatible with Common Lisp;
programs written in Common Lisp will run unmodified in *Lisp.

*Lisp functions and macros are defined via defun and defmacro, just as in
Common Lisp. *Lisp programs are compiled by the *Lisp compiler, which in-
cludes (and is invoked in the same ways as) the Common Lisp compiler. This
means that programs in *Lisp and Common Lisp can be written, compiled, and
tested with the same editors and debuggers.

THINKING MACHINES CONFIDENTIAL
October 1991 71

Connection Machine CM-5 Technical Summary

A WSS AR

10.1 Structuring Parallel Data

Scalar and Parallel Data

*Lisp is an extension of Common Lisp and therefore includes all the standard
Common Lisp data types. These data types are collectively referred to as scalar
data. *Lisp also supports an additional parallel data type, called a pvar. A pvar
is a parallel variable, that is, a single variable with a separate, modifiable value
in each processor of the CM. Operations performed on a pvar are performed
simultaneously by all active CM processors, with each processor modifying only
its own value for the pvar. Many of the scalar data types in Common Lisp have
corresponding pvar equivalents. The eight basic pvar data types are boolean,
integer, floating-point, complex, character, array, structure, and front-end value.

Creating Pvars in *Lisp

There are three basic ways to create, or allocate, a pvar in *Lisp, each designed
to serve a specific purpose, as shown in the examples below:

(1! 5) ;7 Allocating a temporary pvar
(defpvar my-five-pvar 5) ;; Allocating a permanent pvar

(*let ((my-pi!! pi)) ;2 Allocating a local pvar
(*!! 2 my-pi!!))

As these examples show, *Lisp supports temporary, permanent, and local pvars.

= Temporary pvars are allocated by the !! (bang-bang) function, which
takes a single scalar value as its argument and returns a temporary pvar
with that value in every processor.

= Local pvars are allocated by the *1et and *1et* functions. They exist for
the duration of a body of *Lisp code.

= Permanent pvars are allocated by the defpvar function. They remain in
existence until specifically deallocated.

THINKING MACHINES CONFIDENTIAL
October 1991

Ch

R

ipter 10. The *Lisp Progra

q]

Defining the Shape of the Data

The shape of the data stored in a pvar is determined by a grid of processors that
the CM is currently simulating. The defining property of a processor grid is its
geometry: the rank of the simulated grid and the sizes of its dimensions.

The combination of a particular grid geometry and a set of pvars that share that
geometry is called a virtual processor set (VP set). For example, the expression

(def-vp-set my-vp-set ' (64 64)
:*defvars ((x 1 nil fixnum-pvar)
(y 1.0 nil single-float-pvar)))

defines a VP set named my—vp—-set with 64 x 64 processors and associates two
permanent pvars with it: an integer pvar x and a single-precision floating-point
pvar y.

Because the CM can simulate many grids within a single program, *Lisp uses the
concept of a current VP set to determine which VP set is active. Unless otherwise
specified, all pvar operations take place within the current VP set. If no VP set has
been defined, all pvar operations occur within a default VP set that is automatical-
ly defined whenever *Lisp starts up.

Processor Addressing

An important feature of the simulated grids defined by VP sets is that they permit
the assignment of addresses to processors. There are two basic methods used to
assign addresses to processors on the CM: send addressing and grid addressing.

Each processor has a unique numeric send address based upon its location within
the physical hardware, accessible via the *Lisp operation (self-address!!).

Each processor also has a grid address, a sequence of coordinates that defines its
position in the n-dimensional grid of processors the CM is currently simulating.
The *Lisp operation (self-address—-grid!! n) returns a pvar whose value
in each processor is the coordinate of that processor along the nth dimension of
the current grid.

THINKING MACHINES CONFIDENTIAL
October 1991

10.2

Accessing and Copying Parallel Data

*Lisp allows you to access pvar values on a per-processor basis, to copy the value
of one pvar into another, and to display the elements of a pvar over a range of
processors. For example:

®» (pref my-pvar 10) returns the value of my-pvar in processor 10.

* (*setf (pref my-pvar 10) 123) stores the quantity 123 into proces-
sor 10 of my-pvar.

B (*setf (pref my-pvar (cube—from—-grid-address 5 7)) 11l1)
stores 111 into my-pvar at grid location (5,7).

® (*set pvarl pvar2) copies the contents of pvar2 into pvarl in all
active processors.

(*set pvarl 5) stores the value 5 into pvarl in all active processors.

The *Lisp operation ppp (short for pretty-print-pvar) displays the values
of a pvar. For example, the expression

(ppp (self-address!!) :end 20)
displays the send addresses of the first 20 processors:

01234567829 1011 12 13 14 15 16 17 18 19

Computing in Parallel

The parallel operations supplied by *Lisp are modeled very closely on the exist-
ing scalar operations of Common Lisp and include paralle]l equivalents for most
Common Lisp functions and macros. These parallel operations typically have the
same name as their scalar Common Lisp counterparts, with either the characters
“11” added to the end or an asterisk “*” appended to the front. The characters
“11” are meant to resemble the mathematical symbol ||, which means parallel.
The asterisk similarly denotes the concept of an operation taking place in paral-
lel. For example, the parallel version of the Common Lisp mod function is
mod! !, and the Common Lisp i£ operator has two *Lisp equivalents, i£! ! and
*if,

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 10. The *Lisp Program

¥

Most *Lisp operators take pvars as arguments and return a pvar result. In general,
if a Common Lisp operation takes arguments of a specific data type, the *Lisp
equivalent for that operation takes pvars of that data type as arguments and
returns an appropriately typed pvar resuit.

For example, the functions +!1!,-1!, *!1, and /! ! perform the same operations
as the Common Lisp functions +, -, *, and /, but take numeric pvars as argu-
ments and perform the appropriate arithmetic operation in parallel. The *Lisp
expression

{(*set pvar2 (+!! pvarl (*!! pvarl pvar2)))

multiplies the values of pvarl and pvar2 in all active processors, adds the value
of pvarl, then stores the result in pvar2.

*Lisp includes parallel versions of Common Lisp functions for many data types,
including operations for complex and character pvars. *Lisp also includes an ex-
tensive selection of operators for manipulating array, vector, string, sequence,
and structure pvars. There are even operations that allow you to create pvars that
reference front-end data structures (such as symbols and lists).

In addition, *Lisp redefines many Common Lisp operations so that they will
accept pvar arguments and will call the appropriate *Lisp operations to compute
the result. This means that the above *set example can be rewritten as:

(*set pvar2 (+ pvarl (* pvarl pvar2)))

Selection of Active Sets of Processors

Paralle]l computations can be performed in all processors simultaneously, or in a
specific subset of active processors selected by the user. Pvar values in inactive
processors are not changed. *Lisp provides several macros for selecting the cur-
rent set of active processors (sometimes referred to as the currently selected set).

The most basic processor selection operators are *when and *unless. Similar
to their Common Lisp counterparts, these operators conditionally evaluate a
body of code based on the result of a test. The difference is that the test controls
which processors will evaluate the code, not whether the code will be evaluated
at all. In the following code sample, *when is used to select all processors with
odd send addresses. The value of my-pvar in those processors is then negated.

(*set my-pvar (self-address!!))

THINKING MACHINES CONFIDENTIAL
October 1991

76

10.3

Connection Machine

...... & R SRR RS R z £

CM-5 Technical Summary

S

(*when (oddp!! (self-address!!))
(*set my-pvar (-!! my-pvar)))

(ppp my-pvar :end 19)
0-12-34-56-78-9%910 -11 12 -13 14 -15 16 -17 18

The *all construct unconditionally selects all processors for the duration of a
body of *Lisp code. For example, evaluating the expression

(*all (*setmy-pvar 10))

ensures that the value of my-pvar in all processors is 10, regardless of the state
of the currently selected set.

Communicating in Parallel

Like all CM languages, *Lisp supports both regular and irregular communica-
tion. For example:

® news!! causes each active processor to get a value from another proces-
sor a fixed distance away on the grid.

= *news causes each active processor to send a value to another processor
a fixed distance away on the grid.

= pref!! allows each active processor to get a value from any other proces-
sor in the grid.

= *pset allows each active processor to send a value to any other processor

in the grid.
If two or more processors attempt to read the data of a single processor, they all
receive the same correct data. If two or more processors attempt to write to the

same address, the user can specify how they are to be combined (for instance, by
summing the values).

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 10. The *Lisp Programming

pERs:

10.4 Transforming Parallel Data

*Lisp contains many functions to help perform transformations on data. These
include operators computing parallel prefixes (scanning) of data, spreading data
across the processors of the CM, and sorting and enumeration of pvar values.
Some examples:

® scan!! and segment-set-scan!! permit the selection of many kinds
of scanning operations, such as addition/multiplication of values; taking
the maximum and minimum of values; taking the logical/arithmetic AND,
OR, and XOR of values; and even simply copying values across the proces-
sor grid.

The scan!! operation accepts a segmentation argument for simple uses
of this feature. The segment-set-scan!! operation uses a special type
of pvar, a segment set pvar, to allow much finer control over the segmenta-
tion of processors than scan! ! provides.

® spread!! replicates the value of a pvar at a given coordinate to all pro-
cessors along a selected dimension of the currently selected grid. A related
operation, reduce-and-spread!!, combines the operations of scan-
ning and spreading.

® The sort!! operator reorders the values of a numeric pvar into ascending
order.

® The enumerate!! operator assigns to each currently active processor a
distinct integer between 0 (inclusive) and the number of active processors
(exclusive).

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 11

CM Scientific Software Library

The Connection Machine Scientific Software Library (CMSSL) is a constantly
growing set of numerical routines that support computational applications while
exploiting the massive parallelism of the Connection Machine system.

CMSSL provides data parallel implementations of familiar numerical routines,
providing new solutions to problems of both performance and algorithm choice
and design.

CMSSL provides immediately useful routines for users whose work demands
solutions in such areas as partial differential equations, optimizations, signal pro-
cessing, and statistical analysis. It also provides a strong base for the
development of further tools.

While CMSSL routines have been designed to meet the needs of Fortran users,
any CMSSL routine may be called from any CM programming language that sup-
ports the data formats required by that routine.

The current version of the library concentrates on four critical areas of scientific
programming: linear algebra, Fast Fourier Transforms, random number genera-
tion, and statistical analysis. Certain communications primitives important to
linear algebra are also provided.

11.1 Linear Algebra Routines

® Matrix Multiplication. Multiplies real or complex matrices.

® Matrix Vector Multiplication. Multiplies a matrix and a vector containing
either real or complex data.

THINKING MACHINES CONFIDENTIAL
October 1991 79

Connection Machine CM-5 Technical Summary
LIRS EE

SRS

Vector Matrix Multiplication. Multiplies a vector and a matrix containing
either real or complex data.

Outer Product. Computes the outer product of two vectors .containing
either real or complex data.

Matrix Inversion and Linear System Solver. Inverts a square matrix of real
or complex numbers and solves for the values outside the specified matrix.

OR Factorization. Factors a matrix of real or complex numbers into an
orthogonal matrix and an upper triangular matrix.

OR Solver. Given a real or complex matrix decomposed by QR factoriza-
tion, applies the Householder vectors to the right-hand sides and solves the
upper triangular system.

Triangular Solver. Solves a triangular system consisting of the upper or
lower triangular portion of a matrix and a right-hand-side matrix, where
both contain either real or complex data.

Tridiagonal Solver. Solves one or more tridiagonal systems specified as
upper, lower, and diagonal vectors of real or complex data.

Sparse Matrix Vector Product. Computes the product of an arbitrary sparse
matrix, whose non-zero elements are stored in a packed vector, and a vec-
tor. An associated setup routine provides options that may improve
performance.

Block Sparse Matrix Operations. Computes the product of a block sparse
matrix with a vector or a dense matrix. Gathers elements from the source
vector or matrix, and scatters solution elements to the product vector or
matrix, using pointers provided by the application. An associated setup
routine provides options that may improve performance.

Sparse Matrix Gather Utility. Gathers elements of a vector into an array
using pointers supplied by the application. Preprocessing is performed by
an associated setup routine.

Sparse Matrix Scatter Utility. Scatters elements of an array to a vector
using pointers supplied by the application. Preprocessing is performed by
an associated setup routine.

All-to-All Broadcast. Given a real or complex array and a designated axis,
performs an in-place, stepwise broadcast of every array value on the axis
to every location along the axis.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 11. CM Scientific Software Library 81

B Multidirectional NEWS. Performs multidirectional and/or multidimension-
al array shifts in an array geometry.

Further routines in areas such as LU decomposition and Eigenvalues will soon be
added.

Multiple Instances

Most linear algebra routines are designed to support multiple instances. They
allow multiple, independent matrices to be solved, transformed, or multiplied
concurrently. In addition, they allow multiple vectors or multiple right-hand
sides, where relevant, to be associated with each matrix to be multiplied or
solved.

Matrix vector multiplication, for example, may be performed with a single
matrix and a single vector by specifying each as an object whose elements are
spread across many processing nodes. Alternatively, multiple matrix vector prod-
ucts can be computed simultaneously simply by specifying the arguments as a
parallel matrix and a parallel vector: one matrix and one vector per node.

In the first case, the single result vector resides in multiple processors; in the sec-
ond case, each of the multiple result vectors resides in a single processor. In either
case the interface is the same. The difference between invoking computation on
a single instance and on multiple instances lies only in the dimensionality and
layout of the data structures used as parameters to the particular CMSSL routine.

Consider a second example: the tridiagonal system solver. The parameters to this
routine include three vectors that contain the upper, main, and lower diagonals
of a tridiagonal system, and a fourth vector that contains the right-hand-side val-
ues for the system. Upon completion the solution overwrites the right-hand side.

This one routine interface supports four different degrees of computational con-
currency:

" A single system may be solved.
= A single system may be solved for multiple right-hand sides.
® Multiple systems may be solved for a single right-hand side each.

* Multiple systems may be solved, each for multiple right-hand sides.

To solve a single system, one specifies the upper, main, and lower arguments as
one-dimensional (see Figure 18).

THINKING MACHINES CONFIDENTIAL
October 1991

Connection Machine CM-5 Technical Summary
X -—
4 x b
matrix solution right-hand side

Figure 18. A single tridiagonal system with a single right-hand side.

To solve for multiple right-hand sides, one gives the right-hand-side argument
(which will be replaced by the solutions) an in-processor (serial) dimension equal
to the number of right-hand sides (nrhs) (see Figure 19).

- fm

x(@, ., xtrhs=1) | p(O), plorks=1)

I LY

matrix solutions right-hand sides

Figure 19. Single tridiagonal system with multiple right-hand sides and solutions.

To solve multiple systems, one specifies the upper, main, and lower arguments
with two dimensions: one for the coefficients of the system and one to specify
how many systems are represented. The right-hand side (solution) argument is
similarly specified in two dimensions (see Figure 20).

THINKING MACHINES CONFIDENTIAL
October 1991

11. CM Scientific Software Library 83

n ~ =
e [/n
| |
R g - . .bﬂ’j
X0 bo
{
11l
|
X B
solutions right-hand sides

Figure 20. Multiple tridiagonal systems with single right-hand side for each system.

To solve multiple systems each with multiple right-hand sides, one specifies the
right-hand-side (solution) argument in three dimensions: one is the length of the
vector, and along this dimension lie the right-hand values; one is the number of
systems (n); and one is the number of right-hand sides (nrhs) per system (see

Figure 21).

matrices solutions right-hand sides

Figure 21. Multiple tridiagénal systems with multiple right-hand sides for each system.

THINKING MACHINES CONFIDENTIAL
October 1991

Connection Machine CM-

s

5 Technical Summary

The benefit of using CMSSL routines to solve a single instance of a linear prob-
lem lies in the speed gained by exploiting the parallel architecture of the
Connection Machine system. Computations on matrices require numerous repet-
itive calculations along one or both axes. On a serial machine, these must be done
one at a time, but on a paralle] machine they can be done all at once.

Using CMSSL to solve multiple instances of a linear problem offers similar, but
perhaps greater, benefits. For applications that require solving many systems or
decomposing many matrices, it is no longer necessary to iterate over the set of
systems; the solutions can be computed concurrently.

Solving Dense Systems

For dense matrices, CMSSL offers two methods of solving a linear system repre-
sented as a real or complex general matrix. The first method uses the
Gauss-Jordan linear system solver. The second method uses the QR factorization
operation in combination with either the QR solver or the triangular solver. These
operations are based on two different algorithms.

The CMSSL linear system solver is based on a variant of the Gauss-Jordan algo-
rithm. The Gauss-Jordan algorithm is known, in some cases, to give residuals
that are higher than those resulting from the Gaussian elimination method — by
as much as the order of the condition number of the linear system. However, in
the CMSSL a variant known as “the rehabilitated Gauss-Jordan algorithm” is im-
plemented and, for well-conditioned systems, this yields results as good as those
produced by Gaussian elimination.

Both Gaussian elimination and Gauss-Jordan require pivoting if the system is not
symmetric positive definite. The CMSSL linear system solver supports two pivot-
ing strategies: a variant of partial pivoting, where the pivot element is chosen
from the pivot row, and columns are (in effect) permuted, and conventional total
pivoting, where the pivot element is chosen from a submatrix and both rows and
columns are permuted. The total pivoting strategy is numerically more stable but
slower than the partial pivoting strategy.

Matrix inversion is also accomplished using the same variant of the Gauss-
Jordan algorithm. On well-conditioned matrices, this algorithm produces
numerically stable matrix inversion results. On ill-conditioned matrices, it fails
about as often as LU decomposition.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 11. CM Scientific Software Library 85

The second method of solving a dense linear system uses the QR factorization
and the QR solver operations. Given one or more systems of the form 4X = B, this
method uses QR factorization to decompose 4 = QOR. Next, the QR solver applies
the Householder vectors in Q to the right-hand sides in B and then solves the
upper triangular system R, while overwriting B with the least squares solution of
the linear system. This algorithm produces numerically stable results on well-
conditioned matrices.

Solving Banded Systems

Banded linear algebra operations solve systems of equations in which the coeffi-
cient matrix has non-zero matrix elements in a narrow band around the diagonal.

A tridiagonal solver provides this functionality in CMSSL. For diagonally domi-
nant and positive definite systems, the CMSSL implementation of the tridiagonal
solver is known to be unconditionally stable. However, for poorly conditioned
systems, the algorithm may be unstable. A pivoting strategy to improve the nu-
merical stability of this solver is currently planned.

Sparse Matrix Operations

CMSSL includes routines for multiplying an elemental sparse matrix by a vector,
and for multiplying a block sparse matrix by a vector or dense matrix. An ele-
mental sparse matrix is stored as a packed vector; a block sparse matrix is stored
as a three-dimensional array, with two axes representing the rows and columns
of the blocks and the third axis identifying the blocks themselves. The elements
to be multiplied with each block are gathered from the source vector or matrix,
and the results are scattered to form the product vector or matrix. The application
supplies two pointer arrays that represent the sparsity of the matrix and specify
the gathering and scattering patterns. Utility routines allow applications to per-
form pre-processed gather and scatter operations separately from other
computations.

Both the elemental and the block sparse matrix operations include options for
improving performance. The setup routines that perform the pre-processing
required for the multiplication can save the communication pattern, or frace,
associated with the system’s sparsity. One call to the setup routine can be fol-
lowed by multiple calls to the routines that compute the products; the overhead
associated with the setup can thus be amortized over any number of multiplica-

THINKING MACHINES CONFIDENTIAL
October 1991

11.2

tions. Randomization of the source and product arrays may provide additional
performance improvements by minimizing the routing conflicts that occur during
the data motion phase of the multiplication.

Communication Routines

CMSSL provides two communication primitives: all-to-all broadcast and multi-
directional NEWS. These operations exploit the full communication bandwidth
of the Connection Machine for regular communication patterns. These functions
can be significantly faster than the equivalent handwritten functions. In particu-
lar, the improvement in the performance of the all-to-all broadcast function
varies between a factor of 1 and d/2, where d = log,(N/32) and N is the number
of physical processors. Typically, the performance of the multi-directional NEWS
function is better than the equivalent handwritten Fortran code by a factor of
nearly two. Applications involving higher-dimensional lattices may see a much
larger performance improvement.

Fast Fourier Transforms

Continuous physical quantities, such as waves and periodic vibrations, can be
represented as summations of sinusoidal components over a range of frequen-
cies. The derivation and manipulation of these frequency series is known as
Fourier analysis. The Fourier transform of a function over time or space specifies
the amplitudes and phases of each frequency component. Usually this informa-
tion is expressed as the complex exponential (cos + i sin) of certain harmonics of
a fundamental frequency.

Given such a function, the Fourier transform can be used to convert between the
time or space domain and the frequency domain. Most applications of the Fourier
transform begin as quantities specified or measured over space or time, so the
transform of these values into the frequency domain is called a forward trans-
form. An inverse transform converts frequency-domain values back into time- or
spatial-domain values.

The Discrete Fourier Transform (DFT) is the Fourier transform most suitable for
numeric work. Its most common implementation is the Cooley-Tukey Fast Fouri-
er Transform or FFT.

THINKING MACHINES CONFIDENTIAL
' October 1991

GO M e e LA e s LM ssss L e pOe R SO e e WA St

Chapter 11. CM Scientific Sofiware Library 87

11.3

cescanrios gy e

s e vave O N Ry R RO ROroa P T 2 - I P PR R SRR IRNE. TR0 B D T X

A Fast Fourier Transform algorithm is a method of performing the Discrete Four-
ier Transform, which determines the discrete frequency components of a
continuous but discretely sampled complex variable. An FFT is considered fast
because it exhibits O(N log N) complexity, where N is the length of the input
sequence. By comparison, a straightforward evaluation of the DFT formula
exhibits O(V?) complexity.

The CMSSL FFT implements an algorithm known as the Radix-2 Cooley-Tukey
FFT. The Connection Machine system lends itself well to this particular algo-
rithm, which combines two data elements at each step in a butterfly
communication pattern. This pattern always operates between data elements at
a distance of 2.

FFTs have a wide range of scientific and engineering applications including digi-
tal filtering of discrete signals, smoothing and decomposition of optical images,
correlation and autocorrelation of data series, numerical solution of partial differ-
ential equations such as Poisson’s equation, and polynomial multiplication.

CMSSL provides a complex-to-complex FFT routine with two user interfaces:

= Simple FFT, used to transform a data set in the same direction along all
axes

= Detailed FFT, used for all other cases
The FFT is traditionally defined as a one-dimensional algorithm. However, a
multidimensional FFT can be done by performing FFTs along each row and col-

umn of a grid. The CMSSL FFT operations support n-dimensional FFTs, subject
to implementation limits.

Random Number Generators

Two varieties of random number generators (RNG) are included in CMSSL:
s Fast RNG
= VP RNG

These random number generators use a lagged-Fibonacci algorithm to produce
a uniform distribution of random values. This implementation has been subjected
to a battery of statistical tests, both on the stream of values within each processor
and for cross-processor correlation. The only test that the CMSSL RNGs fail is the
Birthday Spacings Test, as predicted by Marsaglia. Despite this failure, these

THINKING MACHINES CONFIDENTIAL
October 1991

88

11.4

Connection Machine CM-5 Technical Summa

Birthday Spacings Test, as predicted by Marsaglia. Despite this failure, these
lagged-Fibonacci RNGs are recommended for the most rigorous applications,
such as Monte Carlo simulations of lattice gases.

To construct pseudo-random values, the CMSSL random number generators use
state tables. The Fast RNG allocates one state table per physical Connection
Machine node. The VP RNG allocates one state table per virtual processor (that
is, per array position). The Fast RNG thus consumes substantially less memory
than the VP RNG. The VP RNG can produce identical results on differently sized
partitions. :

Either CMSSL RNG may be reinitialized for reproducible results and check-

pointed to guard against forced interruption.

Statistical Analysis

The CMSSL statistical analysis routines currently include two histogramming
operations. Histograms provide a statistical mechanism for simplifying data.
They are generally used in applications that need to display or extract summary
information, especially in cases when the raw data sets are too large to fit into the
Connection Machine system. Two routines are provided: one that tallies the oc-
currences of each value in a CM array, and one that counts the occurrences of
values within specified value ranges. For particularly large data sets, the range
histogram operation facilitates breaking data down into subranges, perhaps as a
preliminary step before doing more detailed analysis of interesting areas.

Histograms have many applications in image analysis and computer vision. For
example, a technique known as histogram equalization computes a histogram of
pixel intensity values in an image and uses it to rescale the original picture.

The CMSSL histogram operations treat the elements of a front-end array as a
series of bins. In each bin a tally of CM field values or value ranges is stored. The
number of histogram bins varies widely with the application, from a dozen tallies
on a large process or a few dozen markers on a probability distribution to a few
hundred intensity values in an image or a few thousand instruction codes in a
performance analysis.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 12

Data Visualization

12.1

Visualization, the graphic representation of data, has come to be an essential
component of scientific computing. Visualization techniques range from a simple
plotting of data points to sophisticated interactive simulations, but all allow re-
searchers to analyze the results of their computations visually. One can literally
“look at” the data to identify special areas of interest, anomalies, or errors that
may not be apparent when scanning raw numbers. Visualization is often the only
way to interpret the large data sets and complex problems common to the appli-
cations run on the Connection Machine system.

A Distributed Graphics Strategy

In keeping with its role as a network resource, the CM-5 uses a distributed graph-
ics strategy to support a wide range of user applications. The key items in this
strategy are

= the parallel processing power of the Connection Machine supercomputer

= the specialized power and interactive visualization environments provided
by dedicated graphics display stations

= the use of standard protocols, such as X11, to allow communication among
a variety of hardware and software

A full range of interconnections is supported, from high-speed HIPPI interfaces
through FDDI and Ethernet for longer-distance communications, to allow fast
communication between the CM and graphics display stations.

THINKING MACHINES CONFIDENTIAL
October 1991 89

90

Connection Machine CM-5 Technical Summary

R D

SRR

Basically, the pattern is as follows: Computations carried out by the CM’s parallel
processing nodes manipulate data to create graphics primitives, which can then
be sent to a graphics display station anywhere on the network. This strategy lets
users maximize the value of existing hardware and software, while taking advan-
tage of the computational speed and power of the CM, the high bandwidth of CM
/O, and the rendering power and speed of graphics workstations (such as those
from Silicon Graphics, Stardent, and Sun), which implement many advanced
rendering techniques in hardware and offer extensive visualization environments
to make interactive rendering easy for the user.

Following this strategy, for example, a scientific visualization program can use
the CM to compute image geometry (including, for example, polygon coordi-
nates and color information) and then send it from the CM directly to local
memory on the graphics workstation, where the results of simulations done on
the CM can be interactively displayed and analyzed.

At the workstation, users benefit from the ability to create and use graphical user
interfaces (GUIs). GUIs are widely used today and growing in popularity, as their
use enhances productivity for applications programmers and users alike, allows
tighter coupling of simulation and visualiation, and allows such activities as sim-
ulation steering. Many tools exist for the creation of such interfaces, and all are
now available to the CM programmer.

X11
Protocol
Client Server

Figure 22. Distributed graphics.

12.2 An Integrated Environment

By using the distributed graphics strategy described above, together with an un-
derlying protocol such as X11, programmers can create and use a wide variety of

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 12. Data Visualization

R DR R

12.3

12.4

integrated enviroments for their computational and visualization tasks. Connec-
tion Machine software provides an environment that permits the exchange of
very large data sets between the CM and framebuffers, workstations, or X win-
dow terminals.

The CM programming environment, Prism, exports data using a common,
easy-to-understand format; thus, programs running within Prism can generate
data for use within a visualization environment.

The X11 Protocol

Support for the network-based X graphics protocol is integral to the CM distrib-
uted graphics strategy, since use of this protocol facilitates both data transfer and
the use of GUIS, and allows considerable portability: data from a CM can be dis-
played on any X workstation.

But simple portability is not the only issue involved. As useful as graphics work-
stations are, the extra-large data sets typically used in CM applications frequently
provide more data than such workstations can readily handle. The solution to this
problem lies partly in using the CM’s power to reduce the volume of information
contained in the data sets so that the workstations can handle it rapidly, and partly
in the successful integration of visualization environments, workstations, and
high-speed framebuffers into a coherent system for rendering scientific data.

The CMX11 Library

The CMX11 library provides routines that allow the transfer of parallel data be-
tween the CM and any X11 terminal or workstation. It contains routines that draw
and fill points, lines, rectangles, and arcs; draw text strings, polygons, and
image-text strings; and draw and get images. The CMX11 library thus extends the
X11 libraries by providing parallel network calls that substitute parallel variables
for serial arrays. For example, where the X library offers an XDrawPoint rou-
tine, the CMX library offers CMXDrawPoint:

CMXDrawPoint (Display *display, Drawable *d,
GC gc, int x, int y)

THINKING MACHINES CONFIDENTIAL
October 1991

92

12.5

Connection Machine CM-5 Technical Summary

Loy e s

: NI A L e P
CEREN R NP R AR ARSI I T SIS APRIPR SNt & SPNE LA AUV 3 SRR PIVONT) A AN IS DN SRRSO

where x and y are pointers to parallel variables, and all other arguments are iden-
tical to the serial call.

Similarly, the CMX version of the X11 XPutImage routine uses the arguments
and semantics of the original to provide a parallel transfer of an image that exists
as a paralle] array:

CMXPutImage (display, d, gc, data, depth,
src_x, src_y, dest x, dest y,
width, height)

Note that no X protocol extensions are necessary, since the underlying CM socket
mechanism makes the data source entirely transparent to the server. In most
cases, the user simply makes the parallel version of the normal call, and the paral-
lel data is inserted into the data stream in the same format and position as it would
have been in the equivalent serial call. This greatly facilitates the user’s task.

Visualization Environments

Ongoing research in all areas of distributed visualization — for example, data
transfer protocols, distributed application interfaces, and visual programming
languages — will expand Connection Machine visualization support to include
full support for distributed visualization environments. These environments will
allow several processes to communicate large data sets among themselves and to
cooperate in producing the visualization. Interfaces are currently being devel-
oped for existing visualization environments such as AVS (Stardent) and
Explorer (SGI). Since the CM-5 system communicates with the outside world via
UNIX sockets, users can easily integrate CM applications into these visualization
systems. In addition, visualization modules such as filters, volume visualization
tasks, or polygon renderers may be developed to execute on the CM-5 itself and
thus directly handle the large data sets commonly associated with data parallel
applications. The ability to write data to tape at any intermediate stage for later
processing will also be supported.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 13

CM Message Passing Library

Users who have written C and Fortran programs for machines with MIMD-only
architectures can port these programs to the CM-5 by replacing the original mes-
sage-passing library calls with calls to the CM message-passing library, CMMD.
CMMD routines permit cooperative message passing among processing nodes,
thus providing simple processor communication that falls outside the range of the
data parallel languages.

CMMD supports a programming model frequently referred to as host/node pro-
gramming. One program runs on the host (a CM-5 partition manager), and
independent copies of the node program run on each of the processing nodes. The
host may have little involvement aside from initially invoking the node program
and perhaps providing user interface services.

CMMD permits concurrent processing in which synchronization occurs only
between matched sending and receiving nodes and only during the act of com-
munication. At all other times, computing on each node proceeds
asynchronously.

The initial release of CMMD supports primarily blocking message sending and
receiving. Blocking routines are synchronized routines in which senders wait for
their recipients to respond before continuing execution, and vice versa. Failure
on the part of the program to ensure that each call to a sending routine is matched
with a call to a receiving routine in the destination processor is likely to deadlock
the user’s process. (The CM-5 timesharing system ensures that any such deadlock
affects only the erring program; deadlock has no effect on other programs sharing
the partition.)

This initial release does provide limited support for non-blocking sending and
receiving of short messages. Future releases are expected to provide further sup-
port for asynchronous message passing.

THINKING MACHINES CONFIDENTIAL
October 1991 93

13.1

13.2

In addition, global functions — in which all nodes must participate — provide
for broadcasting data from the host, for scan and reduce operations, and for
global synchronization. These global functions make use of the CM-5 inter-
processor networks; thus, they take direct advantage of the CM-5’s hardware
support for global communications.

The library functions can be called from C and Fortran. They are summarized in
the paragraphs below.

Initialization

Four functions toggle the system between message-passing and data parallel
communication. The function CMMD_sys_enable () changes network partici-
pation to that required for message passing, and initializes the data structures
required by the message-passing environment. During program execution,
CMMD_suspend and CMMD_resume temporarily toggle the processing mode.
When the program finishes, CMMD_sys_disable () reverts the network to its
previous state.

Message Passing

Routines are provided for both separate and simultaneous sending and receiving,.
® CMMD_send sends a message from one processor (node or host) to another.

" CMMD_receive receives a message sent from another processor. (A call
to CMMD_msg_pending can determine whether a message is waiting to be
received.)

®* CMMD_send and receive provides for simultancous sending to one
node and reception from one (generally different) node. This call is partic-
ularly useful for structured communications, most commonly found in
grid topologies. For instance, it is frequently used for shifts and other
“nearest neighbor™ operations, with many nodes simultaneously sending
in one direction and receiving from another.

= CMMD_swap allows two processors to trade messages with each other.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 13. CM Message Passing Library 95

S L O B R s

22

Each of these routines has a vector version, which allows the sending or receiving
of data elements regularly spaced within the buffers by a specified stride.
Because regular and vector calls can be mixed, the CMMD message-passing rou-
tines can perform scatter/gather behavior. (See Figure 23.)

Routines also exist for the separate sending and reception of non-blocking mes-
sages. One pair of these routines allows programmers to create their own
protocols.

13.3 Informational Routines

CMMD routines are available to provide information on such matters as partition
size, host and node IDs, and the size, tag, and sender of the last message sent or
received, or of a message waiting to be received.

13.4 Global Synchronization

CMMD provides routines that explicitly synchronize all nodes (and possibly the
host as well). It also provides informational routines that allow, but do not en-
force, synchronization. CMMD_sync_host_with_nodes synchronizes the host
(partition manager) with all nodes. This function, called on the host, does not
return until the corresponding routine, CMMD_sync_with host is called from
all the nodes.

CMMD_barrier_sync, called from the host, synchronizes the host with
completion of all currently executing node functions.

CMMD_sync_with_nodes synchronizes the node with all other nodes. This
function will not return until it has been called in all nodes. (Note that this
function does not involve the host.)

CMMD_set_global_ox, which is callable on either the host or the nodes, con-
tributes the value O or 1 from the processor to a global OR function.

CMMD_get_global_or similarly returns the current value of a global OR func-
tion over all nodes including the host.

THINKING MACHINES CONFIDENTIAL
October 1991

Connection Machine CM-5 Technical Summary

send 4 bytes 0111213
receive 4 bytes 0111213

send_v 4 elements:
stride = 2, elem_len =1

N

P a—
N g
P
N |-g—]

receive_v 4 elements:
stride = 2, elem_len = 1

send 4 bytes 0l11213
receive_v 4 elements:

stride = 2, elem_len = 1 0 1 2 3
send_v 4 elements:

stride = 2, elem_len = 1 i / / 6
receive 4 bytes 0121416

Figure 23. Sending and receiving data.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 13. CM Message Passing Library
B R A R

13.5 Global Operations

The CMMD library provides a number of global functions. These functions per-
form their operations over all the nodes; some include and some exclude the host.

Global functions include
= broadcasting data or instructions from the host to the nodes
= reducing data from the nodes to the host
* reducing data to all nodes
= performing scans (parallel prefix operations) across the nodes
= performing segmented parallel prefix operations
= concatenation of elements into a buffer on all nodes

® concatenation of elements from the nodes to a buffer on the host

Reduce and parallel prefix operations can perform summation, find a maximum
or minimum value, or perform bitwise AND, OR, or XOR.

THINKING MACHINES CONFIDENTIAL
October 1991

Part I11
CM-5 Architecture

B R SRV P A SR - R T s B A B B I R e

THINKING MACHINES CONFIDENTIAL
October 1991 99

Chapter 14

Architecture Overview

14.1

A Connection Machine Model CM-5 system contains thousands of computational
processing nodes, one or more control processors, and I/O units that support mass
storage, graphic display devices, and VME and HIPPI peripherals. These are con-
nected by the Control Network and the Data Network. (For a high-level sketch
of these components, see Figure 24.)

Processors

Every processing node is a general-purpose computer that can fetch and interpret
its own instruction stream, execute arithmetic and logical instructions, calculate
memory addresses, and perform interprocessor communication. The processing
nodes in a CM-5 system can perform independent tasks or collaborate on a single
problem. Each processing node has 8, 16, or 32 Mbytes of memory; with the
high-performance arithmetic accelerator, it has the full 32 Mbytes of memory
and delivers up to 128 Mips or 128 Mflops.

The control processors are responsible for administrative actions such as sched-
uling user tasks, allocating resources, servicing IO requests, accounting,
enforcing security, and diagnosing component failures. In addition, they may
also execute some of the code for a user program. Control processors have the
same general capabilities as processing nodes but are specialized for performing
managerial functions rather than computational functions. For example, control
processors have additional /O connections and lack the high-performance arith-
metic accelerator. (See Figure 25.)

In a small system, one control processor may play a number of roles. In larger
systems, individual control processors are often dedicated to particular tasks and

THINKING MACHINES CONFIDENTIAL
October 1991 101

102 Connection Machin

e CM-5 Technical Summary
R R R A

%iES

2

referred to by names that reflect those tasks. Thus, a control processor that man-
ages a partition and initiates execution of applications on that partition is referred
to as a partition manager (PM), while a processor that controls an /O device is
called an /O control processor (I0OCP).

FDDI VME CMIO HIPP]
Bus Bus Bus

LAN - L st

Figure 24. System components.

A CM-5 system contains tens, hundreds, or thousands of processing nodes, each with up to
128 Miflops of 64-bit floating-point performance. It also contains a number of /O devices
and external connections. The number of O devices and external connections is indepen-
dent of the number of processing nodes. Both processing and I/O resources are managed by
a relatively small set of control processors. All these components are uniformly integrated
into the system by two internal communications networks, the Control Network and the
Data Network. The Control Network provides multiway operations that coordinate thou-
sands of participants, while the Data Network supports high-bandwidth bulk data trans-
fers. The capacity of each network scales up with the size of the system; every processing
node or I/O device gets the network capacity it needs.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 14. Architecture Overview 103

R

14.2 Networks and 1/O

The Control Network provides tightly coupled communications services. It is
optimized for fast response (low latency). Its functions include synchronizing the
processing nodes, broadcasting a single value to every node, combining a value
from every node to produce a single result, and computing certain parallel prefix
operations.

Control Network Data Network

" Standard Computer .. - -

LAN Connection

Figure 25. Control processor.

The basic CM-5 control processor consists of a RISC microprocessor, memory subsystem,
1/0 (including local disks and Ethernet connections), and a CM-5 Network Interface, all con-
nected to a standard 64-bit bus. Except for the Network Interface, this is a standard
off-the-shelf workstation-class computer system. The Network Interface connects the con-
trol processor to the rest of the system through the Control Network and Data Network.
Each control processor runs CMOST, a UNIX-based operating system with extensions for
managing the parallel-processing resources of the CM-5. Some control processors are used
to manage computational resources and some are used to manage I/O resources.

THINKING MACHINES CONFIDENTIAL
October 1991

The Data Network provides loosely coupled communications services. It is opti-
mized for high bandwidth. Its basic function is to provide point-to-point data
delivery for tens of thousands of items simultaneously. Special cases of this
functionality include nearest-neighbor communication and FFT butterflies. Com-
munications requests and data delivery need not be synchronized. Once the Data
Network has accepted a message, it takes on all responsibility for its eventual
delivery; the sending processor can then perform other computations while the
message is in transit. Recipients may poll for messages or be notified by interrupt
on arrival. The Data Network also transmits data between the processing nodes
and VO units.

A standard Network Interface (NI) connects each node or control processor to the
Control Network and Data Network. This is a memory-mapped control unit;
reading or writing particular memory addresses will access network control reg-
isters or trigger communication operations.

The I/O units are connected to the Control Network and Data Network in exactly
the same way as the processors, using the same Network Interface. Many /O
devices require more data bandwidth than a single NI can provide; in such cases
multiple NI units are ganged. For example, a HIPPI channel interface contains
6 NI units, which provide access to 6 Data Network ports. (At 20 Mbytes/sec
apiece, 6 NI units provide enough bandwidth for 2 100 Mbyte/sec HIPPI interface
with some to spare.)

Individual /O devices are controlled by dedicated I/O control processors (IOCP).
Some 1/0 devices are interfaces to external buses or networks; these include in-
terfaces to VME buses and HIPPI channels. Noteworthy features of the I/O
architecture are that /0O and computation can proceed independently and in paral-
lel, that data may be transferred between VO devices without involving the
processing nodes, and that the number of /O devices may be increased complete-
ly independently of the number of processing nodes.

Lurking in the background is a third network, the Diagnostic Network. It can be
used to isolate any hardware component and to test both the component itself and
all connections to other components. The Diagnostic Network pervades the hard-
ware system but is completely invisible to the user; indeed, it is invisible to most
of the control processors. A small number of the control processors include com-
mand interfaces for the Diagnostic Network; at any given time, one of these
control processors provides the System Console function.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 14. Architecture Overview 105
st i R e S

14.3 Further Information

The following chapters discuss the CM-5 architecture in more detail. Chapter 15
contains a sketch of the user-level virtual machine, the programming model that
is visible to a single user job. This virtual machine is supported by a combination
of hardware, operating system, and run-time libraries.

In Chapter 16, local architecture is considered: the structure of individual proces-
sors and associated memory. This is the view seen from any single processor in
the system; it is the level of architecture where program code is executed.

Chapter 17 discusses global architecture. This specifies how various components
of the system operate together to solve a single problem. This level of architectur-
al specification provides a framework for understanding the flow of control and
the management of data in a massively parallel application.

Chapter 18 describes the system architecture, which addresses support of multi-
ple user jobs, communication between jobs, VO transfers, fault diagnosis and
repair, and system administration.

Chapter 19 presents the /O architecture, including the design of individual /O
devices and how they fit into the system structure.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 15
The User-Level Virtual Machine

The virtual machine provided by the hardware and operating system to a single
user task consists of a control processor acting as a partition manager (PM), a set
of processing nodes, and facilities for interprocessor communication. Each node
is an ordinary general-purpose microprocessor capable of executing code written
in C, Fortran, or assembly language. The processing nodes may also have
optional vector units for high arithmetic performance.

The operating system is CMOST, a version of SunOS enhanced to manage CM-5
processor, /O, and network resources. The PM provides full UNIX services
through standard UNIX system calls. Each processing node provides a limited set
of UNIX services.

A user task consists of a standard UNIX process running on the PM and a process
running on each of the processing nodes. Under timesharing, all processors are
scheduled en masse, so that all are processing the same user task at the same time.
Each process of the user task, whether on the PM or on a processing node, may
execute completely independently of the rest during their common time slice.

The Control Network and Data Network allow the various processes to synchro-
nize and transfer data among themselves. The unprivileged control registers of
the network interface hardware are mapped into the memory space of each user
process, so that user programs on the various processors may communicate with-
out incurring any operating system overhead.

THINKING MACHINES CONFIDENTIAL
October 1991

107

108

D A A

Connection Machine CM-5 Technical Summary
L o T L R L T N L L I S R

15.1 Communications Facilities

Each process of a user task can read and write messages directly to the Control
Network and the Data Network. The network used depends on the task to be per-
formed.

The Control Network (CN) is responsible for communications patterns in which
many processors may be involved in the processing of each datum. One example
is broadcasting, where one processor provides a value and all other processors
receive a copy. Another is reduction, where every processor provides a value and
all values are combined to produce a single result. Values may be combined by
summing them, finding the maximum input value, or taking the logical OR or
exclusive OR of all input values; the combined result may be delivered to a single
processor or to all processors. (Software provides minimum-value and logical
AND operations by inverting the inputs, applying the hardware maximum-value
or logical OR operation, then inverting the result.) Note that the control processor
does not play a privileged role in these operations; a value may be broadcast
from, or received by, the control processor or any processing node with equal
facility.

The Control Network contains integer and logical arithmetic hardware for
carrying out reduction operations. This hardware is distinct from the arithmetic
hardware of the processing nodes; CN operations may be overlapped with
arithmetic processing by the processors themselves. The arithmetic hardware of
the Control Network can also compute various forms of parallel prefix
operations, where every processor provides a value and receives a result; the nth
result is produced by combining the first » input values. Segmented parallel
prefix operations are also supported in hardware.

The Control Network provides a form of two-phase barrier synchronization (also
known as “fuzzy” or “soft” barriers). A processor can indicate to the Control
Network that it is ready to enter the barrier. When all processors have checked
in, the Control Network relays this fact to all processors. A processor can thus
overlap unrelated processing with the possible waiting period between the time
it has checked in and the time it has been determined that all processors have
checked in. This allows thousands of processors to guarantee the ordering of
certain of their operations without ever requiring that they all be exactly synchro-
nized at one given instant.

The Data Network is responsible for reliable, deadlock-free point-to-point
transmission of tens of thousands of messages at once. Neither the senders nor
the receivers of messages need be globally synchronized. At any time, any
processor may send a message to any processor in the user task. This is done by

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 15. The User-Level Virtual Machine 109

s ER

writing first the destination processor number, and then the data to be sent, to
control registers in the Network Interface (NI). Once the Data Network has
accepted the message, it assumes all responsibility for eventual delivery of the
message to its destination. In order for a message to be delivered, the processor
to which it was sent must accept the message from the Data Network. However,
processor resources are not required for forwarding messages. The operation of
the Data Network is independent of the processing nodes, which may carry out
unrelated computations while messages are in transit.

There is no separate interface for special patterns of point-to-point communica-
tion, such as nearest neighbors within a grid. The Data Network presents a
uniform interface to the software. The hardware implementation, however, has
been tuned to exploit the locality found in commonly used communication pat-
terns.

Data Network performance follows a simple model. The Data Network provides
enough bandwidth for every Network Interface to sustain data transfers at
20 Mbytes/sec to any other NI within its group of 4; at 10 Mbytes/sec to any other
NI within its group of 16; or at 5 Mbytes/sec to any other NI in the system. (Two
Network Interfaces are in the same group of 2¥ if their network addresses differ
only in the k lowest-order bits.) These figures are for maximum sustained net-
work hardware performance, which is sufficient to handle the transfer rates
sustainable by node software. Note that worst-case performance is only a factor
of 4 worse than best-case performance. Other network designs have much larger
worst/best ratios.

To see the consequences of this performance model, consider communication
within a two-dimensional grid. If, say, the processors are organized so that each
group of 4 represents a 2 x 2 patch of of the grid, and each group of 16 processors
represents a 4 x 4 patch of the grid, then nearest-neighbor communication can be
sustained at the maximum rate of 20 Mbytes/sec per processor. For within each
group of 4, 2 of the processors have neighbors in a given direction (North, East,
West, South) that lie within the same group, and therefore can transmit at the
maximum rate. The other 2 processors have neighbors outside the group of 4. But
the Data Network provides bandwidth of 40 Mbytes/sec out of that group,
enough for each of the 4 processors to achieve 10 Mbytes/sec within a group of
16. That is enough to provide 20 Mbytes/sec apiece to the remaining 2 proces-
sors. The same argument applies to the 4 processors in a group of 16 that have
neighbors outside the group: not all processors have neighbors outside the group,
so their outside-the-group bandwidth can be borrowed to provide maximum
bandwidth to processors that do have neighbors outside the group.

THINKING MACHINES CONFIDENTIAL
October 1991

110

15.2

Co

nnection Machine CM-5 Technical Summary

P

i =

There are two mechanisms for notifying a receiver that a message is available.
The arrival of a message sets a status flag in a Network Interface control register;
a user program can poll this flag to determine whether an incoming message is
available. The arrival of a message can also optionally signal an interrupt. Inter-
rupt handling is a privileged operation, but the operating system converts an
arrived-message interrupt into a signal to the user process. Every message bears
a four-bit tag; under operating system control, some tags cause message-arrival
interrupts and others do not. (The operating system reserves certain of the tag
numbers for its own use; the hardware signals an invalid-operation interrupt to
the operating system if a user program attempts to use a reserved message tag.)

The Control Network and Data Network provide flow control autonomously. In
addition, two mechanisms exist for notifying a sender that the network is tempo-
rarily clogged. Failure of the network to accept a message sets a status flag in a
Network Interface control register; a user program can poll this flag to determine
whether a retry is required. Failure to accept a message can also optionally signal
an interrupt.

Data can also be transferred from one user task to another, or to and from /O
devices. Both kinds of transfer are managed by the operating system using a
common mechanism. An intertask data transfer is simply an I/O transfer through
a named UNIX pipe.

Data Parallel Computations

While the user may code arbitrary programs for the various processors and put
the general capabilities of the network interface to any desired use, the CM-5
architecture is designed to support especially well the data parallel model of
programming. Parallel programs are often structured as alternating phases of
local computation and global communication. Local computation consists of
operations by each processor on the data in its own memory. Global communica-
tion includes any transfer of data between or among processors, possibly with
arithmetic or logical computation on the data as it is transferred. By managing
data transfers globally and coherently rather than piecemeal, the data parallel
model often realizes economies of scale, reducing the overhead of synchroniza-
tion for interprocessor communication. Frequently used patterns of
communication are captured in carefully tuned compiler code generators and
run-time library routines; they are presented as primitive operators or intrinsic

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 15. The User-Level Virtual Machine 111

SR

functions in high-level languages so that the programmer need not constantly
reinvent them.

The following sections discuss various aspects of the data parallel programming
model and sketch the ways in which each is supported by the CM-5 architecture
and communications structure.

Elemental and Conditional Computations

Elemental computations, which involve operating on corresponding elements of
arrays, are purely local computations if the arrays are divided in the same way
among the processors. If two such matrices are to be added together, for example,
every pair of numbers to be added reside together in the memory of a single
processing node, and that node takes responsibility for performing the addition.

Because each processing node executes its own instruction stream as well as
processing its own local data, conditional operations are easily accommodated.
For example, one processing node might contain an element on the boundary of
an array while another might contain an interior element; certain filtering opera-
tions, while allowing all elements to be processed at once, require differing
computations for boundary elements and interior elements. In the CM-5 data
parallel architecture, some processors can take one branch of a conditional and
others can take a different branch simultaneously with no loss of efficiency.

Replication

Replication consists of making copies of data. The most important special case
is broadcasting, in which copies of a single item are sent to all processors. This
is supported directly in hardware by the Control Network.

Another common case is spreading, in which copies of elements of a lower-
dimensional array are used to fill out the additional dimensions of a high-dimen-
sional array. For example, a column vector might be spread into a matrix, so that
each element of the vector is copied to every element of the corresponding row
of the matrix. This case is handled by a combination of hardware mechanisms.

If the processors are partitioned into clusters of differing size, such that the net-
work addresses within each cluster are contiguous, then one or two

THINKING MACHINES CONFIDENTIAL
October 1991

parallel-prefix operations by the Control Network can copy a value from one pro-
cessor in each cluster to all others in that cluster with particular speed.

Reduction

Reduction consists of combining many data elements to produce a smaller num-
ber of results. The most important special case is global reduction, in which every
processor confributes a value and a single result is produced. The operations of
integer summation, finding the integer maximum, logical OR, and logical exclu-
sive OR are supported directly in hardware by the Control Network.
Floating-point reduction operations are carried out by the nodes with the help of
the Control Network and Data Network. °

A common operation sequence is a global reduction immediately followed by a
broadcast of the resulting value. The Control Network supports this combination
as a single step, carrying it out in no more time than a simple reduction.

The cases of reduction along the axes of a multidimensional array correspond to
the cases of spreading into a multidimensional array and have similar solutions.
The rows of a matrix might be summed, for example, to form a column matrix.
This case is handled by a combination of hardware mechanisms.

If the processors are partitioned into clusters of differing size, such that the net-
work addresses within each cluster are contiguous, then one or two
parallel-prefix operations by the Control Network can reduce values from all pro-
cessors within each cluster and optionally redistribute the result for that cluster
to all processors in that cluster.

Permutation

The Data Network is specifically designed to handle all cases of permutation,
where each input value contributes to one result and each result is simply a copy
of one input value. The Data Network has a single, uniform hardware interface
and a structure designed to provide especially good performance when the
pattern of exchange exhibits reasonable locality. Both nearest-neighbor and near-
est-but-one-neighbor communication within a grid are examples of patterns with
good locality. These particular patterns also exhibit regularity, but regularity is
not a requirement for good Data Network performance. The irregular polygonal
tesselations of a surface or a volume that are typical of finite-element methods

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 15. The User-Level Virtual Machine 113

lead to communications patterns that are irregular but local. The Data Network
performs as well for such patterns as for regular grids.

Parallel Prefix

Parallel prefix operations embody a very specific, complex yet regular, combina-
tion of replication and reduction operations. A parallel prefix operation produces
as many results as there are inputs, but each input contributes to many results and
each result is produced by combining multiple inputs. Specifically, the inputs and
results are linearly ordered; suppose there are n of them. Then result j is the
reduction of the first j inputs; it follows that input j contributes to the last n—j+1
results. (For a reverse parallel prefix operation—also called a parallel suffix
operation—these are reversed: result j is the reduction of the last »—j+1 inputs,
and input j contributes to the first j results.)

The Control Network handles parallel prefix (and parallel suffix) operations
directly, in the same manner and at the same speed as reduction operations, for
integer and logical combining operations. The input values and the results are
linearly ordered by network address.

The Control Network also directly supports segmented parallel prefix operations.
If the processors are partitioned into clusters of differing size, such that the net-
work addresses within each cluster are contiguous, then a single Control Network
operation can compute a separate parallel prefix or suffix within each cluster.

More complex cases of parallel prefix operations, such as on the rows or columns
of a matrix or on linked lists, are variously handled through the Control Network
or Data Network in cooperation with the nodes.

Virtual Processors

Data parallel programming provides the high-level programmer with the illusion
of as many processors as necessary; one programs as if there were a processor for
every data element to be processed. These are often described as virtual proces-
sors, by analogy with conventional virtual memory, which provides the illusion
of having more main memory than is physically present.

The CM-5 architecture, rather than implementing virtual processors entirely in
firmware, relies primarily on software technology to support virtual processors.

THINKING MACHINES CONFIDENTIAL
October 1991

114

15.3

Conn
GRS

C
o

=]

SRR

tion Machine CM-5 Technical Summary

£

CM-5 compilers for high-level data parallel languages generate control-loop code
and run-time library calls to be executed by the processing nodes. This provides
the same virtual-processor functionality made available by the Paris instruction
set on the Connection Machine Model CM-2, but adds further opportunities for
compile-time optimization.

Low-Level User Programming

Low-level programs may be written for the CM-5 in C or Fortran 77. Assembly
language is also available, though C should be adequate for most low-level
purposes; all hardware facilities are directly accessible to the C programmer. A
special assembler allows hand-coding of individual vector instructions for the
processing nodes.

One writes low-level programs as two pieces of code: one piece is executed in
the control processor, and the other is replicated at program start-up and executed
by each processing node. One speaks of writing a program in “C & C” (a C pro-
gram for the control processor and a C program for the nodes); one may also
write in “Fortran & Fortran” (“F & F”) or in “C & assembler,” etc.

A package of macros and run-time functions supports common communications
operations within a message-passing framework (see Chapter 13). Such
low-level communications access allows the user to experiment with MIMD
program organizations other than data parallel, to port programs easily from
other MIMD architectures, and to implement new primitives for use in high-level
programs.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 16

Local Architecture

16.1 Control Processor Architecture

A control processor (CP) is essentially like a standard high-performance work-
station computer. It consists of a standard RISC microprocessor, associated
memory and memory interface, and perhaps /O devices such as local disks and
Ethernet connections. It also includes a CM-5 Network Interface, providing
access to the Control Network and Data Network.

A control processor acting as a partition manager (PM) controls each partition
and communicates with the rest of the CM-5 system through the Control Network
and Data Network. For example, a PM initiates /O by sending a request through
the Data Network to a second CP, an I/O Control Processor. A PM initiates
tagk-switching by using the Control Network to send a broadcast interrupt to all
processing nodes; privileged operating-system support code in each node then
carries out the bulk of the work. To access the Control Network and Data Net-
work, each CP uses its Network Interface, a memory-mapped device in the
memory address space of its microprocessor.

The microprocessor supports the customary distinction between user and super-
visor code. User code can run in the control processor at the same time that user
code for the same job is running in the processing nodes. Protection of the super-
visor, and of one user from another, is supported by the same mechanisms used
in workstations and single-processor time-shared computers, namely memory
address mapping and protection and the suppression of privileged operations in
user mode. In particular, the operating system prevents a user process from per-
forming privileged Network Interface operations; the privileged control registers
simply are not mapped into the user address space.

THINKING MACHINES CONFIDENTIAL
October 1991 115

116

16.2

Connection Machine CM-5

B T T ST T T A T A I

Technical Summary

EXITR TSRS

The initial implementation of the CM-5 control processor uses a SPARC micro-
processor. However, it is expected that, over time, the implementation of the CP
will track the RISC microprocessor technology curve to provide the best possible
functionality and performance at any given point in time; therefore it is recom-
mended that low-level programming be carried out in C as much as possible,
rather than in assembly language.

Processing Node Architecture

The CM-5 Processing Node is designed to deliver very good cost-performance
when used in large numbers for data parallel applications. Like the control
processor, the node makes use of industry-standard RISC microprocessor tech-
nology. This microprocessor may optionally be augmented with a special
high-performance hardware arithmetic accelerator that uses wide datapaths, deep
pipelines, and large register files to improve peak computational performance.

The node design is centered around a standard 64-bit bus. To this node bus are
attached a RISC microprocessor, a CM-5 Network Interface, and memory. Note
that all logical connections to the rest of the system pass through the Network
Interface.

The node memory consists of standard DRAM chips and a 2 Kbyte boot ROM,; the
microprocessor also has a 64 Kbyte cache that holds both instructions and data.
All DRAM memory is protected by ECC checking, which corrects single-bit fail-
ure and detects two-bit errors and DRAM chip failures. The boot ROM contains
code to be executed following a system reset, including local processor and
memory verification and the communications code needed to download further
diagnostics or operating system code.

The memory configuration depends on whether the optional high-performance
arithmetic hardware is included. Without the arithmetic hardware, the memory
is connected by a 72-bit path (64 data bits plus 8 ECC bits) to a memory controller
that in turn is attached to the node bus. (See Figure 26.) In this configuration the
memory size can be 8, 16, or 32 Mbytes. (This assumes 4-Mbit DRAM tech-
nology. Future improvements in DRAM technology will permit increases in
memory size. The CM-5 architecture and chip implementations anticipate these
future improvements.)

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 16. Local Architecture 117
b : S 4 %

64-bit paths
(plus ECC)

64-bit bus

Control Network Data Network

Figure 26. Processing node.

The basic CM-5 processing node consists of a RISC microprocessor, memory subsystem, and
a CM-5 Network Interface all connected to a standard 64-bit bus. The RISC microprocessor
is responsible for instruction fetch, instruction execution, processing data, and controlling
the Network Interface. The memory subsystem consists of a memory controller and either
8 Mbytes, 16 Mbytes, or 32 Mbytes of DRAM memory. The path from each memory back
to the memory controller is 72 bits wide, consisting of 64 data bits and 8 bits of ECC code.
The ECC circuits in the memory controller can correct single-bit errors and detect
double-bit errors as well as failure of any single DRAM chip. The Network Interface con-
nects the node to the rest of the system through the Control Network and Data Network.

THINKING MACHINES CONFIDENTIAL
October 1991

If the high-performance arithmetic hardware is inciuded, then the node memory
is divided into four independent banks, each with a 72-bit (64 data bits plus 8
ECC bits) access path. (See Figure 27.)

64-bit paths
(plus ECC)

64-bit bus

Control Network Data Network

Figure 27. Processing node with vector units.

A CM-5 processing node may optionally contain an arithmetic accelerator. In this configura-
tion the node has a full 32 Mbytes of memory, four banks of 8 Mbytes each. The memory
controller is replaced by four vector units. Each vector unit has a dedicated 72-bit path to
its associated memory bank, providing peak memory bandwidth of 128 Mbytes/sec per vec-
tor unit, and performs all the functions of 2 memory controller, including generation and
checking of ECC bits. Each vector anit has 32 Mflops peak 64-bit floating-point perform-
ance and 32 Mops peak 64-bit integer performance. The vector units execute vector instruc-
tions issued to them by the RISC microprocessor. Each vector instruction may be issued to
a specific vector unit (or pair of units), or broadcast to all four vector units at once. The
microprocessor takes care of such “housekeeping” computations as address calculation and
loop control, overlapping them with vector instruction execution. Together, the vector units
provide 512 Mbytes/sec memory bandwidth and 128 Mflops peak 64-bit floating-point per-
formance. A single CM-5 node with vector units is a supercomputer in itself.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 16. Local Architecture 119

The special arithmetic hardware consists of four vector units (VU), one for each
memory bank, connected separately to the node bus. (See Figure 28.) In this con-
figuration the memory size is 8 Mbytes per VU for a total of 32 Mbytes per node.
(Again, this figure assumes 4-Mbit DRAM technology and will increase as indus-
try-standard memories are improved.) Each VU also implements all memory

MBus

Figure 28. Vector unit functional architecture.

THINKING MACHINES CONFIDENTIAL
October 1991

12

16.3

Connection Machine CM-5 Technical Summary
R FERD AT s S

controller functions, including ECC checking, so that the entire memory appears
to be in the address space of the microprocessor exactly as if the arithmetic hard-
ware were not present.

The memory controller or vector unit also provides a word-based interface to the
system Diagnostics Network (see Section 18.7). This provides an extra commu-
nications path to the node; it is designed to be slow but reliable and is used
primarily for hardware fault diagnosis.

As with the control processors, the implementation of the CM-5 processing node
is expected to track the RISC microprocessor technology curve to provide the
best possible functionality and performance at any given point in time; therefore
it is recommended that low-level programming be carried out in C as much as
possible, rather than in assembly language. The initial implementation of the
CM-5 node uses a SPARC microprocessor.

Vector Unit Architecture

Each vector unit (VU) is a memory controller and computational engine con-
trolled by a memory-mapped control-register interface. When a read or write

“operation on the node bus addresses a VU, the memory address is further de-

coded. High-order bits indicate the operation type:

® For an ordinary memory transaction, the low-order address bits indicate a
location in the memory bank associated with the VU, which acts as a
memory controller and performs the requested memory read or write oper-
ation.

® For a control register access, the low-order address bits indicate a control
register to be read or written.

= For a data register access, the low-order address bits indicate a data regis-
ter to be read or written.

® For a vector-unit instruction, the node memory bus operation must be
write (an attempt to read from this part of the address space results in
a bus error). The data on the memory bus is not written to memory but is
interpreted as an instruction to be executed by the vector execution portion
of the VU. The low-order address bits indicate a location in the memory
bank associated with the VU; the instruction will use this address if it in-

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 16. Local Architecture

i

cludes operations on memory. A vector-unit instruction may be addressed
to any single VU (in which case the other three VUs will ignore it), to a pair
of VUs, or to all four VUs simultaneously.

The first two types of operation are identical to those performed by the memory
controller when vector units are absent. The third type permits the microproces-
sor to read or write the register file of any vector unit. The fourth type of
operation initiates high-performance arithmetic computation. This computation
has both vector and parallel characteristics: each VU can perform vector opera-
tions, and a single instruction may be issued simultaneously to all four. If the
vector length is 16, then issuing a single instruction can result in as many as 64
individual arithmetic operations (or 128 if the instruction specifies a compound
operation such as multiply-add).

Vector units cannot fetch their own instructions; they merely react to instructions
issued to them by the microprocessor. The instruction format, instruction set, and
maximum vector length have been chosen so that the microprocessor can keep
the vector units busy while having time of its own to fetch instructions (both its
own and those for the vector units), calculate addresses, execute loop and branch
instructions, and carry out other algorithmic bookkeeping.

Each vector unit has 64 64-bit registers, which can also be addressed as 128
32-bit registers. There are some other control registers as well, most notably the
16-bit Vector Mask (VM) and the 4-bit Vector Length (VL) registers. The Vector
Mask register controls certain conditional operations and optionally receives
single-bit status results for each vector element processed. The Vector Length
register specifies the number of elements to be processed by each vector instruc-
tion.

The vector unit actually processes both vector and scalar instructions; a scalar-
mode instruction is handled as if it were a vector-mode instruction of length 1.
Thus scalar-mode instructions always operate on single registers; vector-mode
instructions operate on sequences of registers. Each register operand is specified
by a 7-bit starting register number and a 7-bit stride. The first element for that
vector operand is taken from the starting register; thereafter the register number
is incremented by the stride to produce a new register number indicating the next
element to be processed. Using a large stride has the same effect as using a
negative stride, so it is possible to process a vector in reverse order. Most instruc-
tion formats use a default stride of 1 for 32-bit operands or 2 for 64-bit operands,
S0 as to process successive registers, but one instruction format allows arbitrary
strides to be specified for all operands, and another allows one vector operand to
take its elements from an arbitrary pattern of registers by means of a mechanism
for indirect addressing of the register file.

THINKING MACHINES CONFIDENTIAL
October 1991

B L IS e oV P P Lot aavshe ua e

Connection Machine CM-5 Technical Summary

Each vector unit includes an adder, a multiplier, memory load/store, indirect reg-
ister addressing, indirect memory addressing, and population count. Every
vector-unit instruction can specify at least one arithmetic operation and an inde-
pendent memory operation. Every instruction also has four register-address
fields: three for the arithmetic operation and one for the memory operation. All
binary arithmetic operations are fully three-address; an addition, for example,
can read two source registers and write into a third destination register. The
memory operation can address a completely independent register. If, however, a
load operation addresses a register that is also a source for the arithmetic opera-
tion, then load-chaining occurs, so that the loaded memory data is used as an
arithmetic operand in the same instruction. Indirect memory addressing supports
scatter/gather operations and vectorized pointer indirection.

Two mechanisms provide for conditional processing of vector elements within
each processing node. Each vector unit contains a vector mask register; vector
elements are not processed in positions where the corresponding vector mask bit
is zero. Alternatively, a vector-mask enumeration mechanism may be used in
conjunction with the scatter/gather facility to pack vector elements that require
similar processing; after bulk application of unconditional vector operations, the
results are then unpacked and scattered to their originally intended destinations.

Vector-unit instructions come in five formats. (See Figure 29.) The 32-bit short
format allows many common scalar and vector operations to be expressed suc-
cinctly. The four 64-bit long formats extend the basic 32-bit format to allow
additional information to be specified: a 32-bit immediate operand, a signed
memory stride, a set of register strides, or additional control fields (some of
which can update certain control registers with no additional overhead).

The short format includes an arithmetic opcode (8 bits), a load/store opcode (3
bits), a vector/scalar mode specifier (2 bits), and four register fields called rLS,
1D, 1S1, and rS2 that designate the starting registers for the load/store operation
and for the arithmetic destination, first source, and second source, respectively.
The vector/scalar specifier indicates whether the instruction is to be executed
once (scalar mode) or many times (vector mode). It also dictates the expansion
of the 4-bit register specifiers into full 7-bit register addresses. The short format
is designed to support a conventional division of the uniform register file into
vector registers of length 16, 8, or (for 64-bit operands only) 4, with scalar quan-
tities kept in the first 16 registers. For a scalar-mode instruction, the 4-bit register
field provides the low-order bits of the register number (which is then multiplied
by 2 for 64-bit operands); for a vector-mode instruction, it provides the high-
order bits of the register number. The rS1 field is 7 bits wide; in some cases these
specify a full 7-bit register number for arithmetic source 1 and in other cases 4
bits specify a vector register and the other 3 bits convey stride information.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 16. Local Architecture 123

R

7]
g |Lse| s ALU-F st 2 | o
721
glLeFl as | Awr st sz | o 32-bit immediate operand
w 00
g|isF| as | awr rs1 w2 | © lor signed memory stride
11
g LsF| ns | AWF St w2 | ® |1ofs20| ms2s |mo| ms |isol wss
W 4
olsF| as | awr s1 s2 | o |o1 §}§: % w (2] s |ND
> > >

Figure 29. Vector unit instruction formats.

Each instruction issued by the RISC microprocessor to the vector units is 32 bits or 64 bits wide. The
32-bit format is designed to cover the operations and register access patterns most likely to arise in
high-performance compiled code. The 32 high-order bits of the 64-bit format are identical to the 32-bit
format. The 32 low-order bits provide an immediate operand, a signed memory stride, or specifications
for more complex or less frequent operations.

A short scalar-mode instruction can therefore access the first 16 32-bit or 64-bit
elements of the register file, simultaneously performing an arithmetic operation
and loading or storing a register. (The memory address that accompanies the is-
sued instruction indicates the memory location to be accessed.) One of the
arithmetic operands (S1) may be in any of the 128 registers in the register file.

A short vector-mode instruction can conveniently treat the register file as a set
of vector registers:

16 4 x 64-bit vector registers
8 8 x 64-bit vector registers
4 16 x 64-bit vector registers

16 8 x 32-bit vector registers
8 16 x 32-bit vector registers

THINKING MACHINES CONFIDENTIAL
October 1991

Connection Machine CM-5 Technical Summary

Many options are available for vector-mode instructions. These include a choice
between a default memory stride and the last explicitly specified memory stride,
as well as a choice of register stride for the S1 operand (last specified, 1, or
0 — stride O treats the S1 operand as a scalar to be combined with every element
of a vector).

The long instruction formats are all compatible extensions of the short format:
the most significant 32 bits of a 64-bit instruction are decoded as a 32-bit instruc-
tion, and the least significant 32 bits specify additional operations or operands.
If the rS2 field of a long instruction is zero, then the low-order 32 bits of the
instruction constitute an immediate scalar value to be used as the S2 operand. If
the arithmetic operation requires a 64-bit operand, then the immediate value is
zero-extended left if an unsigned integer is required, sign-extended left for a
signed integer, or zero-extended right for a floating-point number.

If the rS2 field of a long instruction is not zero, then the two high-order bits of
the low 32 are decoded. If the two bits match, then the low-order 32 bits are an
explicit signed memory stride. (Note that it is possible to specify such a stride
even in a scalar-mode long instruction, in order to latch the stride in preparation
for a following vector-mode instruction that might need to use another of the long
formats.) Code 01 indicates additional register number and register stride infor-
mation, allowing specification of complete 7-bit register numbers and register
strides for the LS, D, and rS2 operands. This enables complex regular patterns
of register access. Code 10 indicates a variety of control fields for such mecha-
nisms as changing the Vector Length, controlling use of the Vector Mask, indirect
addressing, S1 operand register striding, and population count.

The arithmetic operations that can be specified by the ALU-F instruction field are
summarized in Table 1. Note the large set of three-operand multiply-add instruc-
tions. These come in three different addressing patterns: accumulative, which
adds a product into a destination register (useful for dot products); inverted,
which multiplies the destination by one source and then adds in the other (useful
for polynomial evaluation and integer subscript computations); and full triadic,
which takes one operand from the load/store register so that the destination regis-
ter may be distinct from all three sources. The triadic multiply-add operations are
provided for signed and unsigned integers as well as for floating-point operands,
m both 32-bit and 641-bit sizes. Unsigned 64-bit multiply-boolean operations
are also provided. (Note that multiplying by a power of two has the effect of a
shift.)

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 16. Local Architecture

125

Table 1. Summary of vector unit arithmetic instructions (Part I).
imove dimove umove dumove fmove dfmove Move: D=81+0
itest ditest utest dutest ftest dftest Move and generate status
icmp dicmp ucmp ducmp fcmp dfcmp Compare
iadd diadd uadd duadd fadd dfadd Add
isub disub usub dusub fsub dfsub Subtract
isubr disubr usubr dusubr fsubr dfsubr Subtract reversed
imul dimul umul dumul fmul dfmul Multiply (low 64 bits for integers)
dimulh dumulh Integer multiply (high 64 bits)
fdiv dfdiv Divide
finv dfinv Invert: D = 1.0/S1
fsqgrt dfsqrt Square root
fisgt dfisqt Inverse square root: D = 1.0/SQRT(S2)
ineg dineg fneg dfneg Negate
iabs diabs fabs dfabs Absolute value
iaddc diaddc uaddc duaddc Integer add with carry
isubc disubc usubc dusubc Integer subtract with borrow
isbrc disbrc usbre dusbre Integer subtract reversed with borrow
ushl dushl Integer shift left
ushlr dushlr Integer shift left reversed
ushr dushr Integer shift right logical
ushrr dushrr Integer shift right logical reversed
ishr dishr Integer shift right arithmetic
ishrr dishrzr Integer shift right arithmetic reversed
uand duand Bitwise logical AND
uandc duandc Bitwise logical AND with Complement
unand dunand Bitwise logical NAND
uor duor Bitwise logical OR
unor dunor Bitwise logical NOR
uxor duxor Bitwise logical XOR
unot dunot Bitwise logical NOT
umrg dumrg Merge: D = (if mask then S2 else S1)
uffb duffb Find first 1-bit

THINKING MACHINES CONFIDENTIAL

October 1991

126 Connection Machine CM-5 Technical Summary

e e o
EEo

P SR L T A e R R 2RI S P SN PR N

Table 1. Summary of vector unit arithmetic instructions (Part II).

imada dimada umada dumada fmada dfmada D = (rS1 * 1S2) + 1D
imsba dimsba umsba dumsba fmsba dfmsba D = (zS1 *1S2) - 1D
imsra dimsra umsra dumsra fmsra dfmsra D =-(zS1 * 182) + 1D
inmaa dinmaa unmaa dunmaa fnmaa dfnmaa D=~ (rS1 ¥ 1S2) - 1D
imadi dimadi umadi dumadi fmadi dfmadi D = (rS2 * D) + 1S1
imsbi dimsbi umsbi dumsbi fmsbi dfmsbi D = (182 * D) - rS1
imsri dimsri umsri dumsri fmsri dfmsri D =— (rS2 * D) + 1S1
inmai dinmai unmai dunmai fnmai dfnmai D =—(rS2 * D) - 1S1
imadt dimadt umadt dumadt fmadt dfmadt D = (rS1 * rLS) + 1S2
imsbt dimsbt umsbt dumsbt fmsbt dfmsbt 1D = (zS1 * rLS) —1S2
imsrt dimsrt umsrt dumsrt fmsrt dfmsrt D =—(zS1 * 1ILS) +1S2
inmat dinmat unmat dunmat fnmat dfnmat 1D =~ (rS1 * 1LS) -~ rS2

dumsa D = lower(rS1 * rS2) AND 1D
dumhsa 1D = upper(rS1 * rS2) AND D
dumma 1D = lower(rS1 * rS2) AND NOT 1D
dumhma 1D = upper(rS1 * 1S2) AND NOT D
dumoa 1D = lower(rS1 * rS2) OR D
dumhoa 1D = upper(rS1 * rS2) OR 1D
dumxa 1D = lower(rS1 * rS2) XOR 1D
dumhxa 1D = upper(rS1 * rS2) XOR rD
dumsi 1D = lower(rS2 * 1D) AND rS1
dumhsi 1D = upper(rS2 * rD) AND rS1
dummi 1D = lower(rS2 * rD) AND NOT 1S1
dumhmi 1D = upper(rS2 * tD) AND NOT rS1
dumoi 1D = lower(xS2 * tD) OR 1S1
dumhoi 1D = upper(rS2 * tD) OR rS1

dumxi 1D = lower(rS2 * rD) XOR rS1
dumhxi D = upper(zS2 * rD) XOR rS1
dumst D = upper(rS1 * rLS) AND rS2
dumhst rD = upper(rS1 * rLS) AND 1S2
dummt rD = lower(rS1 * rLS) AND NOT rS2
dumhmt rD = upper(rS1 * rLS) AND NOT 1S2
dumot D = Jower(rS1 * rLS) OR rS2
dumhot 1D = upper(zS1 * rLS) OR 1S2
dumxt 1D = lower(rS1 * rLS) XOR rS2
dumhxt 1D = upper(rS1 * rLS) XOR rS2

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 16. Local Architecture

127

Table 1. Summary of vector unit arithmetic instructions (Part II).

cvtfi
cvtf
cvtir
cvti
trap
etrap
ldvm

stvm

fclas dfclas

fexp dfexp

fmant dfmant
uenc duenc

fnop

Classify operand

Extract exponent

Extract mantissa with hidden bit

Make float from exponent (S1) and
mantissa (S2)

No arithmetic operation

Convert integer to float*

Convert float to float*

Convert float to integer (round)*

Convert float to integer (truncate)*

Generate debug trap

Generate trap on enabled exception

Load vector mask

Store vector mask

* The rS2 field encodes the source and result sizes and formats for these instructions.

The LS-F instruction field specifies one of 5 load/store operations:

no operation
32-bit load
64-bit load
32-bit store
64-bit store

The load/store size (32 or 64 bits) need not be the same as the arithmetic operand
size. They should be the same, however, if load chaining is used. There is no
distinction between integer and floating-point loads and stores. A 64-bit load or
store may be used to load or store an even-odd 32-bit register pair.

Executing Vector Code

All instruction fetching and control decisions for the vector units are made by the
node microprocessor. When vector units are present, all instructions and data re-
side in the memory banks associated with the vector units. A portion of each
memory bank is conventionally reserved for instruction and data areas for the

THINKING MACHINES CONFIDENTIAL
October 1991

128

microprocessor. The memory management hardware of the microprocessor is
used to map pages. from the four memory banks so as to make them appear con-
tiguous to the microprocessor.

While the microprocessor does not have its own memory, it does have a local
cache that is used for both instruction and data references. Thus, the microproces-
sor and vector units can execute concurrently so long as no cache misses occur.

When a cache block must be fetched from memory, the associated vector unit
may be in one of three states. If it is not performing any local operations, then the
cache block is fetched immediately. If it is performing a local load or store
operation, then the block fetch is delayed until the operation completes. If the
vector unit is doing an operation that does not require the memory bus, then the
block fetch proceeds immediately, concurrently with the executing vector
operation.

The microprocessor issues VU instructions by storing to a specially constructed
address: the microprocessor fetches the instruction itself from its data memory,
calculates the special vector-unit destination address for issuing the instruction,
and executes the store. The time it takes the microprocessor to do this is generally
less than the time it takes a vector unit to execute an instruction with a vector
length of 4. Moreover, the tail end of one vector instruction may be overlapped
in time with the beginning of the next, thus eliminating memory latency and vec-
tor start-up overhead. With careful programming, therefore, the microprocessor
can sustain delivery of vector instructions so as to keep the vector units continu-
ously busy.

The vector unit is optimally suited for a vector length of §; with vectors this long,
the timing requirements are not so critical, and the microprocessor has time to
spare for bookkeeping operations. The short vector-unit instruction format sup-
ports addressing of length-8 register blocks for either 32-bit or 64-bit operands.
This provides 8 vector registers for 64-bit elements or 16 vector registers for
32-bit elements, with the first two such register blocks also addressable as 16
scalar registers. This is only a conventional arrangement, however; long-format
instructions can address the registers in arbitrary patterns.

Flow control of instructions to the vector units is managed using the hardware
protocol of the node bus. When a vector instruction is issued by the microproces-
sor, any addressed vector unit may stall the bus if it is busy. A small write buffer
and independent bus controlier within the microprocessor allows it to continue
local execution of its own instructions while the bus is stalled by a vector unit.
If the microprocessor gets far enough ahead, the small write buffer becomes full,
causing the microprocessor to stall until the vector unit(s) catch up.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 16. Local Architecture 129

Each vector instruction either completes successfully or terminates in a hard er-
ror condition. Exceptions and other non-fatal conditions are signaled in sticky
status registers that may be either polled or enabled to signal interrupts. Hard
errors and enabled exception conditions are signaled to the microprocessor as
interrupts via the Network Interface.

The memory addresses on the node bus are physical addresses resulting from
memory-map translation in the microprocessor. The memory map provides the
necessary protection to ensure that the addressed location itself is in fact within
a user’s permitted address space, but cannot prevent accesses to other locations
by execution of vector instructions that use indirect addressing or memory
strides. Additional protection is provided in each vector unit by bounds-checking
hardware that signals an interrupt if specified physical address bounds are
exceeded.

Certain privileged vector unit operations are reserved for supervisor use. These
include the interrupt management and memory management features. The super-
visor can interrupt a user task at any time for task-switching purposes and can
save the state of each vector unit for transparent restoration at a later time.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 17
Global Architecture

171

A single user process (as shown in Chapter 15) “views” the CM-5 system as a set
of processing nodes pius a partition manager, with I/O and other extra-partitional
activities being provided by the operating system.

To support such processes, however, requires that the underlying system software
make appropriate use of the global architecture provided by the CM-5’s commu-
nications networks.

All the computational and /O components of a CM-5 system interact through two
networks, the Control Network and the Data Network. Every such component is
connected through a standard CM-5 Network Interface. The NI presents a simple,
synchronous 64-bit bus interface to a node or /O processor, decoupling it both
logically and electrically from the details of the network implementation.

The Control Network supports communication patterns that may involve all the
processors in a single operation; these include broadcasting, reduction, parallel
prefix, synchronization, and error signalling. The Data Network supports
point-to~-point communications among the processors, with many independent
messages in transit at once.

The Network Interface

The CM-5 Network Interface provides a memory-mapped control-register inter-
face to a 64-bit processor memory bus. All network operations are initiated by
writing data to specific addresses in the bus address space.

Many of the control registers appear to be at more than one location in the physi-
cal address space. When a control register is accessed, additional information is

THINKING MACHINES CONFIDENTIAL
October 1991 131

Connection Machine CM-5 Technical Summary

B T TR T VR ORI T R o e

conveyed by the choice of which of its physical addresses was used for the ac-
cess; in other words, information is encoded in the address bits. For example,
when the control network is to be used for a combining operation, the first—and
perhaps only—bus transaction writes the data to be combined, and the choice of
address indicates which combining operation is to be used. One of the address
bits indicates whether the access has supervisor privileges; an error is signalled
on an attempt to perform a privileged access using an unprivileged address. (Nor-
mally the operating system maps the unprivileged addresses into the address
space of the user process, thereby giving the user program zero-overhead access
to the network hardware while prohibiting user access to privileged features.)

The logical interface is divided into a number of functional units. Each functional
unit presents two FIFO interfaces, one for outgoing data and one for incoming
data. A processor writes messages to the outgoing FIFO and pulls messages from
the incoming FIFO, using the same basic protocol for each functional unit. Dif-
ferent functional units, however, respond in different ways to these messages. For
example, a Data Network unit treats the first 32 bits of a message as a destination
address to which to send the remainder of the message; a Control Network com-
bining unit forwards the message to be summed (or otherwise combined) with
similar messages from all the other processors.

Data is kept in each FIFO in 32-bit chunks. The memory-bus interface accepts
both 32-bit and 64-bit bus transactions. Writing 64 bits thus pushes two 32-bit
chunks onto an output FIFO; reading 64 bits pulls two chunks from an input FIFO.

For outgoing data, there are two control registers called send and send_first.
Writing data to the send_first register initiates an outgoing message; address
bits encode the intended total length of the message (measured in 32-bit chunks).
Any additional data for that message is then written to the send register. After
all the data for that message has been written, the program can test the send_ok
bit in a third control register. If the bit is 1, then the network has accepted the
message and bears all further responsibility for handling it. If the bit is 0, then the
data was not accepted (because the FIFO overflowed) and the entire message
must be re-pushed into the FIFO at a later time. The send_space control register
may be checked before starting a message to see whether there is enough space
in the FIFO to hold the entire message; this should be treated only as a hint, how-
ever, because supervisor operations (such as task switching) might invalidate it.
In many situations throughput is improved by pushing without checking first, in
the expectation that the FIFO will empty out as fast as new data is being pushed.
It is also permissible to check the send ok bit before all the data words for the
message have been pushed; if it is 0, the message may be retried immediately.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 17. Global Architecture 133

17.2

For incoming data, a processor can poll the receive_ok bit until it becomes 1,
indicating that a message has arrived; alternatively, it can request that certain
types of messages trigger an interrupt on arrival. In either case, the program can
then check the receive length_left field to find out how long the message
is and then read the appropriate number of data words from the receive control
register.

The supervisor can always interrupt a user program and send its own message;
this is done by deleting any partial user message, sending the supervisor message,
and then forcing the send_ok bit for that unit to 0 before resuming the user pro-
gram. To the user program it merely appears that the FIFO was temporarily full;
the user program should then retry sending the message. The supervisor can also
lock a send-FIFO, in which case it appears always to be full, or disable it, in which
case user access will cause an interrupt. The supervisor can save and transparent-
ly restore the contents of any receive-FIFO.

Each Network Interface records interrupt signals and error conditions generated
within its associated processor; exchanges error and interrupt information with
the Control Network; and forwards interrupt and reset signals to its associated

“processor.

The Control Network

Each Network Interface contains an assortment of functional units associated
with the Control Network. All have the same dual-FIFO organization but differ
in detailed function.

Every Control Network operation potentially involves every processor. A proces-
sor may push a message into one of its functional units at any time; shortly after
all processors have pushed messages, the result becomes available to all proces-
sors. Messages of each type may be pipelined; a number of messages may be sent
before any results are received and removed. (The exact depth of the pipeline
varies from one functional unit to another.) The general idea is that every proces-
sor should send the same kinds of messages in the same order. The Control
Network, however, makes no restrictions about when each processor sends or
receives messages. In other words, processors need not be exactly synchronized
to the Control Network; rather, the Control Network is the very means by which
processors conduct synchronized communication en masse.

THINKING MACHINES CONFIDENTIAL
October 1991

134

Connection Machine CM-5 Technical Summary

There are exceptions to the rule that every processor must participate. The func-
tional units contain mode bits for abstaining. A processor may set the appropriate
mode bit in its Network Interface in order to abstain from a particular type of
operation; each operation of that type will then proceed without input from that
processor or without delivering a result to that processor. A participating proces-
sor is one that is not abstaining from a particular kind of Control Network
operation.

Broadcasting

The broadcast unit handles broadcasting operations. There are actually three dis-
tinct broadcasting units: one for user broadcast, one for supervisor broadcast, and
one for interrupt broadcast. Access to the supervisor broadcast unit or interrupt
broadcast unit is a privileged operation.

Only one processor may broadcast at a time. If another processor attempts to send
a broadcast message before completion of a previous broadcast operation, the
Control Network signals an error.

A broadcast message is one to fifteen 32-bit words long. Shortly after a message
is pushed into the broadcast send-FIFO, copies of the message are delivered to all
participating processors. The user broadcast and supervisor broadcast units are
identical in function except that the latter is reserved for supervisor use.

An interrupt broadcast message causes every processor to receive an interrupt or
reset signal. A processor can abstain from receiving interrupts, in which case it
ignores interrupt messages when it receives them; but a processor cannot abstain
from a reset signal (which causes the receiving NI and its associated processor to
be reset).

As an example of the use of broadcast interrupts, consider a partition manager
coordinating the task-switching of user processes. When it is time to switch tasks,
the PM uses the Control Network to send a broadcast interrupt to all nodes in the
partition. This transfers control in each node to supervisor code, which can then
read additional supervisor broadcast information about the task-switch operation
(such as which task is up next).

THINKING MACHINES CONFIDENTIAL
October 1991

Combining

The combine unit handles reduction and parallel prefix operations. A combine
message is 32 to 128 bits long and is treated as a single integer value. There are
four possible message types: reduction, parallel prefix, parallel suffix, and rout-
er-done. The router-done operation is simply a specialized logical OR reduction
that assists the processors in a protocol to determine whether Data Network com-
munications are complete. Reduction, parallel prefix, and parallel suffix may
combine the messages using any one of five operators: bitwise logical OR, bit-
wise logical XOR, signed maximum, signed integer addition, and unsigned
integer addition. (The only difference between signed and unsigned addition is
in the reporting of overflow.) The message type and desired combining operation
are encoded by address bits when writing the destination address to the
send first register.

As an example, every processor might write a 64-bit integer to the combine inter-
face, specifying signed integer addition reduction. Shortly after the last
participating processors write their input values, the signed sum is delivered to
every participating processor, along with an indication of whether overflow oc-
curred at any intermediate step.

As another example, every processor might write a 32-bit integer to the combine
interface, specifying signed maximum parallel prefix. Shortly after the last par-
ticipating processors write their input values, every participating processor
receives the largest among the values provided by itself and all lower-numbered
Processors.

The combine interface also supports segmented parallel prefix (and parallel suf-
fix) operations. Each combine unit contains a scan_start flag; when this flag
is 1, that NI is considered to begin a new segment for purposes of parallel prefix
operations. Such an NI will always receive the very value that was pushed.

Every participating processor must specify the same message type and combin-
ing operation. If, in the course of processing combine requests in order, the
Control Network encounters different combine requests at the same time, it
signals an error.

Global Operations

Global bit operations produce the logical OR of one bit from every participating
processor. There are three independent global operation units, one synchronous

THINKING MACHINES CONFIDENTIAL
October 1991

ine CM-5 Technical Summary

and two asynchronous, which may be used completely independently of each
other and of other Control Network functions. This makes them useful for signal-
ling conditions and exceptions.

The synchronous global unit is similar to the combine unit except that the opera-
tion is always logical OR reduction and each message consists of a single bit.
Processors may provide their values at any time; shortly after the last participat-
ing processors have written their input bits, the logical OR is delivered as a
single-bit message to every participating processor.

Each asynchronous global unit produces a new value any time the value of any
input is changed. Input values are continually transported, combined, and deliv-
ered throughout the Control Network without waiting for all processors to
participate. Processors may alter their input bits at any time. These units are best
used to detect the transition from 0 to 1 in any processor or to detect the transition
from 1 to 0 in all processors. (The NI will signal an interrupt, if enabled, whenev-
er a transition from O to 1 is observed.)

There are two asynchronous global units, one for the user and one for the supervi-
sor. Access to the supervisor asynchronous global unit is a privileged operation.

Synchronization

Both the synchronous global unit and the combine unit may be used to implement
barrier synchronization: if every processor writes a message and then waits for
the result, no processor will pass the barrier until every processor has reached the
barrier. The hardware implementation of this function provides extremely rapid
synchronization of thousands of processors at once. Note that the router-done
combine operation is designed specifically to support barrier synchronization
during a Data Network operation, so that no processor abandons its effort to re-
ceive messages until all processors have indicated that they are no longer sending
messages.

Flushing the Control Network

There is a special functional unit for clearing the intermediate state of combine
messages, which may be required if an error or task switch occurs in the middle
of a combine operation. A flush message behaves very much like a broadcast
message: shortly after one processor has sent such a message, all processors are

THINKING MACHINES CONFIDENTIAL
October 1991

Snene)

17.3

Chapter 17. Global Architecture 137

notified that the flush operation has completed. Access to the flush functional
unit is a privileged operation.

Error Handling

The Control Network is responsible for detecting certain kinds of communica-
tions errors, such as an attempt to specify different combining operations at the
same time. More important, it is responsible for distributing error signals
throughout the system. Hard error signals are collected from the Data Network
and all Network Interfaces; these error signals are combined by logical OR opera-
tions and the result is redistributed to every Network Interface.

The Data Network

Each Network Interface contains one Data Network functional unit. The first
32-bit chunk of a message is treated as a destination address; it must be followed
by one to five additional 32-bit chunks of data. This data is sent through the Data
Network and delivered to the receive-FIFO of the Network Interface at the speci-
fied destination address. Each message also bears a 4-bit tag, which is encoded
by address bits when writing the destination address to the send_£irst register.
The tag provides a cheap way to differentiate among a small number of message
types. The supervisor can reserve certain tags for its own use; any attempt by the
user to send a message with a reserved tag signals an error. The supervisor also
controls a 16-bit interrupt mask register; when a message arrives, an interrupt is
signalled to the destination processor if the mask bit corresponding to the mes-
sage’s tag value is 1.

A destination address may be physical or relative. A physical address specifies
a particular Network Interface that may be anywhere in the system and is not
checked for validity. Using a physical address is a privileged operation. A rela-
tive address is bounds-checked, passed through a translation table, and added to
a base register. A relative destination address is thus very much like a virtual
memory address: it provides to a user program the illusion of a contiguous ad-
dress space for the nodes running from 0 to one less than the number of
processing elements. Access to the bounds register, translation table, or base reg-
ister is a privileged operation; thus the supervisor can confine user messages
within a partition.

THINKING MACHINES CONFIDENTIAL
October 1991

Connection Machine CM-5 Technical Summary

2 R 2 oo e . o
v et e ot L R R L e S I 2 B R T i I s R 2 SRR AR VI PR RO AN AP

While programs may use an interrupt protocol to process received messages, data
parallel programs usually use a receiver-polls protocol in which all processors
participate. In the general case, each processor will have some number of mes-
sages to send (possibly none). Each processor alternates between pushing
outgoing messages onto its Data Network send-FIFO and checking its Data Net-
work receive-FIFO. If any attempt to send a message fails, that processor should
then check the receive-FIFO for incoming messages. Once a processor has sent
all its outgoing messages, it uses the Control Network combine unit to assert this
fact; it then alternates between receiving incoming messages and checking the
Control Network. When all processors have asserted that they are done sending
messages and all outstanding messages have been received, the Control Network
asserts the router_done signal to indicate to all the processors that the commu-
nications step is complete and they may proceed.

For task-switching purposes, the supervisor can put the Data Network into All
Fall Down (AFD) mode. Instead of trying to route messages to their intended des-
tinations, the Data Network drops each one into the nearest node. The advantage
of this strategy is that no node will receive more than a few hundred bytes of AFD
messages, even if they were all originally intended for a single destination. The
supervisor can then read them from the Data Network receive-FIFO and save
them in memory as part of the user task state, re-sending them when that user task
1s resumed.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 18

System Architecture
and Administration

18.1

The CM-5 system architecture provides for mulitiple task execution partitions, /O
devices, and fault detection and recovery. It supports a centralized system admin-
istration facility that gives the administrator flexibility to optimize the use of
system resources. All these tasks are handled through various extended capabili-
ties and privileged features of the Control Network and Data Network, with the
assistance of a third network, the Diagnostic Network.

The System Console

Administration is managed from a system console, a process executing on a con-
trol processor that has a Diagnostics Network interface. Large CM-5 systems will
typically have a dedicated processor for administration; on small CM-5 systems,
the administration process may run on a control processor that also has other
tasks.

The system console processor has a Diagnostics Network connection that allows
it to address the entire system. It is responsible for configuring the system on
power-up, for partitioning the system, and for managing the system as it changes
due to repartitioning and hardware failures. A database containing the status of
the overall system, kept up to date by the Diagnostics Network, helps it perform
these tasks.

THINKING MACHINES CONFIDENTIAL
October 1991 139

Connection Machine CM-5 Technical Summary

N O O S A Y ¥ TN

18.2 Allocation of Resources

The CM-5 system provides flexible allocation of computational resources. The
administrator can subset processing nodes into partitions; the administrator can
also allocate control processors to single or multiple /O devices.

Partitions

The set of computational and network resources in use at any given instant by a
single user task is called a partition. Each partition constitutes a complete task
execution system that may be used for timesharing, batch processing, or both.

The system administrator creates partitions dynamically, to best accommodate
the site’s workload. Some administrators may use a partitioning strategy that in-
volves changing the partitioning two or three times during the course of a day.
Other sites may stick with a single set of partitions for several days at a time.

An administrator might, for example, create three partitions on a system: one
dedicated to a production run of a single large application, a second one used for
timeshared program development by day and scheduled batch processing by
night, and a third small one dedicated to around-the-clock timeshared access.

All partitions are joined by the Control Network and Data Network into a single
integrated system. Resources can therefore be reallocated from one partition to
another when necessary. For example, all partitions might be joined to form one
giant partition in order to tackle a single giant application. As another example,
if processors were to fail in the partition dedicated to a production run, they could
be replaced (by reconfiguring the networks) with processors borrowed from
another partition. The production run could then be rolled back to a prior check-
point and resumed with minimal disruption, while the failed processors were
powered down and, at a convenient time, physically replaced.

/0

IO devices and interfaces, like processing nodes, reside in specific areas of the
network address space and are managed by control processors. The I/O resources
they control are available to processes running on any partition. The Data Net-
work transfers data between /O devices and partitions, while the Control

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 18. System Architecture and Administration 141
i R ;

18.3

5

Network is used by the operating system to monitor the transfers and signal
errors. ’

Partitions and Networks

From a system view, the Control Network and Data Network are designed to
provide

= the capability for flexible partitioning of computing resources
= the isolation of each partition’s network activity
= high throughput for all cases of data transfer

To see how this works, we look at the way in which the address space on these
two networks is managed.

Figure 30 shows a simplified view of address space management in the networks.
As this figure suggests, each of the superficially homogeneous networks is log-
ically split by hardware-supported, software-configured mechanisms so as to
devote a portion to each partition or I/O resource. Additional network capacity is
dedicated to carrying traffic between the various partitions and devices that make
up the system at any given time. Network resources allotted to one partition do
not overlap those associated with another. Moreover, traffic from one partition
to another, or between a partition and an /O device, consumes no network re-
sources belonging to any intervening partition. The network design thus
guarantees that network traffic within one partition cannot affect the behavior or
the performance of traffic in another partition. (The only exception occurs when
processors fail and are logically replaced for the nonce by more distant proces-
sors from another partition.) The design also allows the Data Network to
guarantee each processing node at least 5 Mbytes/sec of /O bandwidth, no matter
where it is in the network. However the nodes are divided into partitions, there
is always enough Data Network to serve each partition and enough left over to
guarantee the stated 1/O rate.

When a CM-5 system is first powered up, reset, and bootstrapped, the networks
form a single partition that spans the entire system. The operating system then
creates a temporary partition for initializing the nodes. It also initializes the /O
devices. After the startup procedures have been completed, administration soft-
ware establishes one or more operating partitions.

THINKING MACHINES CONFIDENTIAL
October 1991

142 Connection Machine CM-5 Technical Summary

s

Within each partition, the Network Interfaces are assigned virtual network
addresses starting at zero. User programs use virtual network addresses; they are
translated by hardware into physical network addresses wherever necessary, in
exactly the same way that a memory management unit translates virtual memory
addresses to physical memory addresses. Therefore, a user program need not
concern itself with the physical network addresses of the partition being used to
execute it.

VME HIPPI

Figure 30. Network support for multiple partitions.

The processing nodes of a CM-5 system can be configured into two or more partitions. Each partition
is assigned to a partition manager, a control processor that bears the responsibility for managing the
processes executing in that partition.The operating system configures the Control Network and Data
Network to match the partition structure. Each partition has a dedicated portion of each network suffi-
cient to provide that partition with the guaranteed minimum network bandwidth of 20 Mbytes/sec for
the Control Network and 5 Mbytes/sec per node for the Data Network, regardless of destination. No
matter how the partitions are configured, there is always additional network capacity for carrying data
between partitions and 1O devices or from one partition to another. Therefore, system-wide data traf-
fic does not interfere with or impede traffic that stays within a partition.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 18. System Architec

18.4

18.5

ture and Admi

tion 143

The translation of virtual network addresses includes protection checking that
prevents a user process from sending messages to destinations outside its parti-
tion. The supervisor can send messages from one partition to another; the
mechanism is identical except that it is not subject to the same protection checks
because for this purpose the supervisor uses absolute physical network addresses.

/O is coordinated by the operating system. User processes may transfer data to
and from I/O devices, or to and from other user processes (through the facility of
UNIX named pipes). In both cases, the operating system breaks up the data into
messages and sends the messages through the Data Network. If the two user pro-
cesses happen to be in the same partition, the message traffic will be confined to
that partition, not because of protection (the supervisor is responsible for sending
the messages in this case) but simply as a consequence of the structure of the
Data Network.

Resource Allocation and Management

CM-5 administration uses standard UNIX mechanisms to control the usage of var-
ious resources (disk usage, CPU usage, memory usage, and so on). These are
enhanced for the CM-5 when necessary: for instance, stack and heap management
can be set for the nodes in a partition as well as for the control processors.

Similarly, standard UNIX procedures govern the mounting and maintenance of
file systems.

Accounting, Monitoring, and Error Reporting

Standard UNIX kernel and device drivers collect information on system activity.
Accounting information is collected by ordinary UNIX tools, including NQS, and
is logged to a central facility on the system console.

Errors occurring during normal operation of the CM system are detected by the
operating system, collected and distributed by the Control Network.

Hard error signals are collected from the Data Network and from every Network
Interface. These signals are combined and distributed according to the current
partitioning. Errors detected within a partition are signaled to every Network

THINKING MACHINES CONFIDENTIAL
October 1991

144

18.6

18.7

Connection Machine CM-5 Technical Summary
e e

Interface in that partition, and are reported if appropriate to the user process
running at the time of the error. Errors detected in portions of the network outside
any partition may be optionally signaled into any designated partition.

The operating system notifies the system administrator of errors by sending a
message to the system console processor. It also logs error information in a cen-
tral system error log, from which it is available both to the administrator and to
diagnostic utilities. System failures and transient hardware errors are also logged
to central logging facilities on the system console.

Physical Monitoring Systems

The CM-5 system includes extensive power and temperature monitoring systems,
designed for early detection of problems that might cause physical damage to the
system. The monitoring system reports electronic danger signals, such as detec-
tion of an overheating cabinet, to the system console.

Fault Detection and Recovery

The CM-5 system is designed to provide high system availability. An important
aspect of this design is rapid diagnosis and smooth degradation in the face of
component failures. An integrated part of the administration system, the CM-5
diagnostic system is notable for its completeness, its speed, and the high degree
of fault isolation it provides. If a failure should occur in a running partition, the
administrator can interrogate all items in parallel, isolate the failing item, reparti-
tion around the failure, and have the partition up and running again quickly.

In addition, the CM-5 provides hardware and software support for checkpointing,
either at specified time intervals or by explicit program request. The goal is to
allow user applications to be restarted with full system capabilities, even in the
presence of failed components.

THINKING MACHINES CONFIDENTIAL
October 1991

The Diagnostic Network

The Diagnostic Network, which can probe and control the rest of the system,
handles diagnostics. This network is designed to be simple and reliable. It is not
particularly fast compared to the Control Network or Data Network, but testing
and diagnostic procedures are nevertheless speedy because the Diagnostics Net-
work can operate on all parts of the system in parallel.

The Diagnostic Library

The CM-5 diagnostic library includes a wide variety of tests. Particularly
noteworthy among these are the JTAG diagnostics. Based on the IEEE Standard
1149.1, these scan-based vectors both test chips with a very high level of fault
coverage and provide connectivity tests between chips (known as boundary scan
checking). JTAG diagnostics exist for all CM-5 components; they provide
extremely precise isolation of faults. This precision, in turn, allows rapid
identification and replacement of failed components, and provides the data
necessary for the administration database to exclude failed components when
configuring partitions.

Diagnostics are run by partition: thus, one partition can be running diagnostics
while others are running user programs. Within the partition, the administrator
can choose to run diagnostics on

= the entire partition
= a single subsystem, such as the Control Network

= 3 single type of component, such as the nodes

Parallel processing provides speed. In the last example, all nodes are tested in
parallel and report their status in parallel. In the first example, diagnostic tests on
all components of the partition are run in parallel. The Diagnostics Network can
address test vectors to the entire system or to any subsystem, such as a backplane,
that is believed to be broken. The status of multiple chips or boards of the same
type is read out in parallel, and components whose values differ from an expected
value are quickly isolated.

THINKING MACHINES CONFIDENTIAL
October 1991

146 Connection Machine CM-5 Techni

R

Diagnostics and Components

All CM-5 components are designed to be testable when in place in the system.
Nearly all data paths are protected by parity or full CRC. All dynamic memory
is protected by full ECC that corrects single-bit errors and detects double-bit
errors and DRAM chip failures. Transfers through the Control Network and Data
Network are checked by hardware, not merely end-to-end but on every link, so
that network component failures can be located precisely.

Failed components can be logically and electrically isolated from the rest of the
system under control of the Diagnostics Network. Surrounding components are
instructed to ignore any and all signals from failed components. The failed sec-
tion of the system can then independently execute diagnostic tests or be powered
down for repair or replacement, while the rest of the system continues normal
operation.

All major CM-5 system components use either redundant or spare component
schemes. If a processing node fails, then its local group of nodes is taken out of
service and can be logically replaced by any other such group from anywhere in
the system. All control processors are logically interchangeable; any control
processor can manage any partition, and in a pinch can manage more than one
at a time.

If a Control Network component fails, the consequences depend on the location
of the failure within the network. It may be necessary to give up the use of 1/64
of the Network Interfaces in that partition and whatever they are connected to.
In this case, spare processors may be logically mapped in to replace them. In
other cases, the failure implies the loss of one partition. For example, if a CM-5
system supports up to 8 different partitions, then a Control Network failure might
reduce the maximum number of partitions to 7—but the processing resources in
the failed partition could be reallocated to other partitions.

If a Data Network component fails, the consequences similarly depend on the
location of the failure. It may be necessary to give up the use of 1/64 of the Net-
work Interfaces in that partition and whatever they are connected to. In other
cases, no Network Interface need be abandoned; the total global bandwidth of the
Data Network is diminished, but never by more than about 6 percent for each
failure.

IO devices are also designed to tolerate failures; disk arrays, for example, are
designed to tolerate the failure of one or more disk units without loss of data. See
the descriptions of individual I/O devices for details.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 19

Input/Output Subsystem

The initial CM-5 I/O implementation includes an interface to the family of CM-2
peripherals over a Thinking Machines proprietary CMIO bus. The CMIO bus
peripherals are:

= DataVault. This is a high-performance disk-based mass storage system.
It allows applications running on a CM-5 to access as much as 60 gigabytes
of random access storage per DataVault at /O bandwidths of up to 25
Mbytes/sec.

= CM-HIPPL. This is an /O controller with 8 CMIO ports. It allows the CM-5
to exchange files with other high-performance systems over the ANSI
X3T9.3 High-Performance Parallel Interface (HIPPI). The multiple CMIO
ports allow CM-5 /O operations to take advantage of the HIPPI channel’s
exceptional bandwidth by transferring data over multiple CMIO buses in
parallel.

® CM-IOP. This is a 16-port /O controller for connection to SCSI-based
devices, such as cartridge tape drives.

The CM-5 also supports I/O for standard VMEbus and SBus devices. The VMEbus
and SBus interfaces allow the CM-5 to be connected to extemal control proces-
sors and peripheral device controllers that implement these popular buses. These
links make available to CM-5 applications a variety of other forms of I/O, includ-
ing framebuffers, tertiary storage devices, and FDDI networks.

To user applications, the CM-5 /O subsystem consists of a collection of virtual
/O devices, any of which can be home to an accessible file system. All other
details, such as file formatting and physical characteristics of the devices, are in-
visible to the application code. Implementation details for each I/O device are
hidden by a combination of hardware and software interface modules.

THINKING MACHINES CONFIDENTIAL
October 1991 147

19.1

G4 S NS Ny S S L e SRRES R I a3 .
R R I L A T TR TR T T T L X S AL S R SR TR RS

Connection Machine CM-5 Technical Summary

I/0 Architecture

Every /O device is connected to the CM-5 through the Data Network, with each
IO interface occupying a block of Data Network address space. By convention,
all VO devices occupy the upper region of that address space. (See Figure 31.) An
VO interface attaches to the Data Network through one or more Network Inter-
faces — the same type of interface that connects processing nodes to the Data
Network.

An important consideration in any /O scheme is matching the system’s internal
bandwidth to the I/O rates of peripheral devices attached to the system. Here, the
Data Network’s intrinsic scalability plays a critical role. The number of Network
Interfaces used to attach an I/O device to the Data Network determines how much
of the network’s bandwidth is made available to the device. The more ports an
interface has into the Data Network, the greater its potential bandwidth.

An VO interface with a single Network Interface provides a nominal bandwidth
of 20 Mbytes/sec dcross the Data Network. This capacity can easily accommo-
date low- and medium-speed /O devices. Interfaces for high-performance
peripherals are implemented with as many Network Interfaces as are needed to
support the transfer rates required by the particular device.

Data Network

Highest
Address

e e L

Partitions 1/0 Devices

Figure 31. CM-5 /O subsystem block diagram.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 19. Input/Output Subsystem 149

19.2

The diagram shown in Figure 32 illustrates this bandwidth scalability with two
sample interfaces. The SBus device, for example, could be expected to send and
receive files at about 5 Mbytes/sec. This is well within the capacity of a single
Network Interface on the Data Network. The CMIO interface, however, which
must support a transfer rate of up to 38 Mbytes/sec, is attached to two Network
Interfaces.

Each I/O interface requires an I/O control processor (IOCP), which supervises all
/O operations for that interface. The IOCP maintains one or more file systems for
the associated device and manages all requests for those file systems. The IOCP
is a control processor of the same type used for other CM-5 control processing
functions. Because it has the same capabilities as other control processors, the
IOCP may be used to play other roles as well as its file server functions.

The VMEDbus and SBus I/O interfaces are variants on this model. In VMEbus and
SBus /O subsystems, the file system processor and the other /O interface func-
tions are combined and reside within an external control processor. This control
processor can also serve as a partition manager and as a file server for peripheral
VO devices.

File System Environment

VO transactions execute within an enhanced UNIX environment, being modeled
as reads and writes to files. Extensions have been added to handle parallel trans-
fers, as well as to support much larger files than most UNIX implementations can
accommodate.

Each file system attached to the CM-5 has a single I/O control processor (IOCP)
that manages file system requests for its associated I/O device. All communica-
tion for the transfer takes place over the Data Network.

UNIX-style open and close requests go to the IOCP and so are independent of
the file system data storage implementation. Requests for other file system opera-
tions, such as reading and writing files, go to the IOCP as well, which then directs
the transfer of data. In these cases, data may be transferred in parallel directly
from the source to the destination, without passing through the IOCP. (See

Figure 33.)

THINKING MACHINES CONFIDENTIAL
October 1991

150

Data Network
e
~ N
SBus Interface CMIO Interface
ya ,
/ ' 7/
10CP
-an- =+ CM-5 Bulkhead
CMIO
SBus Bus
Computer
CM-HIPPI
SBA
DataVault
SBus
External SCsI
IOCP Interface CM-IOP
(CPU) controlier

Tertiary
Storage
System

Figure 32. CM-5 VO subsystem block diagram.

An VO device interface requires an YO control processor (IOCP), which maintains the
1O file system(s) for that device. For the CMIO interface, the IOCP resides in the CM-5
and is connected directly to the Data Network. In SBus and VMEbus interfaces, IOCP
functions reside in the external SBus or VMEbus computer. Each I/O interface also in-
cludes device control and data buffering logic.

An VO interface attaches to the Data Network via one or more Network Interfaces.
Multiple Network Interfaces are used to increase 'O bandwidth. The drawing indicates
this bandwidth difference by showing a wider attachment range for the CMIO interface

than for the SBus interface.

THINKING MACHINES CONFIDENTIAL

October 1991

Ch

N

Contgn s s ers 2 s N g S e 8 SRS LI PNt S et 23 et
DA S T AOMELEAPI N SO A MR A - L A

When an application program requires I/O services, the partition on which the
application is running initiates the file transfer with an appropriate read or write
command. It directs the /O request to the appropriate IOCP, which assumes con-
trol of the transfer.

For a read operation, the file is retrieved from the /O device, encapsulated in
message packets, and sent through the Data Network to the partition that re-
quested the data. File order information embedded in the message packets
enables the receiving partition to arrange the file data in correct sequence within
each processor. A write operation is similar but the flow of data is reversed.

Different versions of read and write are used, depending on whether an appli-
cation is running on a single processor or on a set of parallel processing nodes.
A serial application uses the conventional UNIX read and write commands.
Parallel applications use CM_read and CM_write.

Multiple IO devices may be logically ganged for striped operation as a single file
system. The CM-5 file system automatically routes data between requesting pro-
cessors and individual VO devices so that all striping is transparent. This same
facility makes file structure independent of the number of computational proces-
sors that read or write the data. All files consistently appear to be stored as if in
standard UNIX serial byte-stream order.

Data Network

N

I U

Processing Nodes PM I0CP /O Interface
~ ~ M~
Partition e}

Figure 33. Independent control and data paths through the Data Network.

THINKING MACHINES CONFIDENTIAL
October 1991

152

Connection Machine CM-5 Technical S

19.3 1/O Interfaces and Device Impiementation

This section describes the key elements of the initial CM-5 /O subsystem imple-
mentation: the CMIO bus peripherals (DataVault and CM-HIPPI), and the two
standard bus interfaces, (SVME and SBA).

DataVauit

The DataVault system is available in various storage capacities, ranging from
20 to 60 gigabytes. Each of these configurations is capable of transferring data
at a sustained rate of 25 Mbytes/sec.

The basic DataVault storage configuration, used in the 20-gigabyte system for
example, employs an array of 42 5/,-inch Winchester disk drives, of which 39
are active and 3 are spares. (See Figure 34.) Of the 39 active drives, 32 hold data
and 7 hold error correction code (ECC) bits. The ECC bits allow the DataVault to
correct single-bit errors and to flag multiple-bit errors in each 32-bit value
retrieved from the disks.

The double-capacity DataVault configuration (40 or 60 gigabytes) has 84 drives,
of which 64 hold data, 14 hold ECC bits, and 6 are spares.

In all DataVault configurations, each 32-bit data word is spread across 39 data
and ECC drives, one bit per drive. Each 64-bit data chunk received from the
CMIO bus is first split into two 32-bit words. After verifying parity from the /O
bus, the DataVault controller adds 7 ECC bits and stores the resulting 39 bits on
39 individual drives. Subsequent failure of any one of the 39 drives does not
impair reading of the data, since the ECC data allows any single-bit error to be
detected and corrected for every data word. The ECC data permits 100% recov-
ery of the contents of a failed disk, allowing a new copy of this data to be
reconstructed and written onto a spare disk. Once this recovery is complete, the
data base is healed.

THINKING MACHINES CONFIDENTIAL
October 1991

Chapter 19. Input/Output Subsystem

Micro-
controller

to/from CMIO Bus
CM-5

Figure 34. Inside the DataVault.

The File Server. All /O transactions in a DataVault I/O interface are controlled
by an IOCP running a file server process. The file server manages the DataVault’s
UNIX-based hierarchical directory structure, handling the allocation of physical
disk space and matching file names and logical read/write requests to the physi-
cal locations of data on the DataVault disks.

Internally, the file server represents a file as a series of extents, or areas of contig-
uous disk surface. Each extent starts at a logical offset within the file, has a
physical disk address, and has a length. This representation allows a file to have
arbitrarily large physically contiguous blocks of the disks holding data for
logically contiguous segments of the file. As a result, positioning of the read/
write heads is more efficient, yielding faster file transfer.

Writing and Reading Data. Data transfers move information between a CM-5
partition and the DataVault. The principal events involved in writing a file to the
DataVault are summarized below. Reading a file from the DataVault into Con-
nection Machine memory is very similar but the flow of data is reversed.

THINKING MACHINES CONFIDENTIAL
October 1991

154

Connection Machine CM-5 Technical Summary

A DataVault write operation is typically initiated by a partition manager, which
issues a write command to the IOCP that is acting as the DataVault’s file server.
When the file server receives the logical file request, it translates the request into
a series of physical disk addresses. Assuming that the request parameters satisfy
the necessary validity checks (for example, that there is sufficient space), the file
server returns a message to the requesting partition indicating the DataVault’s
availability. If the request cannot be fulfilled, the file server returns a failure re-
port instead.

Data from the partition’s memory is moved, via the Data Network, to I/O buffers
in the CMIO interface and then across the CMIO bus to the DataVault. A micro-
controller within the DataVault controls the distribution of data onto the disk
array. State machines at each end of the CMIO bus ensure reliable transfer of large
volumes of data across the bus. Parity checking is performed on all data as it is
received from the CMIO bus to ensure data integrity.

Data being read from the DataVault follows the same path as for writing, but in
reverse order: across the CMIO bus, through the CMIO interface, and across the
Data Network. The data coming off the disks is checked by ECC circuits. Single-
bit errors are corrected and logged and the data is written with parity to the CMIO
bus. As with write operations, parity checking is performed on data received
from the CMIO bus.

Data Protection. The transfer status may indicate that a single disk drive is fail-
ing and that the ECC was required to correct data. This will most often be
discovered when the error logs are checked. At that point, the faulty drive can be
physically replaced with an external spare. If the site does not currently have any
spares available in storage, other than the three (or six) spare drives contained in
the DataVault, one of these internal spares can be logically substituted for the
failing drive.

This logical substitution uses a software procedure, called sparing, that recon-
structs the corrupted data, using the ECC circuits to correct the failing bit, and
stores it on one of the spare drives provided for the purpose. The sparing program
redirects the path followed by the faulty bit from the failing drive to the spare.
Regeneration of this data takes two minutes per gigabyte, after which the data is
again protected against the failure of another drive.

When the failed drive is physically replaced, the files are reconstructed using the
same technique as is used when sparing the failed drive.

THINKING MACHINES CONFIDENTIAL
October 1991

oeprit, o
s B ke e

Chapter 19. Input/Output Subsystem 155

wressaonse eusiy : s ¢ - PR L 22y
B S O P L T T D I IR R R PPN PRI A SRR

CM-HIPPI! Interface

The CM-HIPPI is a bus interface controller that is designed to transfer data at high
speed between the ANSI draft-standard HIPPI bus and one or more CMIO buses.
It is primarily intended to link the CM-5 and its DataVault to other supercomputer
systems via two simplex HIPPI buses, one carrying incoming data and the other
carrying outgoing data. Each HIPPI bus has a bandwidth of 100 Mbytes/sec.

The CM-HIPPI is a complete, integrated system. It contains a Sun-4/300 CPU, two
disk drives, a VMEbus, HIPPI input and output interface modules, and up to eight
HIPPI-to-CMIO interface modules. This architecture supports full duplex com-
munication between a 32-bit HIPPI source/destination and multiple CMIO buses
at a peak bandwidth of 200 Mbytes/sec.

The HIPPI controller CPU receives CM file system commands from a CM control
processor over an Ethernet cable. A file server process running on the Sun CPU
interprets these commands and controls the CM-HIPPI I/O operations accordingly.
The disk drives store duplicates of the system software, the file server, and hard-
ware diagnostic programs.

Together, the HIPPI input and output modules provide a full-duplex I/O interface
between a pair of external HIPPI buses and a pair of internal buses, one each for
incoming data and for outgoing data. These internal buses are also connected to
the eight HIPPI-to-CMIO interface modules via a set of multiplexing switches.
These switches provide the means for establishing and breaking links between
specific CMIO buses and the HIPPI input and output ports.

Each HIPPI-to-CMIO module provides a separate path between a CMIO bus and
the internal HIPPI buses, as controlled by the switch matrix. In this way, up
to eight CMIO buses can be connected to the HIPPI input and output ports
in parallel. Depending on the transfer rates of the various CMIO bus
devices involved, the peak aggregate I/O bandwidth of this configuration is
200 Mbytes/sec.

Standard Protocol I/O Interfaces

Two CM-5 standard bus interfaces, called SVME and SBA, enable the CM-5 oper-
ating system to access external VMEbus or SBus computers and their associated
I/O resources using standard communications protocols. These /O paths link the
CM-5 to external networks of computing and I/O server resources.

THINKING MACHINES CONFIDENTIAL
October 1991

156

Connection Machine CM-5 Technical Summary

They are connected by cable to a VMEbus- or SBus-based external control pro-
cessor, which manages the file system and other /O functions. An adapter board,
installed in the control processor, provides an interface between the VMEbus and
the CM-5 Data Network (and Control Network).

The SBus interface consists of an adapter board, called the SBA, that plugs into
the SBus of an external control processor. (See Figure 32.) This adapter board is
connected by cable to an interface module, called the control processor interface
(CPI), that is plugged into the CM-5 Data Network and Control Network. The
external control processor, running file server code, serves as the file system pro-
cessor. This arrangement allows applications running on the CM-5 to exploit any
1/O resources, such as a tape storage system, that are attached to the external con-
trol processor’s SBus.

In a similar fashion, the VMEbus interface uses a VME adapter board, called the
SVME, to connect a control processor’s VMEbus to the CM-5 Data Network and
Control Network. Apart from this difference, the VMEbus interface employs the
same design features as the SBus interface.

THINKING MACHINES CONFIDENTIAL
October 1991

