-

.

The Connection Machine System | C M 5
3 . » ‘ - . ;x

. » * .

NI Programmer’s
Handbook

NI Version 2.2
(CM-5E)

n Machine System

NI Programmer’s
Handbook

NI Version 2.2 (CM-5E),
June 1994

‘i{’hmkmgMaclmm Corpor:

First printing, June 1994

L L e e e e T e T e e e R S e S S S st

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines reserves the right to make changes to any
product described herein.

Although the information in this document has been reviewed and is believed to be reliable, Thinking Machines
Corporation assumes no liability for errors in this document. Thinking Machines does not assume any liability
arising from the application or use of any information or product described herein.

o v s sk ok ok S Y v Sk o o vk e e 9k ke v S dhe v ok 3 ok vl Yo e vie 2k v o o vk v e e ok ok ok s e e s s sk ok e e e e ok ek de e e ek e ek ke ek e de e de e e ek de ke ke

Connection Machine® is a registered trademark of Thinking Machines Corporation.
CM, CM-2, CM-200, CM-5, and CM-5e are trademarks of Thinking Machines Corporation.
CM-5 Scale 3, and DataVault are trademarks of Thinking Machines Corporation.
CMosT, CMAX, and Prism are trademarks of Thinking Machines Corporation.

c*®isa registered trademark of Thinking Machines Corporation.

Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.
CMHFB, CMMD, CMSSL, and CMX11 are trademarks of Thinking Machines Corporation.
CMpview is a trademark of Thinking Machines. Corporation.

Scalable Computing (SC) is a trademark of Thinking Machines Corporation.

Scalable Disk Array (SDA) is a trademark of Thinking Machines Corporation.

Thinking Machines® isa registered trademark of Thinking Machines Corporation.
SPARC and SPARCstation are trademarks of SPARC International, Inc.

Sun, Sun-4, and Sun Workstation are trademarks of Sun Microsystems, Inc.

UNIX is a trademark of UNIX System Laboratories, Inc.

The X Window System is a trademark of the Massachusetts Institute of Technology.

Copyright © 1994 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation

245 First Street

Cambridge, Massachusetts 02142-1264
(617) 234-1000

Contents

O XV
About ThisManualttt it ittt iiiiainteneeens xvii -

CUStOMET SUPPOIL .« oottt tt ittt ittt ittt e iaet s st resnesesnnsss xxi

Chapter 1 The CM-5 Network Interfacet 3

1.1 The CM-5 System: Nodes and Networksovine. 4

1.1.1 The CM-S5Networksoviviiiiiiiiiniiiiiiineeenns 4

TheDataNetworkiiiiiiiiniininnn.n. 4

The Control Networkccoviiiiiiiinniane, 5

For the Curious: The Diagnostic Network 5

1.1.2 ProcessingNodesovvviiiiiiiniiiieerinnireneenns 5

1.1.3 Partitions and Partition Managers........................ 6

1.14 ProgrammingModelscoiiiiiiiiiiiiiiiiie, 7

User ProgrammingModelccoovinn.. 7

OS Programming Modelooiiiia., 7

B I 1 T30 O 1 8

13 The NI RegiSterS .. o.ovvvriiiienerreerasnnereeenrannenneansenns 8

1.3.1 For the Curious: The NI Base Address 10

1.32 NIRegister TYpescoviiininiinernnnensrenreneensns 11

1.3.3 NI Register and Field Namesco0uvaee. 12

1.3.4 NI Register and Field Programming Constants 13

Finding the Constant YouNeed 13

Register Constantscoviiiviinenceneanaess 13

Field Constantscoeeuiiiineriinennnnennnnnn 14

NI Base Address Constantovvvirininanennns 14

13.5 C Macros Useful for Writing NI Code 14

Finding the C Macro YouNeed 15

BT 8173 o ¢ - O 15

1.5 NI RSO .. iitiii i iiie i iiitetctte e ienaesonnsseeasaeennass 16

1.6 Using This Manual Effectivelyc.ooiiiiiiiiiiiinnt. 16

1.7 WARNING: Experiment at Your Own Risk 17

NI Version 2.2 (CM-5SE), June 1994
Copyright © 1994 Thinking Machines Corporation m

Chapter 2
2.1
2.2

2.3

24

2.5

2.6

2.7

2.8
29

Chapter 3
3.1
32

NI Programmer’s Handbook
O s

R

A Generic Network Interface 19
Network Interface Registersoiiiiiiiiiiiriiiinnennn., 19
Network Messagesovviiiiiniiiniiiiinineeeneeenescensnnn. 20
2.2.1 Performance Note — Using Doubleword Operations 21
Sendinga Messagecoviiiniiiitiiiiiiiiiiiiii i, 21
231 MessageDiscardingcoiiiiiiiiiiiiiiiiiian.., 22
23.2 Auxiliary Informationoiiiiiiiiiiiiiiiia, 22
2.3.3 Calculating ni_interface_send first Addresses 23
Send First Address Constantscccvvvveeneeeenn. 23

2.3.4 CMacros for WritingaMessageooiviiinnnnn, 24
Receiving a MeSsageoovviiiiiiiiiiiiiieeernnrerenann. 25
2.4.1 C Macros for Readinga Messageovvevvnnnnnnn. 25
2.4.2 Detecting Arrival of a Messageccvieiinninnrennn. 26
2.4.3 Simulating the Arrivalof a Messagecovvvuun... 26
The Status Registercoviiiiiii ittt ittt iiinnananan, 27
251 The“Send OK” Flagcvviviiiinniinennnnnnnnnnnns 27
2.5.2 The “Send Space” Field and “Send Empty” Flag 28
2.5.3 The “Receive OK” Flag and “Receive Length” Fields 28
2.5.4 Reading the Status Register Fields 28
Abstaining from an Interface — The Control Register 29
2.6.1 Effectof AbstainFlagscooviiviiiiiniianan... 30
2.6.2 Combine Interface Abstain Flags 30
2.6.3 Reading and Writing the Abstain Flag 30
2.6.4 Use the Abstain Flags Safelyc.o.... 31
2.6.5 Beinga GoodNeighborcoviiiviiiiiaa... 31
The Private Registeroooiiiiiiii ittt i 32
2.7.1 Message Receipt Interrupts — The Rec Interrupt Enable Flag 32
2.7.2 Clearing the Interface’s Send FIFO — The Lock Flag 33
2.7.3 Grabbing the Receive FIFO Registers — The Rec Stop Flag. 33
2.7.4 Blocking Unsent Broadcast Messages — The Send Stop Flag 34
2.7.5 Detecting a Full Receive FIFO — The Receive Full Flag 34
Using a Generic Network Interfacecovvvvveniiiininnn.., 34
From the Generic to the Specificco i, 35
TheDataNetworko, 37
The Data Network Register Interfacesccoooa... 38
Data Network Messagesvvveieeneninenrrenseeiocannnnens, 40

3.2.1 Short and Long Data Network Messages 40

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Contents

3.2.2 Long Data Network Message Interrupt 41

3.2.3 Data Network Message-Sending Conventions 41

3.3 Data Network Addressingccovviiviiniiiiiniiiiniinneenns 41
3.3.1 Physical and Relative AddressingModes 42

3.4 Sending and Receiving Messagesc.cooviiiiiiiiniinnaen.. 43
3.4.1 Sending Short Messagesooviiiiiiiiiiininenn.. 44
Auxiliary Information for Short Messages 44

342 Sending Long Messagesccoviviiniiiiiiinneann. 45

Send First Long Address Format 45

Auxiliary Information for Long Messages 46

343 Receiving Messagesvveetiiinnnreenaninnrnnnnenns 46

3.5 The Status RegiSters ... vviiniin ittt ettt eeaens 47
3.5.1 The Standard Status Registers....................oovnn. 47

3.5.2 The “Status All” Alternate Status Register 48

3.5.3 The “Status Pop” Registercooviiiiiinan, 49

354 Message Tags . ooviiin it e e e 50
User/Supervisor Tag Reservation 50

Tag Fieldsand Interrupts, 50

Using CMOST Commands

to Set Up NI Interrupt Handlers 53

Tag Fields and the Message-Counting Registers 53

Message Count Disablingoovvvu.., 54

Negative Message Count Interrupts 54

3.5.5 The Send and Receive State Fields 55

3.5.6 The Network-Done Flagii.s. 56

3.6 The Private Registerottt ittt e e iinene e 56
37 AllFallDown Modeovviiiiiiniiiiiiiiiiiiiiiiiieeeennn, 57
3.7.1 Triggering AllFallDownModecooua.s. 57

3.7.2 Detecting All Fall Down Mode Messages 57

3.7.3 Resending All Fall Down Mode Messages 58
3.8 Interrupt Enable Flagscoviiiiiieiiiiiiinnannnnnn.. ceel. 59
3.9 Data Network Usage Note: Receive before YouSend 59
310 ExXamplesoiiiiitiii i i e e, 60
Sending and Receiving a Messagecoviiivinneennnnnnnnn, 60

Sending and Receiving Long Messagesc...oonn. 61
Interrupt-Driven Message Retrieval 63

Sending via LDR and RDR Simultaneously 64

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation v

Chapter 4 The Control Networkooiiiiiiiiiiininn... 65

4.1 TheBroadcastInterfaceccoiiiiiiiiiiiiiiiiiiiii., 66
4.1.1 Broadcast Register Interfacescooiiiiiiiiainne, 66
412 Broadcast Messagesceviiiriiiiiiiianiinaaannen 67
4.1.3 Sending Broadcast MeSSagesooitiniiniinrriinanan. 68
4.1.4 Auxiliary Informationl 69
4.1.5 Receiving Broadcast Messagesc.ovevvevvnnnnn.. 69
4.1.6 The Broadcast Status Registeroovion. 70
4.1.7 Abstaining from the Broadcast Interface 71
4.1.8 The Broadcast Private Registercvvviiiiennn. 71
4.1.9 Broadcast Interface Examplesooiiviiiiiiat, 72

Sending and Receiving a Messagec.uunn. 72

42 TheCombineInterfaceccoiiiiiiiiiii i, 73
4.2.1 The Combine Register Interface0.t. 74
422 Combine MesSagesvcvvevnrrvrnreennsrocnaenansas 75
4.2.3 Sending Combine Messagesvvviiiiinsnreenennnnn, 75
424 Auxiliary Informationcc.coiiiiiiiiiiiiiiiiiiee, 76
4.2.5 Legal Combiner and Pattern Valuest 77
4.2.6 Receiving Combine Messagecovvvevvrennnns... 78
4,27 The Combine Status Registercoviviiiiinnnn, 78
4.2.8 Scanning (Parallel Prefix) and Reduction Operations 79

Scanning with Segmentscoooiiina 80

Addition Scan Overflowcooiiiiiiiiinn., 80

4.29 Network-Done Messagesoovviiineennieinnnsnnnnns 81
How Network-Done Works...cceeviinievnenn. 82

...And Why You Should Carecc.ovvvienn.. 83

4.2.10 Abstaining from the Combine Interface 83
4.2.11 The Combine Private Registercoovviiivnannns 85
Empty Receive FIFO Interruptooovvevnennn. .. 85

Clearing the Combine Send FIFO 86

4.2.12 Combine Interface Examples.................cun... 87
Sending and Receiving a Combine Message 87

Executing Scans and Reduction Scans 88

' Executing a Network-Done Operation 89

43 TheGlobalInterfacecoiviiiiiiiii i i, 90
43.1 The Three Global Register Interfaces 91
4.3.2 The Synchronous Global Interface 91

Sending and Receiving Messagesccovuenn.. 92
Abstaining from Synchronous Global Messages 92
Synchronous Global Receive Interrupt 93

Supervisor Operations for the Synchronous Global Interface .. 93

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Contents

4.3.3 The Asynchronous Global Interface 93
Sending and Receiving Messages 94

Asynchronous Global Receive Interrupt 95

4.3.4 The Supervisor Asynchronous Global Interface 95
Sending and Receiving Messagescovvvunen. 95

Supervisor Asynchronous Global Receive Interrupt 95

4.3.5 Global Interface Examples..............coviiiiia... 96

Using the Synchronous Global Interface 96

Using the Asynchronous Global Interface 96

Chapter 5 NIInterruptsoiiiniiiiiiiiiiiiiiiiiiiieannnnn. 97
5.1 Interrupt Classes .. cvovn it ittt iieit ettt 97
5.3.1 DisablingBusErrors ...ttt 100

5.2 Interrupt Pathways i 100
521 RedInterrupts ...o.ovvviiiiniiiiiniiiiiiiieiiiaanenn.. 101

522 OrangeInterruptsooiiiiiiie i iinneennnn.. 102

523 Yellow Interrupts ...ttt 102

524 GreenInterruptsooiiiiiiiii i i 103

5.3 The Interrupt Cause and Clear Registers 104
54 InterruptLevels ...t i 105
5.5 BroadcastInterrupts.... ... e e 106
5.6 Recovering from Interruptsovitiii it i 107
Chapter 6 Other NI Interfaces and Features 109
6.1 The “Hodgepodge” Registeroviviiiiiiiiniineninnnnn. 109
6.2 Node Address RegiStersottt etnn ettt iiineneaannn 110
6.3 NI Chunk Table and Address Translation 110
6.3.1 Node Address Translationooiiiina.., 110

6.3.2 Chunk Sizes and Address Allocation 112

6.3.3 Modifying the Chunk Table, 114

6.4 Combine Interface Flush o i, 114
6.5 The NITImMErottt ettt 115
6.6 The Bad Address Register.......ccovtineriiiiriiin i, 116
6.7 NI Partition Configurationcciiiiiiiinrreennnnnnnnn, 117
6.8 Disabling the Control Networkooiiiiiiiiiiiieneneinn, 118
6.9 NISerial Numberottt 118
6.10 NI RESEL ..ottt e et et et e 119

NI Version 2.2 (CM-5E), June 1994 .
Copyright © 1994 Thinking Machines Corporation vil

Chapter 7
7.1

7.2
7.3
7.4

75
7.6

Chapter 8
8.1

8.2

A R R

Writing NI Programsc.oiiiniiiiiiiiirineenennannanns 121
Transferring Data between Nodesand the PM 121
7.1.1 Sending Messages from the PMtoNodes 122
7.1.2 Sending Messages from Nodestothe PM 123
7.1.3 Signalingthe PMot iiiiiiiiiiiiiiiiiiiiiiennen 124
7.1.4 For the Curious: Using the Data Network 124
Setting the Abstain Flagsc.cvviiiin i iiiiiiiiiiininannnssn 125
Broadcast Enablingcoiiiiiiiiiiii ittt 126
NI Program StrUCIUIEvvinvetttiiniiiesseeersaassosenennnns 127
74.1 Thecmna.hHeaderFileciviiiiienn... 127
7.4.2 Partition ManagerCodeooviiiiiiiiiiiien, 127
743 NodeCodecoiiiiiiiinriiiiennnsensencannnaneenns 128
The Node’s “Main” Routinecovvvvvennnnennsn. 128
744 InterfaceCodeovvriii ittt iiiiitenenenns 129
ASample PIogramccoivieiiiiinennetereeronnneeenccnnsas 129
Compiling and Executing an NI Programcooeeeeennnnnn. 134
7.6.1 A Simple Compiling Scriptcviiiiiiiiiiniea... 135
7.6.2 Compiling and Running the Program 136
7.6.3 On-Line Code Examplescciiiiiiiiieiianenennns 136
NI Programming Issuescciiiiiiiiiiiinn.... 137
Performance Hintsoiiiiiiiiiiiiiiiiiiiiiiennnnnnnnnns 137
8.1.1 NI Register Operation Timescvvvvrrennneennnn.. 137
8.1.2 Reading and Writing Registers with Doubleword Values 138
Example: LDR Send/Receivecovveennnnn.. 138
8.1.3 Use Message Discarding for Efficiency 140
8.1.4 Set the Abstain Flags Once and Forget Them 140
Potential Programming Trapsand Snaresouae... 141
8.2.1 Address Calculation on the Partition Manager 141
8.2.2 Pay Attention to Data Network Addresses 141
8.2.3 “Middle” Data Network Interface Restrictions 142
8.2.4 Make Sure Doubleword Data Is Doubleword Aligned 142
8.2.5 Order Is Important in Combine Messages 142
8.2.6 Broadcast and Combine Interface Conflicts 142
8.2.7 BroadcastEnmablingcoiiiiviiriiiinninnnnn. 143
8.2.8 Combine Interface Pipelining Restriction 143
8.2.9 Restriction on Scan Segment StartFlag 143
8.2.10 Be Careful When Altering Abstain Flags 144
8.2.11 Simulating Receipt of Messagesvvvvnnnnn.... 144
NI Version 2.2 (CM-5E), June 1994

Copyright © 1994 Thinking Machines Corporation

Contents

8.2 Potential Programming Traps and Snares (cont’d)
8.2.12 Message Too Long Interrupt Restriction
8.2.13 AllFall Down Restrictioncvieviieninnnnnnn..,

Appendixes

Appendix A NI Registers, Fields,and Constants

Al NI REGISIEIS .ot ivtineereierernsertnneceanaroensesannnnenns
A1l Global and System Registersccoovviiiiinennnn

A.12 Network Interface Registersc.ovvivvvienen...
Combined Data Network Interface (DR)

Left Data Network Interface LDR)

Right Data Network Interface (RDR)

Broadcast Interface (BC)ooviiviiinnna...

Supervisor Broadcast Interface (SBC)

Combine Interface (COM)coiiviinnn....

A.2 NI Message Length Limit Constantscvvevnnnnnn..,

A.3 Send First Register Addressesccovviiiiiiiiiiiinnnnnn..
Data Network (DR/LDR/RDR) Auxiliary Data Fields ..
Broadcast (BC/SBC) Auxiliary Data Fields
Combine Auxiliary DataFields

A.4 Send First Long (Data Network) Register Addresses

AS5 NIFields. ..ottt ittt ieiiatetteeaennnennnns
A5.1 Combined Data Network (DR) Fields
The ni_dr_status Register

The ni_dr_status long Register

The ni_dr_status_{all/pop} Registers

The ni_dr_private Register

A.5.2 Left Data Network Interface (LDR) Fields
The ni_ldr_status Register

The ni_ldr_status_long Register

The ni_ldr_status_{all/pop} Registers

The ni_ldr_private Register

A.S5.3 Right Data Network Interface (RDR) Fields
The ni_rdr_status Register

The ni_rdr_status_long Register

The ni_rdr_status_{all/pop} Registers

The ni_rdr_private Register

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

NI Programmer’s Handboo

A.5.4 Broadcast Interface (BC) Fieldsooo0t 159
The ni_bc_status Register00t 159
The ni_bec_private Registercouunn. 160
The ni_bc_control Registerccvvvinnnn, 160
A.5.5 Supervisor Broadcast Interface (SBC) Fields 160
The ni_sbe_status Register 160
The ni_sbec_private Register0. 160
The ni_sbc_control Register 161
A.5.6 Combine Interface (COM) Fields.............c.oovenn... 161
The ni_com_status Register 161
The ni_com private Register 161
The ni_com_control Register 162
AS57 GlobalInterface Fieldsccvviivniiiiinnnennn, 162
The ni_sync_global Register, 162
The ni_async_global Register 162
The ni_asyne_sup_global Register 162
A58 Interrupt Register Fieldscooiiiiiiiins, 162
The ni_interrupt_cause Register 163
The ni_interrupt_cause_green Register 163
The ni_interrupt_{clear,set} Registers 164
The ni_interrupt_{clear,set}_green Registers 164
A.5.9 Other Register Fields and Constants 165
The ni_interrupt_level Register e 165
The ni_hodgepodge Registercovvnnn. 165
The ni_bad_address Register 166
Appendix B NIInterrupts.............cooiiiiiiiiiiiiiiiiiiiiiiiiiiine, 167
Bl RedInterruptscciviiiiiiiiiii ittt ittt i iieineeinnrnans 168
B.1.1 InternalFault Red Interrupt ... 168
B.1.2 CN Checksum Error,
DR Checksum Error Red Interrupt ... 168
B.13 CNHardError...........oovvvvnnnn Red Interrupt ... 169
B.14 MCErmor,CMUError Red Interrupt ... 169
B.15 BCInterruptRed Red Interrupt ... 170
B2 Orange INnterruptsoovviiiniiiiiiiii it iinnneonneeanns 170
B.21 TimerInterrupto... Orange Interrupt 170
B.2.2 Router Done Complete Orange Interrupt 171
B.23 BCiInterruptOrange Orange Interrupt 171
B3 YellowIntermupts.....cooiiiiinin it iiiet i etneeerenneennnnenns 171
B.3.1 BClInterrupt Yellow Yellow Interrupt . 172
B.3.2 Bad Memory Accessceavnne-. Yellow Interrupt . 172

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Contents
Y

B.3.3 COM Abstain Changed Yellow Interrupt . 172
B.3.4 DR CountNegativeu.n Yellow Interrupt . 173
B35 BCorCOMCollision Yellow Interrupt . 173
B.3.6 Bad Relative Address Yellow Interrupt . 174
B.3.7 MessageTooLongovvuunn Yellow Interrupt.. 174
B4 GreenInterrupts ...t i 175
B4.1 BCInterruptGreen Green Interrupt . 175
B42 DRReceiveTagcovvvvvvvnnnnn Green Interrupt . 176
B.43 DRReceive AllFallDown Green Interrupt . 176
B.4.4 Interface (DR, BC, COM, etc.) Receive OK
................................... Green Interrupt . 176
B.4.5 Global Rec (Sync, Global, or Supervisor) Green Interrupt . 177
B4.6 ComReceive Empty Green Interrupt . 177
B47 ScanOverflowc...... Green Interrupt . 178
B.4.8 DP Error (Vector Unit Error) Green Interrupt . 178

B.4.9 Send FIFO Empty (Data Network Only) Green Interrupt . 179
B.4.10 LDR/RDR Tag, LDR/RDR User Tag ... Green Interrupt . 179

B BUS EITOIS .ttt ittt ittt ittt ettt 180
B.5.1 Bad Memory Access Bus Error 180
Appendix C Programming Toolsccooiiiiiiiiiiiinnennn.n, 183
C.1 Generic Variables and Macroscovviiiinnrnenenrnnnennnn. 183
C.2 DataNetwork Constants and Macrosevevninenrnennnnnn. 184
Send and Receive Register Macrosccvvinvennnn. 184

Status Register Macroscoeveenninnernesnennnecnnaas 185

Message Length Limitoooi i, 186

C.3 Broadcast Interface Constants and Macroscocvveveenennnn. 186
Send and Receive Register Macrosoovvinnnnnn.. 186

Status Register Macrosovviecnnnnneennncnnnnnnns 186

Abstain Register Macroscviviieirnnnennnnnecnnenns 187

Message Length Limitcoooiiiiiiiiiiinnennen. 187

C.4 Combine Interface Constants and MacrosSco.cvvevrvnvernneenn. 188
Send and Receive Register Macrosc0vunnn.. 188

Message Length Limitcoooiiiiiiiiiiiiiitt, 189

Segment Start Register Macrosoooiiiiiiinn., 189

Status Register Macroscccevuiiinenrnrnennnannnn,. 189

Abstain Register Macrosccvviiiiriiuninrrnnnrnnnenas 190

C.5 Global Interface Constants and Macroscvovevrvervnenneeenens 190
Synchronous Global Register Macros 190
Asynchronous Global Register Macrosooovvveeeen.. 191

NI Version 2.2 (CM-5E), June 1994)
Copyright © 1994 Thinking Machines Corporation x

Appendix D

Appendix E

Appendix F
E1
E2
E3

Appendix G
G.1
G.2
G3
G4
G.5

Appendix H

H.1
H.2

H3

NI Programmer’s Handbook
e A R T g

Predefined Low-Lev_el NIConstantscooiviiveiennnnnn 193
CMOS_signalManPagecoiiiiiiiiiie, 201
NI Accessor Examplesc.oiiiiiiiiiiiiiiiiiin 203
Reading and Writing Registerscoiiiiiiiiiiiinenn 203
Reading and Writing Subfields 204
Constructing Send-First Addressescoiiiiiiiiiiiiiiin, 205
Data Network Send-First Macrosvvviiieiineeninneneannns 205
Broadcast Interface Send-First Macrosoovvevivnrvennn.. 206
Combine Interface Send-First Macroscoovviviennrnnnns 206
Sample NIPrograms............cooiiiiiiiiniinnininennneenns 207
Data Network Test . .ovvviiirirr it iriietrneneenennnsnenenenss 207
Data Network Doubleword Messages Test 214
Broadcast Interface Test o .o vvv it iniiiiii e erernrrenenensnenes 217
Combine Interface Testvvivrvieinrnenrnrneneneoreennnennnns 220
Global Network Test ..o vit ettt it iititneenseernsnnsnnenss 224
CMNAHeaderFilesooiiiiiiiiiiii it iiiinnnenns 227
What Is CMIN A ? ittt ittt reritrtenersnnaesonsnenssneenses 227
CMNAHeader FIlesvvvtiiriirirnenrneenneenonsennnneesos 228
H.2.1 The Main CMNA Header File: em/cmna.h 229
H.2.2 The User Header File: cmsys/cmna.h 229
H.2.3 The Supervisor Header File: cmsys/cmna_sup.h 229
H.2.4 The NI Interface Header File: ni_interface.h 230
H.2.5 The NI Macros Header File: ni_macros.h 230
H.2.6 The NI Constants Header Files:
nil_constants.h,ni_defines.h................... 230
CMNA FUDCHONS ot vvvtteterieeenensoonoeeenenssoessssensonsas 231
H3.1 CMNA VEISION ..vvvvitiniieinnienennrneenennsancnsns 231
H32 Activity Functionscovviiiiiiinnnnnnnnnnn. 231
H.3.3 DRInterface FUNCHONS .. .ot viviinienenenenrnenenenns 232
H34 ILDRInterface FUNCHIONSoovveiinieinenrnenenenennn 232
H.3.5 RDRInterface FUNCHIONS . .o v oot it ieeiececteeenennnns 233
H.3.6 BClInterface FURCHIONSovvvivivnnernnenrnnsonnnnns 234
H3.7 SBCInterface Functionsc.uvvevvvenrenneennses 235
NI Version 2.2 (CM-5E), June 1994

Copyright © 1994 Thinking Machines Corporation

Contents

H.3.8 COM Interface Functionsvvvviiennnnnnn. 237
H.3.9 Global Interface Functionsoovivvevvnnnnn... 237
Appendix I NI Chip Version2.2Changesccoiviiiiennnnn 239
1.1 Long Data Network Messagesccovvviinnennennerennnnns 239
12 New Data Network Status Interfacecooviiiiiiee, 240
1.3 New Data Network Tag Interrupt Interfacecoovvviin. 240
1.4 Non-Compatible Change to Broadcast Interface 240
15 NewInterrupts R R PR 241
1.6 New Data Network Interrupt Enable Flags 241
L7 NewBusError Conditionscoviitiiiiiiiinininneiinnnns 241
1.8 Disabling Bus EITorsc.ciiiiiiiiiiiiininiireeiennnnns 242
1.9 Manually Triggering Interruptsccvviiiiiiiiiinnenennnn. 242
110 Global Interface Context-Switchingccovviiiin s 242
111 New Hodgepodge RegisterFieldsoooiiiiiiiiiine, 242
Index
Programming Tools Indexccoiiiiiiiiniiierenronernnssneennonesens 245
Concepts INdeXiiitiiiiiiitiiirinttertieeenacnnisseennennssnanens 255
NI Memory Map
NIMeEmMOry Mapcooitiiiittiiiitirie et ereneeanneannneeananennnns 269

NI Version 2.2 (CM-5E), June 1994

Copyright © 1994 Thinking Machines Corporation

Figures

Figure 1. The CM-5 system: Processing nodes linked by Data and Control Networks. .. 4
Figure 2. The components of a typical processingnode.c.oeveeveannn, 5
Figure 3. A partition of nodes and its partition manager.c.oeveeceannnn 6
Figure 4. NI provides access to features of the Data Network and Control Network. 8
Figure 5. The NI registers are mapped into user and supervisor memory areas. 9
Figure 6. Sample virtual memory maps showing location of NI memory region. 10
Figure 7. NI registers associated with each interface.ttt 20
Figure 8. The three interfaces of the Data Network: DR, LDR, and RDR. 37
Figure 9. NI registers associated with each of the Data Network interfaces. 39
Figure 10. Relative addressing of nodesinapartition.ccovveenn. 42
Figure 11, Data Networkmessage formatcoiuiiiiiitiiiinenenasans 43
Figure 12. Tag value interrupt paths for Data Network messagesc..ccc.. 52
Figure 13. The three interfaces of the Control Network: BC, COM, and global. 65
Figure 14. NI registers associated with each of the broadcast interfaces. 67
Figure 15. NI registers associated with the combine interface. 74
Figure 16. NI registers associated with the global interface. 90
Figure 17. The possible pathways for colored interrupts.c.civevennonn. 100
Figure 18. Translation from relative addresses to physical addresses. 111
Figure 19. The chunk table is used to map contiguous relative addresses
onto discontiguous physical addresses.o it 113
Figure 20. The partition manager stands apart from the partition it manages. 121
Figure 21. Relationship between CMNA and Nl header files. 228
NI Version 2.2 (CM-5E), June 1994 XV

Copyright © 1994 Thinking Machines Corporation

About This Manual

Objectives of This Manual

This manual describes in detail the design, features, and correct use of the
Network Interface (NI) chip of the Connection Machine CM-5 system. This
description is at a level sufficient for low-level CM-5 coders to make full use of
the NI's features. Both user- and supervisor-level information is included, as well
as numerous programming examples written in the C programming language.

Intended Audience

This manual is intended for use by knowledgeable CM-5 programmers. While
it contains some overview information, this document is a reference manual, not
a tutorial. This manual should be used in conjunction with other programming
guides and with assistance from Thinking Machines Corporation representatives.

Revision Information

This manual is a consolidation of two previously published manuals:
Programming the NI and NI Systems Programming.

This manual replaces both of the earlier books. This manual contains the same
information and examples, and reflects the most recent revision of the NI chip,
used in the CM-5E version of the Connection Machine system node hardware.

NI Version 2.2 (CM-5E), June 1994 ' xvii
Copyright © 1994 Thinking Machines Corporation :

NI Systems Programming

HESE

Organization of This Manual

Chapter 1 The Network Interface Chip
An overview of the NI chip’s purpose in the CM-5 hardware,
and a description of the important features of the chip.

Chapter 2 A Generic Network Interface
A description of common features found in most of the NI net-
work interfaces.

Chapter 3 The Data Network
The registers and features of the three Data Network interfaces.

Chapter 4 The Control Network
The registers and features of the three Control Network inter-
faces (broadcast, combine, and global).

Chapter 5 NI Interrupts
A description of the various interrupt classes of the NI, and of
the mechanisms used to detect and signal NI interrupts.

Chapter 6 Other NI Interfaces and Features
A description of NI registers and features not covered by the
preceding chapters.

Chapter 7 NI Programming Issues
A summary of important programming and performance consid-
erations that you should keep in mind while writing code that
manipulates the NL

Appendix A NI Registers, Fields, and Constants
A summary of the registers and fields of the NI chip and of the
programming constants that can be used to locate them.

Appendix B NI Interrupts
A description of each of the possible NI interrupts, including
what they indicate and how to recover from them.

Appendix C Programming Tools
A list of NI macros and constants defined by the CMNA soft-
ware layer.

xviii NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

About This Manual

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Appendix I

Predefined Low-Level NI Constants

A list of all low-level programming constants defined by the
files cmsys/ni_constants.h and cmsys/ni_defines.h,
with the symbols grouped by register and field.

CMOS_signal Man Page
The UNIX manual page for the CMOS_signal system call.

NI Accessor Examples
A set of simple C code examples of routines that read and write
NI registers and perform other useful functions.

Sample NI Programs
C code examples demonstrating the NI features described in the
chapters of this manual.

CMNA Header Files
Describes the content and relationship between the various
header files that define the CM Network Accessor interface.

NI Chip Version 2.2 Changes
A quick-reference list of the changes to the NI chip as of Version
2.2, with references into the main text of this manual.

NI Memory Map
A two-sided memory map of the NI registers and fields.

Related Documents

These documents are part of the Connection Machine documentation set:

» Connection Machine CM-5 Technical Summary, November 1993
® VU Programmer’s Handbook, CMOST Version 7.2 August 1993

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Notation Conventions

NI Systems Programming

The table below displays the notation conventions observed in this manual.

Convention Meaning

bold typewriter

italics

typewriter

% bold typewriter
regular typewriter

UNIX and CM System Software commands, com-
mand options, and filenames, when they appear
embedded in text. Also, syntax statements and pro-
gramming language elements, such as keywords,
operators, and function names, when they appear
embedded in text.

Argument names and placeholders in function and
command formats.

Code examples and code fragments.

In interactive examples, user input is shown in
bold typewriter and system output is shown in
regular typewriter font.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Customer Support

Thinking Machines Customer Support encourages customers to report er-
rors in Connection Machine operation and to suggest improvements in our
products.

When reporting an error, please provide as much information as possible to
help us identify and correct the problem. A code example that failed to exe-
cute, a session transcript, the record of a backtrace, or other such
information can greatly reduce the time it takes Thinking Machines to re-
spond to the report.

If your site has an applications engineer or a local site coordinator, please
contact that person directly for support. Otherwise, please contact Thinking
Machines’ home office customer support staff:

Internet
Electronic Mail: customer-support@think.com
uucp
Electronic Mail: ames ! think!customer-support
U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264
Telephone: (617) 234-4000

Version 1.0, January 1993
Copyright © 1993 Thinking Machines Corporation xxi

Chapter 1
The CM-5 Network Interface

First, a word to the wise. You’re reading this manual for one of two reasons:

® You absolutely, positively must write programs that manipulate the net-
work hardware of the CM-5 at the lowest possible level.

" You’ve heard about a CM-5 component called the “Network Interface,”
and think it would be interesting to write a program that manipulates it.

If it’s the latter, we strongly suggest that you consider using a higher-level pro-
gramming method instead. Writing code at the level described in this manual
means taking direct control of the Network Interface chip, the part of the CM-5
hardware that manages the machine’s internal communications networks. This
isn’t something that you should be doing unless you have no alternative.

Also, be aware that code that directly accesses the Network Interface chip will
not be supported in future software and hardware releases — your code may re-
quire extensive modification to run. For essential code you should use the CMMD
software interface instead. CMMD gives you nearly the same level of access tO
the CM-5 hardware, but provides it through a standard software interface that will
be easily portable to future releases. (For more information, see the CMMD
Users Guide.)

With this warning out of the way, we’ll assume that you’re reading this manual
for the first reason given above, and show you how to make use of the Network
Interface (NI) chip. This manual presents the software tools that you need to pro-
gram the NI and provides code examples throughout that show you how to do
simple network operations on the CM-5.

NI Version 2.2 (CM-5E), June 1994 1
Copyright © 1994 Thinking Machines Corporation

1.1

1.1.1

NI Programmer s Handbook

The CM-5 System: Nodes and Networks

The Network Interface chip, or NI, manages the internal communications net-
works of the CM-5. Because the main focus of this manual is the Network
Interface, it makes sense to start with an overview of the NI’s location and func-
tion within the CM-5 system.

R ITITITY e e
Networks § [r— =
Processing =
Nodes P PP P||P|LP{|P{P|P P

Figure 1. The CM-5 system: Processing nodes, plus Data and Control Networks.

The CM-5 contains a large number of processing nodes, which perform the arith-
metic computations involved in a CM-5 program. The processing nodes are
linked together by two internal communications networks, the Data Network and
the Control Network. (See Figure 1.) The two CM-5 networks are similar in de-
sign; both are scalable, high-speed data communications networks. However, the
two networks have distinct intents and purposes. The Data Network is used for
high-volume exchange of data between nodes. The Control Network is used to
control and synchronize the operations of the nodes.

The CM-5 Networks

The Data Network

The Data Network is a high-speed, high-bandwidth network designed to handle
the simultaneous node-to-node transmission of thousands of messages. The Data
Network is composed of two halves, the left interface and the right interface,
both of which are connected to all processing nodes. The left and right interfaces
can be used either independently or together as the combined Data Network.

Terminology Note: This combination of the left and right halves of the Data
Network is sometimes called the “middle” interface by NI programmers.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 1. The CM-5 Network Interface

The Control Network

The Control Network is used for control tasks that require the joint cooperation
of all nodes. It provides three separate functions:

» The broadcast interface distributes a single numeric value to every node.
It consists of two subinterfaces: a user broadcast interface and a supervi-
sor broadcast interface.

= The combine interface receives a single value from each node, combines
the values arithmetically or logically, and then distributes the combined
result to all nodes.

® The global interface handles global synchronization of the nodes. It con-
sists of a number of distinct interfaces for synchronous and asynchronous
messaging by user and supervisor (OS) code.

For the Curious: The Diagnostic Network

There is also a third major CM-5 network, the Diagnostic Network, used by the
system manager to configure the CM-5 hardware and to diagnose hardware prob-
lems. However, because the NI chip is not used to access it, the Diagnostic
Network is not discussed further in this manual.

1.1.2 Processing Nodes

Each processing node contains a RISC microprocessor, a memory subsystem,
and a Network Interface (NI) chip, linked together in a bus arrangement:

64-bit bus

-<——— Data Network
Memory Subsystem
-<——= Control Network

Figure 2. The components of a typical processing node.

NI Version 2.2 (CM-5E), June 1994 3
Copyright © 1994 Thinking Machines Corporation

1.1.3

NI Programmer s Handboo

For the Curious: In the current implementation, the microprocessor is a SPARC
chip; it executes both user and operating system (OS) code. The memory subsys-
tem consists of DRAM memory controlled either by a single memory controller
or by a set of four vector units (if your CM-5 has the vector unit option installed).

Partitions and Partition Managers

The processing nodes are grouped by software into partitions, with each partition
monitored by a partition manager (PM). (See Figure 3.) Each partition can be as
small as 32 nodes, or as large as the entire machine. The partitioning is controlled
by the system administrator, who can create and alter partitions as needed.

CM
User

PM P PI/P||PP} - --}|P

Partition Manager Nodes

Figure 3. A partition of nodes and its partition manager.

The partition manager (PM) contains a RISC CPU and connecting hardware that
allows the PM to interact with other computers and with users on terminals.
Thus, the PM is the “gateway” by which a programmer gains access to the pro-
cessing nodes of the CM-5 and instructs the CM-5 to execute a program.

The PM is attached to the Data and Control Networks, and can communicate
with its partition of processing nodes by sending and receiving messages via its
own NI chip. Programs written for the CM-5 normally include two separate files
of code, one for the PM and one for the nodes.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 1. The CM-5 Network Interface

T T et e T T T L s Y ek

1.1.4 Programming Models

User Programming Model

From a user’s point of view, the CM-5 is the single partition of nodes associated
with the PM that compiles and executes the user’s code. CM-5 programs often
compile into two separate sets of code, one for the PM and one for the nodes.

The PM and the nodes typically operate in a data parallel style: the nodes execute
identical programs simultaneously, and the PM controls which function the nodes
will execute next. (For more information on program structure, see Chapter 7.)

The PM typically controls program flow, and handles all external interactions
(communicating with the user by keyboard input and screen output, exchanging
files and data with other computing systems over external networks, etc.).

The nodes typically operate in an event-driven loop, waiting for instructions
from the PM about which section of code to execute next.

OS Programming Model

From an OS point of view, the CM-5 is a set of partitions, each of which has a
number of associated processes that can be swapped in.

The CM-5 OS manages the execution and swapping of processes within parti-
tions, as well as any exchange of data that takes place between partitions (for
example, when a user program needs to read or write data from an I/O device).

Under the CMOST operating system shipped with the CM-5, each PM runs a full
and complete UNIX-based operating system, while each of the nodes runs a
small kernel of OS code that is optimized for computation and communication.
It is this kernel of code that provides the event-driven dispatch loop described in
the user programming model above.

NI Version 2.2 (CM-5E), June 1994 5
Copyright © 1994 Thinking Machines Corporation

1.2

1.3

NI Programmer s Handbook

The NI Chip

The NI chip is located between the RISC microprocessor and the two CM-5 net-
works. Each network provides a specific set of network interfaces, and the role
of the Network Interface chip is to make those interfaces available to the node
microprocessor, and thereby to user and OS programs.

Left interface

Data <
/ Network Right Interface
\ Broadcast Interface
Control < Combine Interface

Network
Global interface

Figure 4. NI provides access to Data Network and Control Network.

When the microprocessor directs the NI to send a message via one of the net-
works, the NI handles the dispatching of the message, and collects any replies
from the networks. The NI uses send FIFOs (queues) to hold outgoing messages
until they can be sent, and receive FIFOs to hold incoming messages until the
microprocessor can read them.

The NI Registers

The NI chip is register-based. Its network functions are controlled entirely by
reading and writing NI registers. Access to these registers is provided by
memory-mapping — the NI registers are mapped into the microprocessor’s
memory address space. Thus, from a programmer’s point of view the NI appears
as a region of processor memory with some unique properties.

The microprocessor can either directly use the registers of the NI chip to send and
receive messages, or it can use indirect methods, such as having the NI signal an
interrupt whenever a message arrives. (Interrupts can also be “broadcast” from
one NI chip to all other NIs in a partition.) Control of the NI is therefore based
on register operations, interrupts, and (in extreme cases) NI Resets, which are
described later in this chapter.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 1. The CM-5 Network Interface
ke R 523 BT

The NI registers occupy a virtual memory region 512 Kbytes long. However, the
NI registers are mapped into microprocessor memory twice, as two separate
virtual memory areas: the user area and the supervisor area. (See Figure 5.)

Processor Memory

7 Offset (in hex):
R ¥
= - 0x100000
Supervisor Area
0x080000

User Area
T g 0 (base address)

Figure 5. The NI registers are mapped into user and supervisor memory areas.

The user area occupies 512 Kbytes of virtual memory, starting at the base address
of the NI memory region (see Section 1.3.1). The supervisor area occupies the
512 Kbytes immediately following the user area.

The user and supervisor areas contain the same registers at the same offsets, but
the hardware mapping is designed so that the NI registers for supervisor features
are accessible only from the supervisor area. Any attempt to access supervisor
registers from the user area signals a Bus Error. (A programmer sees this as a
segmentation violation.) Thus, when this manual speaks of “the supervisor” per-
forming an operation, or of an NI feature that is “restricted to the supervisor,” this
simply means that only programs with access to the NI supervisor area can per-
form the described operation or use the described feature.

In general, it is the responsibility of the operating system to make sure that user
programs don’t have access to the NI supervisor area. Typically, this is done by
using virtual address mapping to place the supervisor area in a memory region
that user programs cannot access.

Note: Some locations in the NI memory region don’t correspond to registers.
The effect of reading or writing these locations is not defined, but is never of
practical use to programmers. Typically, a Bus Error (see Section 1.4) is signaled.

NI Version 2.2 (CM-SE), June 1994 7
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook
T S S i+

1.3.1 For the Curious: The NI Base Address

The physical base address of the entire NI region (both user and supervisor areas)
is fixed at a value determined for each node by hardware. The actual physical
address chosen by this method is the same for each node throughout the CM-5
hardware. (Essentially, the physical address is set by two input pins on the NI
chip, which are permanently wired either high or low for each circuit board).

The NI region’s virtual base address, on the other hand, depends on the way the
operating system sets up the virtual memory map. The operating system is free
to map the NI memory regions to any virtual memory location, so long as both
user and supervisor areas remain contiguous and user programs are prevented
from accessing the supervisor area.

Node Virtual Memory Maps

(without vector units) (with vector units installed)
hex address hex address
RESERVED . . "RESERVED . -
- , - 0XF880 0000 1 0xF880 0000
OS Kernel O0XF800 0000 ~__OSKernel : OXF800 0000

. -localstack ¥ ~ focalstack ¥.

| 0xE000 0000

0XEO0Q 0000

24 0xC000 0000

0x4000 0000 0x4000 0000

. plobal heap ¢ 0x2010 0000 ‘globalheap # 0%x2010 0000
supervisor area supervisor area
- -~ Nispace - - - -| %2008 0000 |- N gpage - - - - 0x2008 0000
r are r
user area 0%2000 0000 _userarea 0X2000 0000
Jocal heap 1
user variables
user program,

0x0000 2000 0x0000 2000

0x0000 0000 0x0000 0000

Figure 6. Sample virtual memory maps showing location of NI memory region.

8 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 1. The CM-5 Network Interface

1.3.2

The CMOST operating system distributed with the CM-5 maps the two NI re-
gions into a contiguous 1024 Kbyte block, as described in the preceding section.
Figure 6 shows two possible CMOST virtual memory maps, one without the vec-
tor units, and one with the vector units installed.

NI Register Types

There are three basic types of NI registers:

FIFO Registers — These “registers” are actually the entry and exit points of
send and receive FIFOs (First-In-First-Outs, or queues) associated with the
CM-5 networks. Writing a value to a FIFO register pushes that value into the
send FIFO of the corresponding network. Likewise, reading the value of a
FIFO register pops a value from the receive FIFO of the network.

Status Registers — These registers are composed of one-bit flags and multi-
bit fields, which indicate the state of the NI and its message FIFOs. For
example, most networks have two important status flags, send_ok and
rec_ok, which indicate the current status of messages being sent or received.

Control Registers — These are status registers containing flags that not only
report the state of the NI, but also allow you to control it. Altering the value
of a control register’s flags has a corresponding effect on the state of the NI.
For example, each of the Control interfaces has one or more abstain flags that
control whether or not the NI participates in the transactions of the network.

The chapters of this manual that describe each of the networks also describe the
NI registers that are associated with them, and describe the programming tools
you can use to access these registers.

Implementation Note: Some NI queue registers are mapped onto more than one
memory location, and thus appear as regions of memory. Nevertheless, these re-
gions of memory are still considered to be a single “register.” The specific
memory location that you use in writing to these registers gives the NI additional
information about the kinds of network transactions it should perform. (More on
this in Section 2.3.2.)

Performance Note: In terms of cycles, reading and writing NI registers is mid-
way between reading the registers of the microprocessor and reading a value
directly from processor memory (that is, not from cache memory). See Section
8.1.1 for details on the time taken to read and write NI registers.

NI Version 2.2 (CM-5E), June 1994 9
Copyright © 1994 Thinking Machines Corporation

NI Programmer’s Handbook

R

Important: Some registers are less than 32 bits long, even though they occupy
a 32-bit memory location. When such a register is read, the value of the unused
bits is undefined. However, when writing to the register, the unused bits should
be written with either the same value that was last read from them, or with zeros.
The effect of violating this restriction is not defined, but in some cases serious
failures can result. (In at least one case, failing to zero out the unused bits causes
your partition of nodes to crash. See Section 8.2.2.)

1.3.3 NI Register and Field Names
In this manual, the names of NI registers and register fields are given in the form
ni_interface_purpose

The interface part of the name identifies the network interface, and is typically
one of the following abbreviations:

dr Data Network (left and right) be broadcast interface

1dr left interface com combine interface

rdr right interface global global interface
The purpose describes the purpose of the register or field. Some common exam-
ples are ’

send Register used to send a network message.

recv Register used to receieve a message.

send_ok Flag indicating that a message was sent successfully.

rec_ok Flag indicating that a message has been received.

For conciseness, this manual sometimes refers to a register or field by its purpose
alone. However, this is done only when the intended reference is unambiguous.

The appendixes of this manual include a memory map and a series of lists that
exactly specify each register’s location and the position and length of any sub-
fields it may have.

10 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

1.3.4 NI Register and Field Programming Constants

There are a number of predefined programming constants that you can use to
refer to NI registers and fields in your code.

These constants are defined in such a way that they can be used for both user and
supervisor code; the names of the register and field constants are the same for
both the user and supervisor areas, and are typically based on the names of the
registers and fields themselves.

To get access to these predefined constants, include the header file cmna .h:
#include <cm/cmna.h>

Note: Assembly-language coders may wish to load a more specific file of
constants. See the discussion of the CMNA header files in Appendix H.

Finding the Constant You Need

Appendix A of this manual lists the names of the NI registers, fields, and flags,
and gives the corresponding constants to use in accessing them. Appendix D pro-
vides a complete list of the available low-level register and field constants. The
types of predefined constants are described below.

Register Constants

The constants for registers specify the actual address of the register, and there is
one such constant for each NI register. To get the name of the constant that corre-
sponds to a register, uppercase the name of the register, and add the suffix “_a”.
For example, the constant for the register ni_dr_status is NI_DR_STATUS_A.

Note for C Programmers: The register constants are unsigned pointer values.
To use them in C code, you must cast them to type (unsigned *):

unsigned *ni_dr_status = ((unsigned *) NI_DR_STATUS_A);

If you don’t perform this casting step, the C compiler by default treats the
constants as integers, causing warnings about “illegal pointer operations.”

NI Version 2.2 (CM-5E), June 1994 11
Copyright © 1994 Thinking Machines Corporation

1.3.5

12

NI Programmer s Handbook

Field Constants

The constants for NI fields provide the starting bit position and length of each
field. However, since a number of NI registers have some basic fields and flags
in common, the name of the appropriate constant isn’t always directly derivable
from the name of the field or flag in question. In many cases, you can obtain the
constant name by uppercasing the field or flag name, and adding the suffix “_p”
for the starting bit position, or “_1” for the field length. '

For example, the ni_dr_status register has a field named ni_dr_rec_tag.
This field has two corresponding constants, NI_DR_REC_TAG_P and
NI_DR_REC_TAG_L, that give, respectively, the position and length of the field.

However, there is also a flag called ni_send_ok in the same register. Since most
of the networks have a send_ok flag, there is a single pair of constants, named
NI_SEND_OK_P and NI_SEND_OK_L, which apply to all the networks.

NI Base Address Constant

There is also a predefined constant that you can use to refer to the base address
of the NI memory region (either user or supervisor) that you are using:

NI_BASE — Base address of NI memory region (user or supervisor).

C Macros Useful for Writing NI Code

You can write NI code using any programming method that allows you to read
and write memory addresses. However, the examples in this manual are written
in the C programming language because there are a large number of existing C
macros that you can use to streamline your code. These programming tools fall
into two categories:

= Accessor macros that read or write the value of a specified register, flag,
or field. (The SEND_OK and REC_OK macros are good examples.)

* Queue macros that take a number of arguments related to the sending of
a single data value, and handle the necessary protocol for sending it.

These tools are introduced individually in the chapters that follow, and there is
a complete list of them in Appendix C.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 1. The CM-5 Network Interface

Finding the C Macro You Need

The predefined C macros typically have names based on the registers and fields
they manipulate. For example, most network interfaces have an NI register
named ni_interface_status that contains the ni_interface_send_ok and
ni_network_rec_ok status flags. There is a single pair of macros, SEND_OK ()
and REC_OK (), that is used to get the send_ok and rec_ok flag for any of the
interfaces that have a ni_interface_status register.

Note: To get access to these predefined macros, your program must #include
the header file cmna.h. (See Chapter 7 for more information.)

1.4 Interrupts

In addition to using registers to control the NI, you can also instruct the NI to
signal an interrupt to the microprocessor under certain conditions, such as the
arrival of a network message via a specific interface. These kinds of interrupts
can be used to trigger calls to routines of your program (for example, handlers
that automate the receipt of network messages). The NI also signals interrupts for
fatal sofware/hardware errors and other important events.

The NI can signal five different classes of interrupt: Red, Orange, Yellow, Green,
and Bus Errors. Red interrupts and Bus Errors tend to be the most severe, and
Green interrupts the least severe.

The five interrupt classes can be briefly summarized as follows:
® Red interrupts indicate a hardware failure, or message checksum error.
* Orange interrupts indicate events that the operating system must handle.
* Yellow interrupts are triggered by fatal errors in user or OS software.

* Green interrupts are triggered by important non-fatal events that user or
OS software may want to handle specially.

® Bus Errors indicate address errors in user or OS software that prevent a
bus transaction from being completed.

The five types of interrupts, along with the registers used for enabling and con-
trolling them, are described in more detail in Chapter 5.

NI Version 2.2 (CM-5E), June 1994 13
Copyright © 1994 Thinking Machines Corporation

1.5

1.6

14

NI Programmer s Handbook

In this manual, the names of interrupts are given as abbreviations based on the
names of the register fields used to detect and clear them. For example, the Green
interrupt that is triggered by the arrival of a broadcast message is: bc rec ok.

NI Reset

Under certain conditions, the NI chip is completely reset. Among other things,
this causes a number of its registers to be set to known states. The causes and
effects of an NI Reset are described in Section 6.10.

Using This Manual Effectively

The first few chapters of this manual are mostly explanatory, describing the net-
works of the CM-5 in detail and showing you how to use the NI programming
tools associated with them. While these network-specific chapters present some
brief code examples, none of these examples constitutes a complete NI program
in and of itself. There’s a fair amount of information that you simply have to
digest before a complete NI program makes sense.

Beginning CM-5 programmers should read through the “generic” network de-
scription in Chapter 2, and then read both of the network-specific chapters (3 and
4), before turning to the complete sample program presented in Chapter 7.

Experienced CM-5 programmers should read through Chapter 2 and skim chap-
ters 3 and 4 to get a sense of how the networks operate, and then proceed to the
sample program in Chapter 7 to see how NI programs are structured.

Chapters 5 and 6 describe features of the NI that are primarily of interest to sys-
tems programmers (things such as interrupts and other OS-related operations).

Whatever your level of experience, read Chapter 8. It presents a number of im-
portant performance strategies and potential sources of programming errors that
you should know about.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 1. The CM-5 Network Interface

PO P EALPRN A I B A T i LA E T TP

1.7 WARNING: Experiment at Your Own Risk

In writing code that manipulates the NI chip, you are taking control of the lowest
level of the CM-5’s hardware. That kind of power does not come without corre-
sponding responsibilities and hazards.

This manual sets strict protocols for reading and writing NI registers. When you
use NI features in the manner described here, you should encounter no problems
other than an occasional error message.

If you step outside the bounds, however, the results can be as nasty as they are
unpredictable. In some cases reading and writing NI registers incorrectly can
even cause your partition of processing nodes to crash, potentially disrupting
other timesharing users of the CM-5.

So remember, if you choose to experiment with the NI, you have been warned!

NI Version 2.2 (CM-5E), June 1994 15
Copyright © 1994 Thinking Machines Corporation

Chapter 2

A Generic Network Interface

2.1

Each network interface of the Data and Control Networks has a corresponding
register interface — a set of NI registers that are used to send and receive mes-
sages through the network. These register interfaces typically have a number of
features in common. This chapter presents a “generic” network interface that de-
scribes these common features. With one exception (the global interface), all
network interfaces conform to the model described here — individual variations
for each network interface are discuessed in subsequent chapters.

Important: The interface presented in this chapter is an abstract description.
There is no actual “generic network interface” for the NI chip — merely a set of
similar but independent network interfaces.

Network Interface Registers

For each interface that follows the generic model, the following NI registers are
used to communicate with that interface:

ni_interface_send_ first Used to send first value of a message.
ni_interface_send Used to send the rest of the message.
ni_interface_recv Used to receive a message.
ni_interface_status Status register.
ni_interface_control Control register.
ni_interface_private Supervisor control register.

The purpose and use of each of these registers and subfields is described in the
sections below. Figure 7 (on the next page) contains a memory map showing the
relative locations of these registers in the user and supervisor memory areas.

NI Version 2.2 (CM-5E), June 1994 17
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

i
NI Virtual Memory Area Interface Registers
(user or supervisor) hex
hex offset Sample Register Set: offget
(physical) D*| ni_x status_long
D} ni_rdr_send first_long{ 0x19000 b+ | nix status ail 0x60
L — YT i’ = s = 0x50
; ; D*| ni_x_status_pop
(physical) 0x40
Dr ni_ldr_send first_long - 0%11000 ni_x_send 0x30
(relative) 0x10000 ni_x_recv 020
(physical)
D} ni_dr_send first_long 4 0%9000 T * ni_x_control 0x10
(relative) 0x8000 x| ni_x private 0x08
ni_rdr_send first 0X7000 N ni_x_status 0300
ni_ldr_gend first 0x6000 1 Control Network only
ni_com_send first 0X5000 D Data Network only
ni_sbc_send_first 04000 * registers with subfields
ni_bc_send first 0x3000 hex offset
¥ 0x2000 \ :Z 0xE00
N : 0%C00
- ni_dr_send first 0X1000 . com xR 00
:© INTERFACE : : SR 222 0x800
REGISTERS - L b 0x600
T T 0x02007 | 0x200
GLOBAL/SYSTEM - -
- REGISTERS
LRl R 00000

Figure 7. NI registers associated with each interface.

2.2 Network Messages

18

A network message is a sequence of word-length (32-bit) values. Its content, for-
mat, and length limit depend on the network. Each message is accompanied by
a small amount of quxiliary information (such as the length of the message, a tag
field, etc.). The format of this auxiliary data is also network-dependent.

Sending a message involves writing its sequence of values to the send FIFO regis-
ter of a network interface. As the message is written, the individual values are
collected in the send FIFO. When the entire message has been written to the FIRO,
the NI begins trying to send the message through the network. Similarly, receiv-

ing a message involves reading its values from the receive FIFO register of the
network interface.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

A TRt el

Chapter 2.

2.2.1

2.3

x RO

B T S N T S T T P

A Generic Network Interface

‘When a message arrives from one of the networks, the NI accumulates the mes-
sage in the corresponding receive FIFO. When the entire message has been
received, the NI sets a status flag, indicating a message is available. Your pro-
gram can then read the individual words of the message from the receive FIFO.

The send and receive FIFOs have a length limit (typically 5 words in the current
implementation). Longer messages must be divided into packets at the sending
node and combined at the receiving node. If you attempt to send a message that
is longer than the total length of the FIFO (that is, a message that couldn’t possi-
bly fit, even if the FIFO was empty) a Bus Error is signaled.

Performance Note — Using Doubleword Operations

You can use doubleword (64-bit) operations to read and write FIFO registers. A
doubleword read or write has exactly the same effect as the corresponding pair
of single-word (32-bit) reads or writes, but the doubleword operation is usually
more efficient. (See Section 8.1.2.) From here on, where this manual refers to a
“value” of a message, you should understand this as referring to either a single-
or doubleword value. Any network-specific restrictions that prevent the use of
doubleword operations are noted in the descriptions of the networks themselves.

Sending a Message

For each network interface, there is a single send FIFO, but two FIFO registers
are used to access it in the process of sending a message:

ni_interface_send_first Used for first value of a message.
ni_interface_send Used for the rest of the message.

Important: There is a specific protocol to follow in sending a message:

® The first value of a message must be written to the send_first FIFO
register. This tells the NI that a message is being composed, and also speci-
fies the message’s auxiliary information (see Section 2.3.2 beiow).

® The remaining values (if any) must be written to the send FIFO register.

If this protocol is not followed, a Bus Error is signaled, and the message currently
being composed is discarded.

NI Version 2.2 (CM-5E), June 1994 19
Copyright © 1994 Thinking Machines Corporation

2.3.1

2.3.2

20

NI Programmer s Handbook

Message Discarding

A message being written to the send FIFO register of a network interface can be
discarded for any of a number of reasons:

® The send FIFO may be temporarily full.
= The supervisor may have disabled message sending for that interface.

= The message may not have been written according to protocol.

Whatever the reason, when a message is discarded, it is completely discarded.
Any previously written values for that message are removed from the send FIFO,
and a new message can be started by writing a value to the send_£irst register.
It is as though you never began writing the discarded message in the first place.
(Writing additional values to the send register after a message has been dis-
carded is legal, but has no effect.)

Performance Note: You can use message discarding to your advantage and
thereby make your code more efficient. Rather than check the send_ok flag af-
ter writing each word of a message to the send FIFO, you can simply check the
flag once, after the entire message has been written. (For more information, see
Section 8.1.3.)

Auxiliary Information

The auxiliary information of a message typically includes the length of the mes-
sage in words, as well as network-specific data such as a message tag. This
auxiliary information is transmitted implicitly when you write the first value of
a message to the send_first register.

The send_first register for each network interface is actually mapped onto a
block of memory locations. Writing a value to any one of these locations has the
effect of writing that value to the send_first register, but the actual memory
location that you use implicitly supplies the auxiliary information of the mes-
sage. (The low-order bits of the address actually contain the auxiliary data itself.)

Another way of saying this is that the length of a message, among other things,
determines the send_first address you must use to send it.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 2. A Generic Network Interface

2.3.3 Calculating ni_interface_send_first Addresses

The send_first address for a network message is a 32-bit value of the form

31 12 14 12 11 3 0

S base address | interface % auxiliéry data 0 0 0

where interface is the interface number (an integer from O to 7 representing the
interface being used), auxiliary data is the auxiliary information of the message,
and base address is the base address of the NI memory area (user or supervisor).

The interface numbering is as follows:

1 — Data Network (left and right) 3 — broadcast interface
6 — left Data Network interface 4 — supervisor broadcast interface
7 — right Data Network interface 5 — combine interface

(The global interface does not conform to the generic interface model, so it does
not play a part in this numbering scheme. The values 0, 2, and 4 are reserved.)

The auxiliary data depends on the message, and each interface has its own format
for this field. However, all the interfaces have at least one field in common: a
length field, representing the length of the message in words. This field occupies
the low-order 4 bits of the auxiliary data field (bits 3 - 6 inclusive).

For the Curious: The auxiliary data is left-shifted three bits to leave sufficient
space between send_first addresses for doubleword read/write operations.
(See Section 2.2.1.)

Send First Address Constants

The following constants are used to construct send_first addresses:

NI_BASE The NI base address.
SF_FIFO_OFFSET The interface field offset (12).
AUXILIARY START_P The auxiliary data field offset (3).

To construct a send_first address, combine the following values, left-shifted

as shown:
The NI base address: NI_BASE +
The interface number: interface_number << SF_FIFO_OFFSET
The auxiliary data field: auwxiliary_data << AUXILIARY_ START_ P
NI Version 2.2 (CM-5E), June 1994 21

Copyright © 1994 Thinking Machines Corporation

2.3.4

22

NI Programmer s Handbook

The following interface_number constants are defined:

DATA_ROUTER_FIFO Data Network interface (1).
LEFT_DR_FIFO Left Data Network interface (6).
RIGHT_DR_FIFO Right Data Network interface (7).
USER_BC_FIFO User broadcast (BC) interface (3).
SUPERVISOR_BC_FIFO Supervisor broadcast (SBC) interface (4).
COMBINE_FIFO Combine (COM) interface (5).

The interface-specific constants defining the awxiliary data field format are
described together with the corresponding network interfaces in later chapters.

For C Programmers: Appendix F of this manual includes examples of simple
C macros that construct send_f£irst addresses for each network interface.

C Macros for Writing a Message

If you are programming in C, there are macros that you can use to automatically
calculate the appropriate addresses for a message. For each inzerface, there are
two send first macros:

CMNA_interface_send_£irst (auxiliary-info, value)
CMN2_interface_send_first_double (auxiliary-info, value)

These are used to write the first value of a message to the send_£irst register.
The only difference between them is that the send_first macro writes an
unsigned value, while send_first_double writes a double. However, for
these macros it’s not the type of data being sent that’s important, only the length.

The send_£irst macro is intended to be used for sending word-length data,
and the send_£irst_double macro is intended for sending doubleword data.
In each case, you should coerce the values you send to the appropriate data type.
For example, to send a data value of type £loat, you must first cast it as an
unsigned value. To send a negative integer value, you must also first coerce it
to an unsigned value.

Performance Note: There are two kinds of send_£1irst macros so that you can
use doubleword register operations to make your code more efficient. (See Sec-
tion 8.1.2 for more information.) For the most part, however, this manual focuses
on singleword operations for clarity.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 2. A Generic Network Interface

24

For the second and succeeding values of a message there is a different group of
macros. For each network interface there are three macros that write values to
the send register, one for each of the three data types you can send:

CMNA_interface_send_wozxd (value)
CMNA_interface_send_float (value)
CMNA_interface_send_double (value)

The send_word macro writes an unsigned word-length value, and the other
two macros write values of the indicated data types. Here there are three macros
to allow you to send values of differing data types without having to coerce them.
You’re not restricted to using only one data type, of course; you can use any com-
bination of send_type macro calls when sending a message.

Important: Remember that the send_type macros do not work unless they are
preceded by a send_f£irst or send_first_double call for the same network.
You’ll get an error if you attempt to use them to send the first value of a message.
If you have only one value to send, use the appropriate send_first macro.

Receiving a Message

For each network interface, the following register is used to receive messages:
ni_interface_recv FIFO register from which values are read.

A message is received by reading its value(s) in order from the recv register, one
at a time.

2.4.1 C Macros for Reading a Message
Just as there are C macros for writing network messages, there are macros for
reading them: three network-specific macros, one for each network interface:
int value = CMNA_interface_receive_word() ;
int value = CMNA_interface_receive_float () ;
int value = CMNA_interface_receive_double () ;
As with the send_type macros, you are not restricted to reading values of a par-
ticular type. You can use any combination of the rec_type in reading a message.
NI Version 2.2 (CM-5E), June 1994 23

Copyright © 1994 Thinking Machines Corporation

24.2

243

24

Detecting Arrival of a Message

When a message arrives in the receive FIFO, the NI sets the rec_ok flag in the
status register (see Section 2.5). You can repeatedly test the rec_ok flag to
determine whether a message has arrived (for example, in a top-level loop).

Alternatively, you can set a flag in the “private” register (See Section 2.7.) that
causes the NI to signal an interrupt whenever the rec_ok flag is set. You can use
this feature to “automate” message reception by having the interrupt trigger an
appropriate message-reading routine in your program.

Note: Access to the “private” register is restricted to the supervisor area. User
programs, which do not have supervisor access, must make a system call to set
the receive interrupt flag.

Simulating the Arrival of a Message

The supervisor has the additional ability to write a value to the recv register; this
pushes a value into the tail end of the FIFO, as if it had arrived from the network.
The supervisor can use this method to simulate the arrival of a message from the
network (for example, when restoring the networks after a context switch), by
writing the values of the message to the recv register in the same order as they
are to be read out. (An appropriate value should also be written to the status
register to provide the corresponding auxiliary information.)

Note: An error is signaled if a value is written to the recv register when the
receive FIFO is full (that is, when the ni_rec_£ull flag in the private register
is set to 1 — see Section 2.7.5).

Implementation Restriction: Currently, writing to the recv register does not
work. The workaround for this restriction is for the node involved to send a mes-
sage to itself — this message will wind up at the end of the receive FIFO, as if
it had been written directly to the recv register.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 2. A Generic Network Interface

2.5 The Status Register

2.5.1

The ni_interface_status register can be used to check on the progress of a
message that is being sent, to detect when a message has been received, and to
retrieve information about a received message. The status register includes the
following flags and fields, which are the same for each of the network interfaces:

ni_interface_status Status register.
ni_send_ok Flag, status of message being sent.
ni send space Field, space left in send FIFO.
ni_send_empty Flag, indicates empty send FIFO.
ni_rec_ok Flag, indicates arrival of a message.
ni_rec_length Field, total length of received message.
ni_rec_length_ left Field, words left in receive FIFO.

Note: The rec status fields always reflect the “current” message in the receive
FIFO — the message that includes the next word waiting to be read from the
receive FIFO. If there is no pending message, the fields are undefined.

The “Send OK” Flag

If the send FIFO becomes full, all attempts to write a message (either to start or
to continue one) cause the message currently being composed to be discarded.
You can tell that a message has been discarded by examining the send_ok flag.

When the first value of a message is written to the send_f£irst register, the
send_ok flag is set to 1. As long as the message has not been discarded, this flag
remains 1, indicating that the message is still being accepted. If the send_ok flag
is still 1 after you have written the final value of a message, you can assume that
that message has been accepted for delivery, and that you can start writing the
next one. If the message is discarded, the send_ok flag is set to 0, indicating that
the message has not been sent, and you should try resending the entire message.

NI Version 2.2 (CM-5E), June 1994 25
Copyright © 1994 Thinking Machines Corporation

2.5.2

2.53

2.5.4

26

NI Programmer s Handbook

The “Send Space” Field and “Send Empty” Flag

The send_space field contains an estimate of the total space (in 32-bit words)
left in the FIFO. The actual space remaining may be less; ni_send_space is
usually correct, but may become invalid because of supervisor activity (such as
when processes are swapped in and out). User code should not assume that push-
ing a message shorter than this value is always successful. The send_empty flag
is 1 whenever the send FIFO is empty — that is, when there is no pending mes-
sage in the FIFO.

Programming Note: NI programmers typically write an entire message to the
send FIFO and then check the send_ok flag to see whether it was accepted, so
the send_space field and send_empty flag typically aren’t used.

The “Receive OK” Flag and “Receive Length” Fields

Whenever a message is pending in the receive FIFO, the rec_ok flag is set to
1, and remains 1 while any part of the message remains to be read from the FIFO.
When no messages are waiting to be read, the flag is set to 0. (Attempting to read
from the FIFO when rec_ok is 0 signals a Bus Error.)

The ni_rec_length left field contains the number of words of the current
message that are left in the receive FIFO. You can assume that it is safe to read
this many words from the receive FIFO. If you need the message’s original
length, the ni_rec_length field always contains the total length (in words) of
the current message as it was when it was received.

Reading the Status Register Fields

The general method for reading the value of an ni_interface_status field or
flag is to read the value of the entire status register, and then extract the required
fields from that value. (This cuts down the overhead of repeatedly reading the
value of the register.)

For each network, there is a C macro that returns the status register’s value:

int value = CMNA_interface_status ()

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapt

N o

2.6

er 2.

eneric Network Interface

A S Yl S £ & sy ¢ e L s o
SEEAEE - SN S TEN

Because the position and size of status fields and flags are the same for most of
the network interfaces, there is a single set of macros that extract the status fields
from the value returned by CMNA_interface_status:

SEND_OK (status) Gets send_ok flag from starus value.
SEND_SPACE (status) Gets send_space field.

SEND_EMPTY (status) Gets send_empty flag.

RECEIVE_OK (status) Gets rec_ok flag.

RECEIVE_LENGTH (Status) Gets rec_length field.
RECEIVE_LENGTH_LEFT (Status) Gets rec_length_left field.

Note: A change in the broadcast interfaces requires the use of a different macro
to access the rec_length_left field. See Section 4.1.6 for more information.

For example, to get the three send fields from the broadcast interface status reg-
ister, you could use the following C code:

int value = CMNA_bc_status();

int send_ok = SEND_OK(value);

int space_left = SEND_SPACE(value) ;

int send_gueue_empty = SEND_EMPTY (value);

And to get the rec fields from the right data interface status register, you could
use the following code:

int value = CMNA_RDR_status () ;

int rec_ok = RECEIVE_OK(value);

int message_length = RECEIVE_LENGTH (value);
int words_to_go = RECEIVE_LENGTH_LEFT (value);

Abstaining from an Interface — The Control Register

Each of the Control Network interfaces has a control register, containing either
one or two abstain flags. The names of the register and abstain flag(s) are:

ni_interface_control Control register.
ni_rec_abatain Normal receive abstain flag.
ni_reduce_rec_abstain Combine reduction abstain flag.

Note: The global interface, always the exception, uses a different name for this
register. See Section 4.3 for more information.

NI Version 2.2 (CM-5E), June 1994 27
Copyright © 1994 Thinking Machines Corporation

2.6.1

2.6.2

2.6.3

28

NI Programmer s Handbook

Effect of Abstain Flags

The rec_abstain flag, when set to 1, causes the NI to “abstain” from receiving
messages via the corresponding interface. That is, the NI does everything neces-
sary to ignore the interface’s transactions:

® Arriving messages are simply ignored — they “disappear” with no indica-
tion of their arrival, and the rec_ok flag remains 0.

= Messages that require the participation of every node (global synch, etc.)
are allowed to complete without the abstaining node’s participation.

= Messages that require a value (scan messages, for example) are effectively
given an appropriate identity value for the type of message being sent.

While the rec_abstain flag is set for a given interface, it is an error to try to
send a message via that interface from the abstaining node. Attempts to write the
send_f£first or send registers under these circumstances signals a Bus Error.

Combine Interface Abstain Flags

The ni_reduce_rec_abstain flag is only defined for the combine interface,
and only applies to reduction operations.

In addition, reduction operations treat the value of the rec_abstain flag differ-
ently from all other interface operations.

For more information, see Section 4.2.10.

Reading and Writing the Abstain Flag

To read and write the the abstain flag of a network, you can use these C macros:

value = CMNA_read_abstain_flag (register) ;
CMNA_write_abstain_flag (register, value) ;

The register argument is a register address constant, which is defined separately
for each network. .

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

-

2.6.4 Use the Abstain Flags Safely

The abstain flag for a given interface should only be changed when that interface
is not in use. Specifically, when a interface’s abstain flag is changed,

= The send FIFO must be empty (that is, the send_empty flag must be 1).
= The receive FIFO must be empty (the rec_ok flag must be 0).

= There must be no messages in transit via that interface. (There is no flag
to detect this; your program must simply be written so that this is the case.)

The effects of changing a interface’s abstain flags while the interface is in use are
unpredictable — your code may produce erroneous results, or signal an error.

This restriction generally requires that you use one of the interfaces (for example,
the global interface) to synchronize the nodes and halt the operations of another
interface while you change that interface’s abstain flags. For this reason, most NI
programmers set the abstain flags once, at the beginning of a program or routine,
and then leave them set that way until the program or routine finishes executing,
changing the flags within the routine only where absolutely necessary.

2.6.5 Being a Good Neighbor

Important: Some programming systems (such as CMMD) use the abstain flags
for their own purposes. These systems are written with the assumption that the
abstain flags do not change unexpectedly, and if the flags do change these sys-
tems may not operate correctly.

When you alter the values of the abstain flags, you must take care to save the
original settings of these flags and to restore them before handing control back
to these systems. Failing to do so can cause either user or OS code to signal ob-
scure errors that are hard to trace.

NI Version 2.2 (CM-5E), June 1994 29
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

2.7 The Private Register

2.7.1

30

Each of the interfaces also has a “private” control register, containing a number
of control flags and status fields for supervisor operations. Most of these sub-
fields are interface-dependent; the few that are not are:

ni_interface_private Private register.

ni_rec_ok_ie Flag, “Receive OK” interrupt enable.
ni_lock Interface lock flag.

ni_rec_stop Interface stop flag (except Broadcast intf.).
ni_send stop Interface stop flag (Broadcast intf. only).
ni_rec_full Flag, indicates receive FIFO is full.

The broadcast interface has one exception: the ni_rec_stop flag is not defined;
in its place is a flag called ni_send_stop, which operates differently. (See Sec-
tion 2.7.4.)

Usage Note: The private register is accessible only from the supervisor area;
users without supervisor access must make a system call to change the flags in
this register.

Message Receipt Interrupts — The Rec Interrupt Enable Flag

Whenthe ni_rec_ok_ie flag is set to 1, a Green interrupt is signaled whenever
a new message becomes available at the front of the interface’s receive FIFO (in
other words, whenever the rec_ok status flag is set to 1 for a new message).

A message may become available either by arriving from the network into an
empty FIFO, or by being the next message in the FIFO when the last word of the
current message is read out. A different Green interrupt is signaled for each net-
work interface, and the interrupt for each interface can be independently enabled
and disabled by setting the rec_ok_ie flag for the interface.

The Green interrupts that can be signaled are:

dr rec ok ldr rec ok rdr rec ok
bec rec ok sbc rec ok com rec ok

For more information about these interrupts, and about interrupts in general, see
Section 5.1.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 2.A Genenc Network Interface

e

2.7.2

2.7.3

o - TN AT SRR T B A B ETS o S L SRRy S 2 7
S e L e e i e e e MR e W3R TR TR B L e T, R

Clearing the Interface’s Send FIFO — The Lock Flag

The supervisor can use the ni_lock flag to temporarily “lock” the interface —
that is, prevent use of the interface in a way that is transparent to a user program.

The lock flag is normally 0. When it is set to 1, the following effects occur:
= Any message currently being written to the send FIFO is discarded.

= The send_ok flag is set to 0 and remains 0 — even if you attempt to write
a new message to the send FIFO.

= The value of the ni_interface_space field is set to 0 and remains 0.

In other words, setting the 1ock flag to 1 clears the send FIFO, and then makes
it seem as if the FIFO is permanently full.

Grabbing the Receive FIFO Registers — The Rec Stop Flag

The supervisor can temporarily grab control of a interface’s receive FIFO and
status register by setting the interface’s ni_rec_stop flag. Since this involves
the joint cooperation of the microprocessor and the NI, a special request/grant
protocol is used. Specifically,

= The microprocessor writes a 1 to the interface’s rec_stop flag, indicat-
ing it wants direct control of the recv and status registers. (Note: The
rec_stop flag is not changed to 1 until the stop operation is completed.)

= If a message is currently arriving from the interface, the NI finishes receiv-
ing the message and stores it in the receive FIFO.

= The NI then stops receiving messages from the interface, and finally sets
the rec_stop flag to 1, indicating that the stop operation is completed.

Once the rec_stop flag is set, the supervisor may freely read and write the val-
ues of the recv and status registers (for example, to push additional messages
into the FIFO, or to clear the FIFO altogether). When the supervisor is finished
with the recv and status registers, writing a O to the interface’s rec_stop
flag restores normal network operations.

Important: It is an error for the supervisor to attempt to write values to the recv
and status registers while the stop flag is 0. The effect of doing so is unde-
fined, but is not likely to be pleasant.

NI Version 2.2 (CM-5E), June 1994 31
Copyright © 1994 Thinking Machines Corporation

2.7.4

2.7.5

2.8

32

NI Programmer s Handbook

Blocking Unsent Broadcast Messages — The Send Stop Flag

The broadcast interface does not have a rec_stop flag. Instead, the same posi-
tion in the private register is used for a flag called ni_send_stop, which has
a different purpose. When the send_stop bit is set, it prevents any complete
messages waiting in the broadcast send FIFO from being sent over the network.
This mechanism is mainly used by the supervisor during process swaps, to hold
messages in the interface send FIFO until they can be safely removed and saved.

Detecting a Full Receive FIFO — The Receive Full Flag

The ni_rec_f£ull flag, when set, indicates that the interface’s receive FIFO is
full. This is critical to network performance; if too many nodes have full receive
FIFOs, the network can become clogged with unreceived messages, and this can
prevent new messages from being delivered to their destinations — even if the
destination nodes actually have sufficient space in their receive FIFOs.

Using a Generic Network Interface

To sum up, the strategy to use in accessing a network interface’s registers is:

* To send a message, write the first word to the send_first register, and
any remaining words to the send register.

® Check the send_ok flag to see if the message was discarded, and if so,
retry sending the entire message.

® To receive a message, check the rec_ok flag to see if a message is in the
FIFO, and if so, use the 1ength and length_1left fields to determine the
number of words to read from the recv register.

= Use the remaining fields of the status register to obtain other interface-
specific information about the state of the send and receive FIFOs.

= Use the abstain flag(s) in the control register to cause individual
nodes to ignore the transactions of the interface.

® Use the private fields and flags for supervisor features such as disabling
send FIFOs, checking for full receive FIFOs, and setting interrupts.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 2. A Generic Network Interface

2.9 From the Generic to the Specific

The interface ‘described in this chapter is an idealized view of a network inter-
face, lacking a specific purpose, a detailed description of message protocol, or
network-related restrictions on usage of the interface registers.

The next two chapters present a description of the Data Network and Control
Network. These chapters present the purpose, protocol, and restrictions of each
interface provided by the CM-5 networks, building on the generic interface
description presented in this chapter.

NI Version 2.2 (CM-SE), June 1994 33
Copyright © 1994 Thinking Machines Corporation

Chapter 3
The Data Network

The Data Network consists of two halves, the left interface (LDR) and right inter-

face (RDR). Each half of the network is connected to all nodes, and can be used
independently. The two halves of the network can also be accessed together as
the single Data Network (DR):

Figure 8. The three interfaces of the Data Network: DR, LDR, and RDR.

For each of these network interfaces there is a separate register interface. This
chapter describes these register interfaces, and shows how to use them to send
messages through the Data Network.

Terminology Note: The network acronyms (DR, LDR, RDR) are a historical
anachronism, and are retained in this manual only because the C constants used
to access the Data Network still refer to the three interfaces by the old abbrevi-
ations. In addition, the obsolete term “router” is occasionally still used in the
programming contants to refer to the Data Network hardware. “Network” is cur-
rently preferred, as a more generic and thereby more accurate descriptive term.

NI Version 2.2 (CM-5E), June 1994 35
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

3.1 The Data Network Register Interfaces

The three Data Network interfaces are based on the generic model presented in
Chapter 2. There are three sets of interface registers: one for each half of the
network (LDR and RDR), and one for the combined network (DR). Each network
interface is used to send and receive messages, with the following conditions:

® Sending a message via the DR actually sends it by either LDR or RDR,
depending on the load of the two interfaces.

= The DR interface cannot be used to receive any messages, and is mutually
exclusive with the two half-network interfaces. In other words:

= Writing a message to the DR send FIFO excludes using either the
LDR or RDR at the same time. Likewise, writing a message to either
the LDR or RDR send FIFOs excludes using the DR interface.

» While a message is being sent, any excluded interface(s) remain ex-
cluded until the message has been written and accepted for delivery
by the network. Also, the status register(s) of excluded interface(s)
are invalidated and should not be used.

® The two half-network interfaces are not mutually exclusive, and in fact
can be used simultaneously. In other words, network messages can be sent
and received concurrently via both the LDR and RDR.

For each Data Network interface, the following registers are used:

ni_dinterface_send_first Used to send the first value of a message.
ni_dinterface_send first_long Used for first value of long message.
ni_dinterface_send Used to send the rest of the message.
ni_dinterface_recv Used to receive a message.
ni_dinterface_status Status register.
ni_dinterface_status_long Status register for long messages.
ni_dinterface_status_all Alternate status register.
ni_dinterface_status_pop Status reg, also receives messages.
ni_dinterface_private Supervisor control register.

The dinterface part of these names is a unique abbreviation for each interface:

dr - Data Network 1dr - left interfface = rdr - right interface

36 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 3. The Data Network

Copyright © 1994 Thinking Machines Corporation

o
Figure 9 is a memory map indicating the relative locations of these registers in
the user and supervisor areas.
The Data Network Registers at a Glance:
hex offsets
dr ldr rdr
ni_x send fixst_long
B e s s e S 1 oxsoo O OXIOO 0 0 OXI8 0 Oo
nl_x _send first | ... 450 0x6000 0x7000
0x0270 0X0C70 OXOE70
ni_x status _long | .4260 0x0C60 0X0ESO
oi_x status all | , 5250 0x0C50 0x0ES0
ni_x status pop | ______ 0X0C40 O0XOE40
ni_x _send 0x0230 0x0C30 O0xO0E30
—————— 0x0C20 0x0E20
ni_x private 0x0208 0x0C08 O0xOE08
nl_x_status 0%0200 0x0C00 0X0EQO
ni_interface_send_first Addressing Patterns
‘-Y user/supervisor bit addressing mode
s interface
(NI base address index
: DR | -———- x|oocojo|o|1]{x]| tag length | 000
LDR| --—--- x|{0000|1|1|0|X| tag length | 000
RDR| ------ xjo000|1]1[1{X]| tag length | 000
31 20'19'18 1514 12'11 10 7'6 2
ni_interface_send_first_long Addressing Patterns
user/supervisor bit i addressing mode
interface
NI base address index
DR | ———-- x|[00{0|1]00{X| length tag 000
LDR| —-—--- x{00{1]0]00{X| 1length tag 000
RDR/| ------ x}00l1]1]{00{X| lengeth tag 000
31 20' 19 16 15 12 11 7's 2
Figure 9. NI registers associated with each of the Data Network interfaces.
NI Version 2.2 (CM-5E), June 1994

3.2

3.2.1

38

The following related registers are also used to control Data Network features:

ui_lohgest_dr_message Length limit on Data Network messages.

ni_hodgepodge Register with “hodgepodge” of flags:
ni_msg_too_long_ie Message too long interrupt enable.
ni_user_tag mask User/supervisor tag reservation register.

ni_rec_interrupt_mask Contains tag value interrupt flags.
ni_user_rec_interrupt_mask Contains tag value interrupt flags.
ni_dr_ message_count Contains current message count.
ni_count_mask Contains tag-count enable flags.

The purpose and use of these registers are described in the sections below.

Data Network Messages

The Data Network is essentially asynchronous in operation — nodes can send
and receive messages freely, so long as enough nodes are receiving messages so
that the network does not become clogged (see Section 3.9). The destination
node of a Data Network message is determined by an address word that is added
to to the message as it is being written to the send FIFO. (Note: The address word
is removed in transit. It does not count as a message word with reference to the
length limits of the send and receive FIFOs.)

Short and Long Data Network Messages

Each of the three Data Network interfaces can send messages of two types: short
and long. A short message is sent as described in Chapter 2, and has a length
limit of 5 words. A long message is sent via an alternate register interface, and
has a length limit of 18 words. The long message interface is intended for mes-
sages that consist primarily of large quantities of data.

Implementation Note: The long message feature of the Data Network is an
addition as of Version 2.2 of the NI chip. The short message type is actually the
same Data Network message format used in previous NI versions, and is retained
in Version 2.2 for software compatibility reasons.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 3. The Data Network

3.2.2

3.2.3

3.3

RS SA S

X3
¥
¢
R
H

Long Data Network Message Interrupt

The NI register ni_longest_dr_message overrides the default length limits
for long messages — trying to send a message longer than the value in
ni_longest_dr_message signals a Yellow interrupt (message too long).
This is intended to provide compatibility in CMs that contain NI chips of differ-
ent versions. The flag ni_msg_too_long_ie in the ni_hodgepodge register
controls this interrupt feature. If ni_msg_too_long_ie is 1, the mes-
sage too long interrupt is signaled. If ni_msg_too_long_ie is 0, no
interrupt is signaled. In either case, however, a Bus Error is signaled.

Data Network Message-Sending Conventions

Data Network messages are atomic; individual messages are not sent through the
network until all the words of each message have been written into the send
FIFO, and arrival of each message is not reported until all the words of the mes-
sage have arrived in the receive FIFO. The component words of a single Data
Network message are always received in the same order as they were sent. How-
ever, if you use multiple Data Network messages as “packets” to send long
messages from one node to another, the order in which the packets arrive is not
guaranteed to be the same as the order in which they were sent.

Your code should not depend on having separate Data Network messages sent to
the same node arrive in some predictable order. Instead, your code should in-
clude data in the packets (for example, an offset into the original message) that
allows the receiving node to arrange the packets into the correct order.

Data Network Addressing

The Data Network uses two kinds of addressing: physical and relative. Each
node of the CM-5 has a unique physical address based on its location in the CM-5
hardware. This represents an “absolute” address, giving the node’s location with
respect to the entire machine.

Each node also has a unique relative address based on its location in its partition.
Relative addresses run from O (for the first node in the partition) up to one less
than the total number of nodes in the partition. (See Figure 10.)

NI Version 2.2 (CM-5E), June 1994 39
Copyright © 1994 Thinking Machines Corporation

3.3.1

40

NI Programmer s Handbook

S

Nodes
Addresses 0 1 2 3 4 n-1 Partition Manager

Figure 10, Relative addressing of nodes in a partition.

You can get the address of the node executing your code, as well as the total
number of nodes in the current partition, by examining these C variables:

CMNA_self address Address of current node.
CMNA_partition_size Number of nodes in current partition.

The values of these variables are automatically defined for each of the nodes.
The value of CMNA_partition_size is also defined for the partition manager.

Note: The partition manager is always located at an address outside the partition,
and so does not occupy any of the relative addresses of the partition. (For more
information, see Section 7.1.)

Physical and Relative Addressing Modes

Just as there are two kinds of addressing, there are also two “modes™ of sending
a Data Network message: physical and relative. The mode a message is sent in
is determined by a mode flag in the auxiliary data of the message.

‘When a message is sent in physical mode, its address word is treated as a physi-
cal address, and the message can be sent anywhere within the Data Network.
(Only the supervisor is allowed to send messages in physical mode.)

When a message is sent in relative mode, the address word is treated as a relative
address, and is translated into a physical address based on the current partitioning
arrangement. This translation is performed automatically by the NI hardware,
using a chunk table, described in Section 6.3. The translation also includes auto-
matic error checking to make certain that the supplied address is a legal relative
address for the current partition. Messages that contain illegal relative addresses

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

are not sent through the network; instead, the sending NI signals a Yellow inter-
rupt (bad relative address).

For the Curious: The relative addresses in a partition are always contiguous —
that is, there are no legal relative addresses in a partition that do not correspond
to existing functional nodes. This is in contrast to physical addresses, which can
contain gaps corresponding to nonfunctional nodes or to network locations that
are not connected to actual CM-5 hardware. (See Section 6.3.)

3.4 Sending and Receiving Messages

The Data Network message format is the same for all three interfaces (and for
short and long messages alike). The first word of the message is a 20-bit destina-
tion address. The remaining words form the content of the message, which must
be no longer than the length limit allowed by the message type in use.

| Address |'“Datat’ |- DataZ -{ - uii |- Datany |
Word 1 2 3 e n+l1

Figure 11. Data Network message format

For short messages, the data length limit is currently 5 words, and is given by the
constant MAX ROUTER_MSG_WORDS. For long messages the limit is 18 words.
(The ni_longest_dr_message register value, if less, overrides these limits.)

The auxiliary information of the message consists of the length of the message
in words (excluding the address word), a 4-bit tag value, and an addressing mode
flag that determines how the address word is interpreted.

Important: The address word of the message must be zero-extended to 32 bits.
Failure to ensure that the address word is zero-extended to the full 32 bits can
trigger a serious error, even causing your partition to crash.

NI Version 2.2 (CM-5E), June 1994 41
Copyright © 1994 Thinking Machines Corporation

—

NI Programmer s Handbook

3.4.1 Sending Short Messages

The protocol for sending a short message is as described in Chapter 2. The fol-
lowing FIFO registers are used to send messages:

ni_dinterface_send first Used for first value of a message.
ni_dinterface_send Used for the rest of the message.

and for each dinterface there are corresponding send_ f£irst and send macros:

CMNA_dinterface_send_first (tag, length, value)
CMNA_dinterface_send first_double (fag, length, value)
CMNA_dinterface_send_wozrd (value)
CMNA_dinterface_send_float (value)
CMNA_dinterface_send_double (value)

For the send_£irst macros, the length argument is the length of the message
in words (excluding the address word), the fag argument is the message’s tag
value, and value is the first value of the message. For the send macros, value is
the second and succeeding values of the message.

Note: Currently you are limited to using zag values from 0 to 7. All other tags
are reserved for supervisor use.

Auxiliary Information for Short Messages

The 9-bit auxiliary information field of a short message has the form
8 0

md tc:zg) j letigth

i

where

md is the addressing mode (0 = relative, 1 = physical)

tag is the 4-bit tag value

length is the length of the message in words, excluding address word
The following constants specify the starting bit positions of these fields:

NI_DR_SEND_ AUXILIARY_ ADDRESS_MODE_P The md field offset (8).

NI_DR_SEND_AUXILIARY_ TAG_P The tag field offset (4).
NI_DR_SEND_AUXILIARY LENGTH_P The length field offset (0).
42 NI Version 2.2 (CM-5E), June 1994

Copyright © 1994 Thinking Machines Corporation

Chapter 3. The Data Network

. B T s B T A SR Can P P ¢ t e . v e
Nesg s 1T R I Lo O D L I S S A AR X AR O M S AN 5 |

g3

To construct a send_£irst address, add the following values:

The md flag: md << NI_DR_SEND_AUXILTIARY ADDRESS_MODE_P
The tag value: tag << NI_DR_SEND_ AUXILIARY TAG_P
The length value: length << NI_DR_SEND_AUXILIARY_ LENGTH_P

The md flag is O for a message with a relative destination address, and 1 for a
message with a physical destination address. The following constants can be
used to specify the md flag value:

RELATIVE Relative node addressing (0).
PHYSICAL Physical node addressing (1).

Note: Sending messages with physical addresses is reserved for the supervisor.
If user code tries to send a message with a md flag of 1, a Bus Error is signaled.

The tag can be any value from O to 7 inclusive for user messages, or from 0 to
15 for supervisor messages. Message tags are described in more detail in Section
3.5.4 below. The length field can have any value from 1 up to MAX_ROUT-
ER_MSG_WORDS.

3.4.2 Sending Long Messages

The protocol for sending a long message is the same that for short messages,
except that the first word of the message must be written to a special register:

ni_dinterface_send first_long Used for first value of long message.
and for each dinterface there are corresponding send_first_long macros:

CMNA_dinterface_send_£irst_long (tag, length, value)
CMNA_dinterface_send_f£irst double_long (fag, length, value)

Send First Long Address Format

The send_first long address for a Data Network message is a 32-bit value
of the form

31 19 17 15 13 12 3 0

T T

B%/ ba;s*eac:idr 0 0| inyf 0:0 % au;xilia:ryd%zta 00 0

1 1

NI Version 2.2 (CM-5E), June 1994 43
Copyright © 1994 Thinking Machines Corporation

3.4.3

44

NI Programmer s Handbook

where intf is the interface number (an integer from O to 3 representing the Data
Network interface being used), and auxiliary data is the auxiliary information.
The following intf values are defined:

0 - Not used 2 - LDR network interface
1 - DR network interface 3 - RDR network interface

Auxiliary Information for Long Messages

The format of the auxiliary information is
9 4 0

md I l:engtlh

T T T T

tag

L il Il

where
md is the addressing mode (0 = relative, 1 = physical).
length 1is the length of the message in words, excluding address word.
tag is the 4-bit tag value.

Aside from size and position, these three fields are the same as those defined
above for the auxiliary information of a short message.

Receiving Messages

For each interface, the following register is used to receive messages:
ni_dinterface_xecv FIFO register from which values are read.

Both long and short messages are received as described in Chapter 2, by reading
successive words of the message from the recv register. (Messages can also be
received via the ni_dinterface_status_pop register. See Section 3.5.3.)

To receive a message from the LDR or RDR, use the network-specific reading
operations described in Section 2.4.1:

value = CMNA_dinterface_receive_word () ;
value = CMNA_dinterface_receive_float () ;
value = CMNA_dinterface_receive_double () ;

- NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 3. The Data Network

Important: There are no message-receiving macros for the DR. You must use
the LDR and RDR to receive messages sent via the DR — the DR interface cannot
be used to receive messages.

Supervisor Usage Note: Currently, a hardware defect in the NI chip does not
allow the Data Network recv registers to be written by the supervisor to simu-
late the arrival of messages, etc. The workaround is for a node to send a message
into the network using its own address as the destination. Assuming the network
is clear (as it is, for example, during context switches) this causes the message
to be delivered to the front of the node’s receive queue.

3.5 The Status Registers
3.5.1 The Standard Status Registers
Each of the Data Network interfaces has two main status registers, one each for
short and long messages, which contain the subfields shown below:
ni_dinterface_status_long Status register for long messages.
ni_dinterface_status Status register for regular messages.

ni_send ok Flag, status of message being sent.
ni_send_space Field, space left in send FIFO.
ni_rec_ok Flag, indicates receipt of message.
ni_rec_length Field, total length of message.
ni_rec_length left Field, words left in the FIFO.
ni_dr_rec_tag Field, tag value of the message.
ni_dr_send_state Field, status of send FIFOs.
ni_dr_ rec_state Field, status of receive FIFOs.
ni_router_done_complete Flag, indicates empty send FIFOs.

The only difference between the status and status_long registers is that in

the status_long register the send_space, rec_length, and

rec_length_left fields are five bits long instead of four to accommodate the

extra length of long messages.

Each of these fields has the same value in both the status and status_long

registers, except where the value exceeds 15. In this case, the status_long

field contains the correct value, while the status field is always 15. If the super-

visor writes a value to any of the four-bit status fields, the corresponding

NI Version 2.2 (CM-5E), June 1994 45

Copyright © 1994 Thinking Machines Corporation

five-bit status_long field is automatically updated to the same value, with a
0 for the most significant bit. The reverse is also true, with the status field
being set to 15 as described above if the status_long value exceeds 15.

The macros used to get the ni_interface_status value for each interface are:

int value
int value
int value

CMNA_dr_send status () ;
CMNA_ldr_status () ;
CMNA_rdr_status () ;

The send_ok, send_space, rec_ok, rec_length, and rec_length_left
subfields are as described in Chapter 2. The dr_rec_tag field is described in
Section 3.5.4 below, the dx_ {send, rec}_state ficlds in Section 3.5.5, and the
ni_router_done_ complete flag is described in Section 3.5.6.

Implementation Note: The subfields ni_dr_send_state and
ni_dr_rec state, and the flag ni_router_done_complete apply to all
three interfaces. They are accessible only from the DR interface (that is, their
values are defined only for the ni_dr_status register).

3.5.2 The “Status All” Alternate Status Register

Each Data Network interface also has an alternate status register, which gathers
information about all three Data Network interfaces into a single word value:

ni_dinterface_status_all Alternate status register.
ni_firstinif rec_ok Flag, indicates receipt of message.
ni_secondintf rec_ok Flag, receipt of other interface message.
ni_dinterface_send ok Flag, send OK flag of interface.
ni_firstintf rec_tag Field, tag value of LDR message.
ni_secondintf rec_tag Field, tag value of RDR message.

ni_firstintf rec_length long Field, total length of LDR message.
ni_secondintf _rec_length long Field, total length of RDR message.
ni_dinterface_send_ space Field, space left in DR send FIFO.
ni_firstingf_rec_all_fall_ down Flag, indicates All Fall Down message.
ni_secondintf rec_all_fall_down Flag, indicates All Fall Down message.
ni_router_done_complete Flag, indicates empty send FIFOs.

Note: Currently, there are no predefined C access routines for the status_all
register; you must use the predefined register address constants.

46 ’ NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

3. The Data Network

In the field names listed above, the firstintf and secondintf portions of the names
are different for each network interface:

Interface dinterface Sfirstintf secondintf

DR dr ldr rdr
LDR ldr ldr rdr
RDR rdr rdx ldr

In general, firstintf is the same as dinterface, while secondintf is the opposite
interface in the pair of LDR and RDR. This is so that when a program is using
the two half networks, the status values for the “current” and “opposite” halves
of the network can be obtained from the same positions in the status_all reg-
ister, regardless of the interface (LDR or RDR) that is in use.

The flag and field values in the status_all register are copied from the
appropriate Data Network status registers, with the exception of the
rec_all_fall_down flags that are taken from the ni_dinterface_private
register (see Section 3.6). At all times, the value of the status_all register
mirrors the current values available from the individual status registers.

3.5.3 The “Status Pop” Register

The status_all register also has a convenient doubleword alias:
ni_dinterface_status_pop Status register, also receives messages.

The status_pop register is identical to the status_all register, except that
the status_pop register can only be read with a doubleword operation.

‘When this is done, the first word of the result is the current value of the sta-
tus_all register. The second word of the result is a value popped from the
appropriate dinterface receive FIFO, if a value is available.

Thus, a single doubleword read of the status_pop register can be used to check
whether a value is available for reading from the network interface, and also to
get the value if there is one.

Note: The status_pop feature is defined only for the LDR and RDR interfaces,
since it is not possible to read a value from the DR interface.

Also, there is currently no NI_dinterface_ STATUS_POP_A register constant; use
the offset value (x40) shown on the NI memory map.

NI Version 2.2 (CM-5E), June 1994 47
Copyright © 1994 Thinking Machines Corporation

3.5.4 Message Tags

48

The tag values of Data Network messages are used to distinguish between differ-
ent types of Data Network messages. The status register field dr_rec_tag
always contains the tag value that was sent with the current message.

Tag values are not mandatory. You can, for instance, simply supply a tag value
of O for all Data Network messages.

Tag values are primarily used for
» distinguishing between user and supervisor messages
= causing interrupts to be signaled when messages are received

= helping the NI determine when the Data Network is clear of user messages
To get the rec_tag field, use the macro

RECEIVE_TAG (status)

User/Supervisor Tag Reservation

Some tag values are reserved for supervisor use, to distinguish between supervi-
sor and user messages. The remaining tags can optionally be used in user
programs to distinguish different types of user messages.

The NI has a register that controls the reservation of tag values:
ni_user_tag mask User/supervisor tag reservation register.

Only the low-order 16 bits of this register are used, one for each of the possible
tag values (0 to 15). If the nth bit of the user_tag_mask register is 1, then tag
value n is reserved for supervisor use.

Since the tag_mask register is only accessible by the supervisor, it effectively
acts as a set of permission switches, controlling which tags the supervisor allows
user messages to have. If a user program attempts to send a message with a
supervisor-reserved tag, a Bus Error is signaled.

Tag Fields and Interrupts

Tag values can be used to trigger interrupts; when a message with an interrupting
tag value becomes available for reading in the receive FIFO, the NI signals an

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 3. The Data Network

interrupt to the microprocessor. (A message becomes available either by arriving
at an empty receive FIFO, or by being the next message in the FIFO when the
current message is read out.) Tag value interrupts can be used to cause the micro-
processor to execute a specific section of code whenever a message with an
interrupting tag becomes available for reading.

The following registers and register flags are used to determine which tag values
cause interrupts, and how they are signaled:

ni_rec_interrupt_mask Register, Supervisor tag interrupt flags.
ni_user_rec_interrupt_mask Register, User tag interrupt flags.

ni_hodgepodge Register containing “hodgepodge” of flags:
ni_ldr_rec_tag_ie LDR supervisor tag interrupt enable.
ni_rdr_rec_tag_ile RDR supervisor tag interrupt enable.
ni_ldr_ user_rec_tag_ie LDR user tag interrupt enable.
ni_rdr_ user_rec_tag ie RDR user tag interrupt enable.

The interrupt_mask registers each contain 16 flags, one for each tag value.
If the nth bit of either register is 1, it indicates that an arriving message with a
tag value of n should signal an interrupt. However, the “supervisor” tag value
register ni_rec_interrupt_mask has overriding contol over which tag val-
ues signal interrupts. The ni_user_rec_interrupt_mask register is
dependent on the value of ni_rec_interrupt_mask; only if the nth bit of the
ni_rec_interrupt_mask is set to 0, will a 1 in the corresponding bit of
ni_user_rec_interrupt_mask cause an interrupt to be signaled.

The interrupt enable flags in the ni _hodgepodge register enable and disable the
interface-specific supervisor and user interrupts (see Figure 12).

When a message with a tag value of n arrives at the LDR interface of the Data
Network, the nth flag bit of ni_rec_interrupt_mask is checked. If the flag
is 1, then a Green interrupt (1dxr rec tag) is signaled. If the flag is 0, the nth
flag bit of the n1_user_rec_interrupt_mask register is checked. If this flag
is 1, then a Green interrupt (1dr user rec tag) is signaled. If the flag is 0,
then no LDR interrupt is signaled. A similar method is used to determine whether
to signal the rdr rec tagand rdr user rec tag interrupts when a
message arrives via the RDR interface.

In all cases, if the nth bit of ni_rec_interrupt_mask is 1, the arrival of a
Data Network message with tag value n by either interface (LDR or RDR)
always signals a Green interrupt (dr rec tag).

NI Version 2.2 (CM-5E), June 1994 49
Copyright © 1994 Thinking Machines Corporation

NI Programmer’s Handbook

50

Data Network message
1|

tac # Y

Y tag # g
ToRE R

ni_rec_interrupt_mask

flag=1 flag=1
flag=0
Y Y
. c tag# y y tag# . .
1dr rreecc tagg ni_user_rec_interrupt_mask rdr rreecc :agg
interrupts interrupts
flag=1 flag=1
flag=0
Y Y
ldr user_rec_tag \] rdr user rec tag

interrupt No Interrupt interrupt

Figure 12. Tag value interrupt paths for Data Network messages

The ni_user_rec_interrupt_mask register is both readable and writable by
user programs, but the interrupt enable flags ni_1dr_ user_rec_ie and
ni_rdr_user_rec_ie are writable only by supervisor programs. The intent of
this is to allow the supervisor to use the user interrupt enable flags as “permis-
sion” bits — by setting either of the two user_rec_ie flags, the supervisor
grants to user programs the ability to turn interrupts on and off for all tags not
already reserved for supervisor interrupts. This avoids the need for a supervisor
call whenever a user program wants to enable or disable user interrupts.

The ni_rec_interrupt_mask is also used to inhibit user access to supervisor
messages. If the nth bit of the ni_zrec_interrupt_mask register is 1, then if
a Data Network message with a tag value of » arrives (say via the LDR interface)
the message is effectively invisible and inaccessible to user programs. Specifi-
cally, the rec_ok flag will be 0 when read by the user, and an attempt by the user
to read from the receive FIFO will fail, as though the FIFO were empty. When
the supervisor attempts to read the message, however, the rec_ok flag will have
the correct value, and reading from the receive FIFO will receive the message as
usual.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

R crul

Chapter 3. The Data Network

Using CMosT Commands to Set Up NI Interrupt Handlers

You can use CMOST commands to instruct the NI to signal an interrupt when it
receives a message with a specific tag. This interrupt causes the processing node
to execute a specific routine of your program. The cMOS_signal system call is
used to set up an interrupt:

CMOS_signal (signal; user_function, tag_mask)

The signal argument is the signal type, and must be the predefined constant
SIGMSG. The user_function argument is the name of a user-defined function that
should handle receiving and processing the message. The tag_mask argument is
a 16-bit field, one bit for each possible value of the tag. If bit n in this mask is
set, then the receipt of a message with a tag of n causes user_function to be ex-
ecuted. (Remember that you are limited to using only the first four bits of this
mask, corresponding to the tags O through 7.)

So, for example, the function call
CMOS_signal(SIGMSG , my_msg_handler , OXFE);

arranges the NI interrupt system so that when a Data Network message with a tag
from 1 to 7 is received, the user-defined procedure my_msg_handler is called.

Note: To use the cMOS_signal function, you must #include the file cm/
cm_signal.h. For more information on cMOS_signal, see the UNIX manual
page for the function. (This is included as Appendix E to this document.)

Tag Fields and the Message-Counting Registers

Tag fields also allow system software to automatically maintain a count of mes-
sages sent and received by the NI. This is a key part of the network-done feature
of the Control Network (see Section 4.2.9). It allows the NI to determine quickly
when the Data Network is clear of user messages. Two registers are used to con-
trol this message-counting feature:

nil_dr_message_count Register, contains current message count.
ni_count_mask Register, contains tag-count enable flags.

NI Version 2.2 (CM-5E), June 1994 51
Copyright © 1994 Thinking Machines Corporation

|

52

NI Programmer s Handbook
S R N 2

Message Count Disabling

The ni_dr_message_count register contains a signed 32-bit integer value that
is incremented when a Data Network message is sent (by any of the three inter-
faces), and decremented when a message is received.

When the message_count register becomes zero for all non-abstaining nodes,
the NI assumes that there are no countable messages in transit in the Data Net-
work. It is possible to disable message counting for messages with specific tag
values. (This is useful, for example, if you only wish to keep a count of user
messages, and want supervisor messages to go uncounted.)

The ni_count_mask register controls this enabling and disabling of message
counting. It contains 16 flags, one for each tag value. If the nth count_mask bit
is 1, then messages with a tag of n are counted by ni_dr_message_count. If
the nth bit is zero, messages with that tag are not counted.

It’s important to be sure that the sending and receiving nodes for a message agree
on whether the message’s tag should or should not be counted; if they do not
agree, the ni_dr_message_count register’s value is useless, and can wrap
around, becoming negative — see the discussion of this situation below.

Note: The supervisor can write a value to ni_dr_message_count, for exam-
ple, to set the register back to zero, but this should only be done when the Data
Network is not in use. Otherwise, there is no way to guarantee that the value of
this register remains the same as the value that was written into it.

Negative Message Count Interrupts

If the sum of the message_count registers for all nodes becomes negative, it
means that either a message was lost in transit or was counted incorrectly. If the
global message_count sum is negative when a Data Network operation is
attempted, a Yellow interrupt (dr count negative) is signaled. (See Section
B.3.4 in Appendix B.)

Note: If the message_count register is incremented or decremented beyond its
32-bit signed value capacity, its value “wraps around,” becoming negative. How-
ever, the register is large enough that this should not happen unless there is a
serious error (a hardware problem that causes messages to be lost, nodes that do
not agree on counting of tag messages, etc.).

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 3. The Data Network

3.5.5 The Send and Receive State Fields

The DR interface is mutually exclusive with the LDR and RDR interfaces. It is
an error to try to write a message to the DR send FIFO while there is a partially
completed message in either the LDR or RDR send FIFOs. Likewise, having a
partially completed message in the DR send FIFO makes it an error to try to send
a message via the LDR or RDR FIFOs. In either case, the status registers and
FIFOs of the excluded interface(s) are invalidated.

You can use the ni_dr_send state field to determine which interfaces are in
use. The value of this field is an integer from O to 2, with the following meanings:

0 No partial messages in any send FIFO.
1 Partial message in the DR send FIFO.
2 Partial message in either or both of the LDR or RDR send FIFOs.

There is also a corresponding ni_dr_rec_state field that you can use to deter-
mine which receive interfaces are in use. (However, because the DR interface
cannot be used to receive messages, this field is not as useful as
ni_dr_send state.) The value of the ni_dr_rec_state field is again an
integer from O to 2:

0 No partial messages in any receive FIFO.
1 Reserved. (The DR interface cannot receive messages.)
2 Partial message in either or both of the LDR or RDR receive FIFOs.

You can obtain the values of these fields by using the following macros:

DR_SEND_STATE (status)
DR_RECEIVE_STATE (status)

For example,

* int value = CMNA_LDR_status();
int send_state = DR_SEND_STATE (value) ;
int rec_state = DR_RECEIVE_STATE (value);

Implementation Note: The ni_dr_send_state and ni_dr_rec_state
fields exist only for the DR interface (that is, are accessible only from the
ni_dr_status register).

Note: The two half-network interfaces are not mutually exclusive. There is no
restriction on having partially completed messages simultaneously in the LDR
and RDR FIFOs. (This kind of simultaneous message sending is one reason that
the LDR and RDR interfaces exist.)

NI Version 2.2 (CM-5E), June 1994 53
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

3.5.6

3.6

54

The Network-Done Flag

The ni_router_done_complete flag is used by the Control Network as part
of its network-done message function. This feature is designed to make it easy
to synchronize the nodes after a Data Network operation.

You can use the following macro to access this flag:
DR_ROUTER_DONE (status)
For example,

int value = CMNA_LDR_status();
int network done = DR_ROUTER_DONE (value) ;

As noted above, the message-counting register ni_dr_message_count also
plays a part in the network-done feature. For more information on network-done
messages, see Section 4.2.9.

The Private Register

The private register for each of the network interfaces contains the following
subfields:

ni_dinterface_private Private register.
ni_rec_ok_ie Flag, “Receive OK” interrupt enable.
ni_lock Interface lock flag.
nl_rec_stop Interface stop flag.
ni_rec_full Flag, indicates receive FIFO is full.
ni_dr_rec_all_fall down Flag, set for All Fall Down message.
ni_all_fall_down_ie All Fall Down interrupt enable flag.

ni_all_fall down_enable Flag, triggers All Fall Down mode.
ni_sfifo_goes_empty_ie Send FIFO empty interrupt enable.
ni_rdone_complete_ie Network-done interrupt enable.

The rec_ok_ie, lock, rec_stop, and rec_£full subfields are as described
in Chapter 2. The remaining three fields are used to control the All Fall Down
mode feature of the Data Network, as described in Section 3.7 below.

Note: The subfield ni_rec_stop is accessible only from the DR interface (that
is, its value is defined only for the ni_dr_private register).

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 3. The Data Network

3.7

3.7.1

3.7.2

All Fall Down Mode

All Fall Down mode is a feature of the Data Network that is used primarily by
the supervisor for swapping processes out of partitions. When All Fall Down
mode is triggered within a partition of the Data Network, all messages currently
in transit within that partition are immediately routed downwards through the
network to the nearest possible node, regardless of their actual destination. This
process clears the Data Network of pending messages as swiftly as possible.

The three private register subfields, ni_dr_rec_all_fall_down,
ni_all_fall down_ie,and ni_all_fall down_enable, are used to trig-
ger All Fall Down mode, as well as to detect when an arriving Data Network
message is the result of All Fall Down mode.

Triggering All Fall Down Mode

. To trigger All Fall Down mode in a partition, each node in the partition should

setitsni_all_fall_down_enable flag to 1. This informs the Data Network
hardware that the NIs are ready to receive All Fall Down messages.

For the Curious: The Data Network is organized in layers, with each layer man-
aged by internal switching nodes. When All Fall Down mode is started by the
nodes, it is broadcast through all the layers of the Data Network, causing the
internal switching nodes to begin routing messages downward and out of the net-
work. The Data Network is designed in a fault-tolerant manner, so that even if
a given Data Network switching node is not yet in All Fall Down mode, an All
Fall Down message sent through it by a higher level node “falls through” and
continues moving toward the processing nodes.

Detecting All Fall Down Mode Messages

The flag ni_dr_rec_all_fall_down is set whenever the current message in
the receive FIFO is the result of an All Fall Down operation.

You can also have the NI trigger an interrupt when an All Fall Down message
becomes available in the receive FIFO (either by arriving at an empty FIFO, or
by being brought forward after a preceding message has been read out). If the
interrupt enable flag ni_all_fall_down_ie is set, the arrival of an All Fall
Down message triggers a Green interrupt (dr rec all £all down).

NI Version 2.2 (CM-5E), June 1994 55
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

3.7.3 Resending All Fall Down Mode Messages

56

Each message re-routed by All Fall Down mode carries with it enough informa-
tion so that the receiving node can resend the message to its intended destination.
When an All Fall Down message is read from the receive FIFO, the first word
read is not the first word of the message itself, but is an extra address word, con-
taining information about the intended destination of the message.

The All Fall Down address word has the following format:

31 28 27 24 23 20 n 0

i i 1 I

e | a [e [] o
where
header is a 4-bit header giving the length of the offser field
tag is the original tag field of the message
length is the message length ‘in words, excluding the address word
offset is an n-bit field used to construct the real address

The header field indicates the length of the offset field, but in a slightly convo-
luted manner. The length of the offset field, n, is 4 times the least integer not less
than one-half of the header value, h. In equation form:

- <
(An algorithmic way to get ths result is to take bits 29 - 31 of the header field
as an integer, arithmetically add bit 28, and left-shift the result by two bits.)

Once you have the offset length, take the physical address of the current node and
replace the least significant » bits with the n-bit value from the offser field. This
gives the destination physical address. For example, if the header value is 1, then
the offset is 4 bits in length. If the offset value is 0xC, and the physical address
of the current node is 0x00111, then the destination physical address is 0x0011C.

The tag and length fields duplicate the values obtainable from the rec_tag and
rec_length fields in the status register. However, these fields are included
in the All Fall Down address word because programmers may find them useful.

Note: When an All Fall Down message is received, the value of the
rec_length field is equal to the original length of the message — the number
of data words in the FIFO not counting the All Fall Down address word. How-
ever, the rec_length_left field contains the toral number of words left in the
receive FIFO, and this count includes the All Fall Down address word.

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 3. The Data Network

e

3.8 Interrupt Enable Flags

3.9

There are two interrupt enable flags in the ni_dinterface_private register.

Theni_sfifo_goes_empty_ie flag controls whether a Green interrupt (send
FIFO empty) is signaled when any Data Network send FIFO goes empty. The
ni_rdone_complete_ie flag controls whether an Orange interrupt (router
done complete) is signaled when a network-done operation completes.

Data Network Usage Note: Receive before You Send

An important strategy to keep in mind when using the Data Network is “Receive
before you send.” That is, in most cases you should structure your code so that:

= FEachnode attempts to read a message from the Data Network before send-
ing a new message into it.

= If a node is unable to send a message, the node attempts to read a message
to help decrease the network load.

The Data Network has a large capacity for messages from nodes, but the sheer
number of nodes connected to it can overwhelm it if the nodes send messages
into the network without attempting to receive them. Your code should be biased
toward removing messages from the network rather than adding them. Your code
should also provide fair opportunities for both receiving and sending, where
“fair” means the ratio between the two should be bounded both below and above,
and where “opportunity” means the opportunity to attempt sending or receiving
a message, whether or not the attempt is successful. Thus, the sending and re-
ceiving portions of your code should be called with fairly equal frequency.

When you are using the LDR and RDR concurrently, you should likewise main-
tain a balance in using both interfaces, so that neither interface becomes more
heavily loaded than the other. In short, the rule of thumb is: “Receive before you
send, but receive and send fairly.”

Note: Some applications use the LDR and RDR interfaces for completely differ-
ent purposes, and thus do not normally maintain a load balance between the two
halves of the Data Network (that is, one network interface may be used less often
than the other). Nevertheless, such application code should still try to maintain
a receive/send balance within each of the two network interfaces.

NI Version 2.2 (CM-5E), June 1994 57
Copyright © 1994 Thinking Machines Corporation

NI Programmer’s Handbook

a e v el Tt e PREAIEVEA

3.10 Examples

The examples shown below are code fragments intended to be run on the pro-
cessing nodes. See Chapter 7 for a discussion of large-scale program structure.

Also, since the interfaces for the DR, LDR, and RDR are virtually identical, the
examples below are written for the LDR only. Appropriate functions for the other
network interfaces can be obtained by appropriate substitution of names.

Sending and Receiving a Message

Here is a pair of functions that send and receive messages via the LDR interface.
The message is assumed to be composed of length words of data, and is sent with
the specified rag value to the node with the given dest_address.

int LDR_send (dest_address, message, length, tag)
unsigned dest_address, tag:
int *message;

int length;
{ int i;
CMNA_ldr_send_first(tag, length, dest_address);
while (length--) CMNA ldr_send word(* (message++));

return (SEND_OK(CMNA_ldr_status()));
}

/* Highest tag NOT currently assigned as interrupt */
int tag_limit=0;

int LDR_receive (message, length)
int *message;
int length;

int 1, tag = 999;
/* Skip messages currently assigned as interrupts
*/
while (tagrtag_limit) {
if (RECEIVE_OK(CMNA_ldr_status()))
tag = RECEIVE_TAG(CMNA_ ldr status());
}
while (length--)
* (message++) = CMNA_ldr_receive_word() ;
return (tag);

58 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 3.

o

e Data Network

For example, the following code fragment causes each node to send a message
to the node with the next-higher node address. (The node with the highest ad-
dress sends a message to node 0.)

int

int
for

LDR_

next_node = (CMNA _self_ address + 1)
% CMNA partition size;
i, message [MAX ROUTER_MSG_WORDS] ;

(i=0, i<MAX ROUTER_MSG_WORDS, i~++) message[i]=i;
send (next_node, message, MAX_ROUTER_MSG_WORDS, 0);

LDR_receive(message, MAX ROUTER_MSG_WORDS) ;

Sending and Receiving Long Messages

Of course, the functions above are limited by the size restriction on Data Net-
work messages. If you have a lot of data to send, you’ll probably want to use a
function that can send a message of any word length, breaking it up into chunks
as appropriate. Here’s such a function, which handles both sending and receiving
the message in a single function call:

/* Send/Receive function with no length restriction

*/

LDR_send_receive_msg(dest_address, message, length,

tag, dest)

unsigned dest_address, tag;
int *message, *dest;
int length;

int packet_size=MAX ROUTER_MSG_WORDS-1;

int send_size, receive_size;

int offset, source_offset=0, dest_offset;
int words_to_send=length, words_received=0;
int count, rec_tag, status;

while ((words_received<length) || (words_to_send))

/* First try to receive a packet */

status=CMNA_ldr_status{();

if (words_received<length &&
RECEIVE_OK(status) &&
RECEIVE_TAG(status) <= tag_limit) {

dest_offset = CMNA_ldr_receive_word{() ;

NI Version 2.2 (CM-5E), June 1994 59
Copyright © 1994 Thinking Machines Corporation

I
¢
!
|
i

NI Programmer s Handbook

receive_sizes=

RECEIVE_LENGTH_LEFT (CMNA_ldr_status());
for (count=0; count<receive size; count++)

dest [dest_offset++]=CMNA_ldr_receive_word() ;
words_received += receive_size;

}

/* Now try sending a packet */
if (words_to_send) {
send_size = ((words_to_send < packet_size) ?
words_to_send : packet_size);
do {
CMNA_ldr_send first(tag, send size+l,
dest_address) ;
/* Send offset of msg data being sent */
CMNA_ldr_send word(source_offset);
offset=source_offset;
for (count=0; count<send_size; count++)
CMNA_ ldr_send word(message [offset++]);
} while (!SEND_OK(CMNA_ ldr_status()));
source_offset=cffset;
words_to_send -= send_size;
}o/* if */
} /* while */

}

Here’s an example of how to call this function:

#define LONG_FACTOR 5

int mirror_node = (CMNA_partition size-1) -
CMNA_ self address;

int i, length = MAX ROUTER_MSG_WORDS*LONG_FACTOR;
int send[MAX_ROUTER_MSG_WORDS*LONG_FACTOR] ;
int receive [MAX ROUTER_MSG WORDS*LONG_FACTOR] ;

for (i=0, i<length, i++) long message[i]=i;

LDR_send_receive_msg(mirror_node, send,
length, 0, receive);

60 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 3. The Data Network

Interrupt-Driven Message Retrieval

Using interrupt-driven message retrieval simply requires that you define a han-
dler to be called when an interrupting message arrives. The handler should take
no arguments, and its returned value is ignored.

/* Message handler for interrupt-driven LDR test */
#include <cm/cm_signal.h>

int interrupt_done = 0;

int interrupt_expect_length;

int interrupt_receive [MAX ROUTER_MSG_WORDS] ;

void LDR_receive_handler ()
{
int temp=tag_limit;
tag_limit=3;
LDR_receive (interrupt_receive,
interrupt_expect_length) ;
tag limit=temp;
interrupt_done=1;

}

You use cMOS_signal to inform the NI that it should signal an interrupt from
some or all of the possible tag values. (Remember that you must #include the
header file cmsys/cm_signal to have access to cMOS_signal.) For example:

int 1, next_node, message_length=MAX ROUT-
ER_MSG_WORDS;
int message [MAX ROUTER_MSG_WORDS] ;
for (i=0, i<message_length, i++) message[i]l=i;
next_node = (CMNA_self address+1)

%CMNA _partition size;
/* signal interrupts for non-zero tag values */
CMOS_signal (SIGMSG , LDR_recelve_handler , 14);

/* Send message with an interrupt tag (3) */
interrupt_done = 0;

interrupt_expect_length = message_length;
LDR_send (next_node, message, message_length, 3);

/* Wait for handler to signal interrupt finished */
while (interrupt_done==0) {};
printf ("Received message: ");
for (i=0, i<message length, i++)
printf("%d ", messagel[i]);

NI Version 2.2 (CM-SE), June 1994 61
Copyright © 1994 Thinking Machines Corporation

NI Programmer's Handbo
R % SRR %

0
R IR s

k

e

Sending via LDR and RDR Simultaneously

One advantage to having the two sub-interfaces in the Data Network is that you
can send messages simultaneously through the LDR and RDR. For example,
here’s a pair of functions that send a single message via both interfaces, compar-
ing the received results to make sure that the message was received properly:

/* Send/Receive functions using LDR/RDR in tandem */
void LDR_RDR_send (dest_address, message, length,

tag)
unsigned dest_address, tag;
int *message, length;
{
int i;

CMNA_ldr_send_first(tag, length, dest_address);
CMNA rdr_send first(tag, length, dest_address);
for (i=0; i<length; i++) {
CMNA_ldr_send word (message[i]);
CMNA_rdr_send word (message [i]) ;
}
}

int LDR_RDR receive (message, length)
int *message, length;

{
int i, 1ldr_value, rdr_value, length received_ok=0;
while (!RECEIVE_OK(CMNA 1dr_status()) ||
IRECEIVE_OK(CMNA_ rdr_status())) ({}
for (i=0; i<length; i++) {
ldr_value=CMNA_1ldr_receive_word() ;
rdr_value=CMNA_rdr_receive_word();
if (ldr_value==rdr_value) {
message [i] =1dr_value;
length_received ok++;
}
}
return{length received ok);
}
62 NI Version 2.2 (CM-5E), June 1994

Copyright © 1994 Thinking Machines Corporation

. .Mr..m.,.’*

A ey

ST —

¥
3
%
a4

Chapter 4
The Control Network

The Control Network consists of three interfaces, the broadcast interface (BC),
the combine interface (COM), and the global interface.

Figure 13. The three interfaces of the Control Network: BC, COM, and global.

The broadcast and combine interfaces are very similar, and there are some inter-
nal interactions between these two interfaces that you’ll need to keep in mind.
The global interface, however, is different in both structure and purpose from
either of the other two interfaces.

This chapter describes the three Control Network interfaces, and presents the
registers that are used to manipulate them.

NI Version 2.2 (CM-SE), June 1994 ' 63
Copyright © 1994 Thinking Machines Corporation

4.1

4.1.1

NI Programmer’s Handbook

The Broadcast Interface

The broadcast interface is used to broadcast a message from a single source node
to all nodes in the same partition (including the broadcasting node).

The broadcast interface provides two separate register interfaces, one for user
broadcasts (BC), and one for supervisor broadcasts (SBC). The two register in-
terfaces are completely independent, and can be used concurrently to broadcast
messages. Where the sections below refer to “broadcast messages™ generically,
the description applies equally and independently to both the user and supervisor
interfaces.

Implementation Note: Because of the way the broadcast and combine interfaces
interact, if a node is abstaining from a combine operation, that node should not
execute a broadcast operation until the combine operation is completed. (For
more information, see Section 8.2.6.)

Broadcast Register Interfaces

The two broadcast register interfaces are based on the generic model presented
in Chapter 2. The only difference between them is that the supervisor broadcast
registers can be accessed only from the supervisor area.

The following NI registers form the broadcast interface:

ni_binterface_send first Used to send the first value of a message.

ni_binterface_send Used to send the rest of the message.
ni_binterface_recv Used to receive a message.
ni_binterface_status Status register.
ni_binterface_control Control register.
ni_binterface_private Supervisor control register.

The binterface part of these names is a unique abbreviation for each interface:
bec - user broadcast interface sbc - supervisor broadcast interface

The purpose and use of each of these registers is described in the sections below.
Figure 14 contains a memory map showing the relative locations of these regis-
ters in the user and supervisor areas.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 4. The Control Network

The Broadcast Interface Registers at a Glance:

hex offsets
bc sbc

0x3000 0x4000

ni_x send first

0x0640 0x0840
0x0630 0x0830
0x0620 0x0820

ni_x send

ni_x_rec

al_x_control 0x0610 0x0810

ni—jffprivate, 0x0608 0x0808

ni_x_status 0x0600 0x0800

ni_interface_send_first Addressing Patterns

user/supervisor bit
interface

NI base address index

sBC [———-- 1]0000]1 o[o o[ojofo|o| 1length 000
BC | - x| 0000 011[1 o{o]o[o[o length 000
31 20 1% 18 15 14 12 11 7 6 3 2 0

Figure 14. NI registers associated with each of the broadcast interfaces.

4.1.2 Broadcast Messages

A broadcast message is essentially synchronous — a single node broadcasts a
message that is received by all nodes in its partition (including the broadcasting
node itself).

Only one node in each partition can broadcast via a given interface at any time.
If two or more nodes in the same partition attempt to broadcast simultaneously,
via the same interface (user or supervisor), the effect is unpredictable. An error
may be signaled and/or transmitted data may be lost. (Remember, however, that
the user and supervisor broadcast interfaces operate independently, and can be
used concurrently by different nodes in the same partition.)

NI Version 2.2 (CM-5E), June 1994 65
Copyright © 1994 Thinking Machines Corporation

4.1.3

66

NI Programmer s Handbook

Broadcast messages are atomic with respect to sending; a broadcast message is
not transmitted until all its component words have been written to the send FIFO.
Broadcast messages are not atomic in transit, however. A multiword message
may be split in transit into two or more smaller messages. In addition, as broad-
cast messages arrive at each node they are concatenated together in the receive
FIFO.

From the point of view of each receiving node, it always appears as if there is
exactly one broadcast “message” waiting to be read from the receive FIFO. Once
a node begins receiving a message (that is, when it examines the status register
to determine the length of message that is available), the length of the message
is fixed, and a new “message” is formed behind it in the FIFO from any words
that arrive while the first message is being read out.

Although the length of a broadcast message is not maintained, the order of the
words within a message is maintained, as well as the order of messages sent and
received via the same interface, user or supervisor. (There is no predictible rela-
tionship, however, between the deliveries of user and supervisor messages to the
same node. Effectively, the two interfaces act as independent “streams” of mes-
sages.)

Usage Note: The broadcast interface is designed in such a way that a message
is not removed from the send FIFO before all non-abstaining nodes have received
it. This feature can be used to force synchronization of the nodes.

Implementation Note: Each broadcast interface’s private register includes a
supervisor flag, ni_send_enable, which controls whether broadcast sending
is enabled via that interface. (See Section 4.1.8 for a description of these flags.)

Sending Broadcast Messages

A broadcast message consists of a series of one or more words. The maximum
length allowed for a message is determined by the length limit of the send FIFOs.
The only auxiliary information associated with a broadcast message is its length.
However, the length is only meaningful for the node that sends a message, be-
cause of the way messages can be split and concatenated in transit.

Programming Note: The length limit of the broadcast send FIFOs is given by
the constants MAX BROADCAST_MSG_WORDS and MAX_SBC_MSG_WORDS (cur-
rently 4 for both interfaces).

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

i
j

Chapter 4. The Control Network

4.14

4.1.5

The following FIFO registers are used to send messages:

ni_binterface_send_first Used to send the first value of a message.
ni_pbinterface_send Used to send the rest of the message.

and there are corresponding send_first and send macros:

CMNA_bc_send_first (length, value)
CMNA_bc_send_first_ double (length, value)

CMNA_bc_send_word (value)
CMNA_bc_send float (value)
CMNA_bc_send_double (value)

For the send_£irst macros, the length argument is the length of the message
in words, and value is the first value of the message. For the send macros, value
is the second and succeeding values of the message.

Auxiliary Information

The auxiliary data field of a broadcast message (BC or SBC) has the form
8 0
0 0000 length

where length is the length of the message in words. The length field can have any
value from 1 up to MAX_BROADCAST_MSG_WORDS or MAX_ SBC_MSG_WORDS.
(The high-order bits of the auxiliary data have no useful meaning, but must al-
ways be specified as 0.)

The following constant specifies the starting bit position of the length field:

NI_BC_SEND_AUXILIARY LENGTH_P The length field offset (0). -

Receiving Broadcast Messages

Broadcast messages are received as described in Chapter 2. For each broadcast
interface, the following register is used to receive messages:

ni_binterface_recv FIFO register from which values are read.

NI Version 2.2 (CM-5E), June 1994 67
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

4.1.6

68

To receive a message from the broadcast interface, use the network-specific read-
ing operations described in Chapter 2:

value = CMNA_bc_ receive_word() ;
value CMNA_bc_receive_f£float () ;
value CMNA_bc_receive_double () ;

The Broadcast Status Register

The status registers for each of the interfaces contain the following subfields:

ni_binterface_status Status register.
ni_send_ok Flag, status of message being sent.
ni_send space Field, space left in send FIFO.
ni_send_empty Flag, indicates empty send FIFO.
ni_rec_ok Flag, indicates receipt of message.

ni_rec_length_left Field, words left in the FIFO.

The meanings of these sub-fields are as described in Chapter 2. You can obtain
the values of these sub-fields by using the generic field extractors described in
Chapter 2 (Section 2.5.4).

The macro used to get the value of the broadcast status register is
int value = CMNA_bc_ status ()

Note: As described in Section 1.4 in the Appendixes, the bit length of the
length_left field has changed; to access this field, you should use the macro
BC_RECEIVE_LENGTH (status-value) for both the BC and SBC interfaces.

How to Interpret the Value of the “Length Left” Field

The NI combines broadcast messages as they are received, so there is never more
than one “message” waiting to be read from the receive FIFO. However, broad-
cast messages are never appended to 2 message that is in the process of being
retrieved, so you needn’t worry that a message will grow unexpectedly.

Once you have retrieved the first value of a received message, it is safe to assume
that reading a number of words equal to the rec_length_left value retrieves
the rest of the message. (Remember, however, that this method is not guaranteed
to read all words of a multiword message that was divided in transit.)

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 4. The Control Network

4.1.7 Abstaining from the Broadcast interface
Each broadcast interface has an abstain flag that you can use to cause the NI to
ignore incoming broadcast messages. The abstain flag’s effects and use are as
described in Section 2.6.
ni_binterface_control Status register, contains rec_abstain field.
ni_rec_abstain Flag, broadcast interface abstain flag.
The address constant for the abstain register is be_control_reg. You can use
the macros described in Section 2.6.3 to read and write the abstain flag:
value = CMNA read_abstain flag(bc_control_reg) ;
CMNA_write_abstain_flag(bc_control_reg, value) ;
4.1.8 The Broadcast Private Register
The private register for each broadcast interface contains the following subfields:
ni_binterface_private Private register.
ni_rec_ok_ie Flag, “Receive OK” interrupt enable.
ni_lock Interface lock flag.
ni_send_stop Interface stop flag.
ni_rec_full Flag, indicates receive FIFO is full.
ni_send_enable Flag, enables/disables send FIFO.
The rec_ok_ie, lock, send_stop, and rec_full subfields are as described
in Chapter 2. The remaining field is described below.
The Send Enable Flag
Each broadcast interface has an ni_send_enable flag, which is used to enable
and disable the broadcast send FIFO. When this flag is set to 1, message sending
is permitted. When the flag is set to 0, an attempt to write a message to the send
FIFO signals a Bus Error. The send_enable flag should be changed only when
there are no broadcast messages pending for the interface.
Usage Note: While this flag can be used as a kind of “send abstain” flag to
ensure that only one node broadcasts at any given time (that is, by disabling send-
ing for all nodes but the one making the broadcast), it is much simpler to
structure your code so that only one node is permitted to broadcast at any time.
NI Version 2.2 (CM-5E), June 1994 69

Copyright © 1994 Thinking Machines Corporation

4.1.9

70

NI Programmer s Handbook

5

Implementation Note: The CMOST operating system sets the send_enable
flag for the broadcast interface (but not the supervisor interface) to 0 by default.
This flag must be set to 1 to permit broadcasting of messages. To turn on this
flag, you can use the following C macro call; this call must be made prior to any
broadcast interface operations:

CMNA_participate_in (NI_BC_SEND ENABLE) ;

Broadcast Interface Examples

The examples shown here are fragments of code intended to be run on the pro-
cessing nodes. See Chapter 7 for a discussion of large-scale program structure.

Sending and Receiving a Message

These functions send and receive messages via the broadcast interface. The mes-
sage is assumed to be composed of length words of data starting at the memory
location specified by message.

int BC_send(message, length)
int *message, length;

{
int i;
CMNA bc_send first(length--, *message++);
for (i=0; i<length; i++)

CMNA_bc_send_word (*message++) ;

return(SEND_OK(CMNA bc_status()));

int BC_receive (message, length)
int *message, length;

int i;
for (i=0; i<length; i++) {
while (!RECEIVE_OK{CMNA_bc_status())) {}
message [i] = CMNA_bc_receive_word () ; }
return(length) ;

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 4. The Control Network

L. oty P R I G T)

For example:

int i, message [MAX BROADCAST MSG_WORDS] ;
for (i=0, i<MAX BROADCAST MSG_WORDS, i++)
message [1]=1;

BC_send (message, MAX BROADCAST MSG_WORDS) ;
BC_receive (message, MAX BROADCAST MSG_WORDS) ;

4.2 The Combine Interface

The combine interface is used for executing operations that combine in parallel
a single value from each processing node.

These are the supported operations:

= parallel prefix (scanning), which performs a cumulative operation (addi-
tion, maximum, logical AND, etc.) over the values from each node in
either increasing or decreasing order of send addresses

= reduction, which combines the values from all the nodes and then returns
this single combined result to all participating nodes

® network-done, which simplifies the task of synchronizing the nodes after
a Data Network operation

Each operation is described in more detail below.

Implementation Note: Because of way the broadcast and combine interfaces
interact, if a node is abstaining from a combine operation, that node should not
execute a broadcast operation until the combine operation is completed. (For
more information, see Section 8.2.6.)

NI Version 2.2 (CM-5E), June 1994 71
Copyright © 1994 Thinking Machines Corporation

4.2.1

72

NI Programmer s Handbook

The Combine Register Interface

The combine interface’s register interface is based on the generic model pres-
ented in Chapter 2, and includes the following registers:

ni_com send first Used to send the first value of a message.

ni_com send Used to send the rest of the message.
ni_com_recv Used to receive a message.

ni_com_status Status register.

ni_com_control Control register.

ni_com_private Supervisor control register.

ni_scan_start Control register used to set scanning segments.

The purpose and use of each of these registers is described in the sections below.
Figure 15 contains a memory map showing the relative locations of these regis-
ters in the user and supervisor areas.

The Combine Interface Registers at a Glance:

hex offset

fzi_com_.sgnd_f irst 0%5000
B

iy 0x0A40
ni_com_send O0X0A30
ni,_com rec 0X0A20
.p;_com_cont:?o; | oxoa1o
ni_com pr iv§te 0%0A0S
ni_com_status 0%0A00

ni_interface_send_first Addressing Pattern

user/supervisor bit
intexface

NI base address $ index

com -——— X|10000} 1 l 0 I 1 |pattern| combiner length 000
31 20 1% 18 15 14 12 11 10 ¢ 7 6 3 2]

Figure 15. NI registers associated with the combine interface.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

4.2.2

4.2.3

Combine Messages

The combine interface is essentially synchronous — combine operations are not
completed until all non-abstaining nodes have sent the same type of combine
operation. If two nodes attempt to start different combining operations at the
same time, a Yellow interrupt (bc¢ or com collision) is signaled. Once this
interrupt has been signaled, combine messages are no longer guaranteed to be
valid — it is necessary to flush the Control Network to restore normal operation
(see the discussion of Control Network flushing in Section 6.4).

Combine messages are atomic in both sending and receiving; a combine message
is not transmitted until all its component words have been written to the send
FIFO, and arrival of each message is not reported until all the words of the mes-
sage have arrived in the receive FIFO.

The order of combine messages is strictly preserved in transit. With the exception
of the network-done operation, which uses a different mechanism, the results of
combine operations are delivered into the receive FIFO in the same order the
operations were started.

Combine operations can be pipelined. Although all nodes must start the same
combine operation in order for that operation to complete, nodes are not required
to read the results of each combine message before sending the next. The length
of the pipeline is limited only by the capacity of the message FIFOs.

Important: Pipelined messages cannot use doubleword read/write operations —
see Section 8.1.2.

Sending Combine Messages

A combine message consists of a series of one or more words, with the exception
of network-done messages, which are always 1 word in length. The maximum
length allowed for a message is determined by the length limit of the send FIFO.

Programming Note: The length limit of the combine interface send FIFO is giv-
en by the constant MAX COMBINE_MSG_WORDS (currently 5).

The following FIFO registers are used to send messages:

ni_com_send_first Used to send the first value of a message.
ni_com_send Used to send the rest of the message.

NI Version 2.2 (CM-5E), June 1994 73
Copyright © 1994 Thinking Machines Corporation

4.2.4

74

NI Programmer s Handbook

and there are corresponding send first and send macros

CMNA_com_send_£irst (combiner, pattern, length, value)
CMNA_com_send_first_double (combiner, pattern, length,value)

CMNA_com_send_word (value)
CMNA_com_send float (value)
CMNA_com_send_double (value)

For the send_first macros, the length argument is the length of the message
in words, and value is the first value of the message. The combiner and pattern
arguments are described in the sections below, covering each of the possible
combine cperations.

For the send macros, value is the second and succeeding values of the message.

Auxiliary Information

The auxiliary information has three components: the length of the message in
words, a three-bit combiner value, and a two-bit partern value. (The legal com-
biner and pattern values are described below.)

The auxiliary data field of the message has the form
8 0

T

pattern| combiner length

where
pattern is a two-bit value selecting the order in which values are combined
combiner is a three-bit value selecting the combine operation performed

length is the length of the message in words
The following constants specify the starting bit positions of these fields:

NI_COM_SEND_AUXILIARY PATTERN P The partern field offset (7).
NI_COM SEND_AUXILIARY COMBINER_P The combiner field offset (4).
NI_COM_ SEND_ AUXILIARY LENGTH_P The length field offset (0).

NI Version 2.2 (CM-3E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 4. The Control Network

To construct a send_first address, add the following values:

The pattern value: pattern << NI_COM_SEND_AUXILIARY_ PATTERN_P
The combiner value: combiner << NI_COM_SEND_AUXILIARY_ COMBINER_P
The length value: length << NI_COM_SEND_AUXILIARY LENGTH_P

4.2.5 Legal Combiner and Pattern Values

For scans and reductions, these are the legal pattern and combiner values:

pattern:
1 — Backward scan (combine in decending order of node address).
2 — Forward scan (combine in increasing order of node address).

3 — Reduction operations.

combiner:
0 — Bitwise inclusive OR.
1 — Signed addition.
2 — Bitwise exclusive OR.
3 — Unsigned addition.
4 — Signed maximum.

A pattern value of 0, together with a combiner value of 5, specifies a network-
done operation, described later in this chapter. The combiner values 6 and 7 are
not currently used.

The following constants can be used to specify the value of the pattern field:

SCAN_FORWARD Forward scan pattern (2).
SCAN_BACKWARD Backward scan pattern (1).
SCAN_REDUCE Reduction scan pattern (3).
SCAN_ROUTER_DONE Network-done operation (0).

The following constants can be used to specify the value of the combiner field:

OR_SCAN Inclusive OR (0).
ADD_SCAN Signed addition (1).
XOR_SCAN Exclusive OR (2).
UADD_SCAN Unsigned add (3).

MAX SCAN Signed maximum (4).
ASSERT ROUTER_DONE Network-done operation (5).

The length field can have any value from 1 up to MAX_COMBINE_MSG_WORDS.

NI Version 2.2 (CM-5E), June 1994 75
Copyright © 1994 Thinking Machines Corporation

4.2.6

4.2.7

76

NI Programmer s Handbook

R

Receiving Combine Message

The message-receiving interface of the combine interface is as described in
Chapter 2, with the exception of the network-done operation, which is received
through the Data Network status field ni_router_done_complete (see Sec-
tion 4.2.9).

The following register is used to receive combine messages:
ni_com _recv FIFO register from which values are read.

To receive a message from the combine network, use the network-specific read-

. ing operations described in Chapter 2:

value = CMNA_ com_recelve_word() ;
value = CMNA com_recelve float();
value CMN2A_com_recelive_ double () ;

The Combine Status Register

The combine status register contains the following subfields:

ni_com_status Status register.
ni_send ok Flag, status of message being sent.
ni_send_space Field, space left in send FIFO.
ni_send empty Flag, indicates empty send FIFO.
ni_rec_ok Flag, indicates receipt of message.
ni_rec_length Field, length of message in words.
ni_rec_length_left Field, words left in the FIFO.
nl_com_scan_overflow Flag, indicates add-scan overflow.

The send_ok, send_space, send_empty, rec_ok, rec_length, and
rec_length_left subfields are as described in Chapter 2, and you can obtain
the values of these sub-fields by using the generic field extractors described in
that chapter. The remaining flag, com_scan_over£flow, is described in Section
4.2.8.

Use this C macro to get the value of the combine status register:

int value = CMNA _com_status ()

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 4. The Control Network

4.2.8 Scanning (Parallel Prefix) and Reduction Operations

In a scan or reduction operation, each node sends a single value that is combined
with the values sent by the other nodes in the partition. A scan or reduction mes-
sage is from 1 to 5 words in length, representing a value to be combined.

When each participating node has sent a value, the values are combined accord-
ing to the combiner and pattern in the auxiliary data of the message, and the
result is delivered after a brief interval to the receive FIFOs of the nodes.

For scan operations, the node values are combined cumulatively — that is, the
result for each node is the combination of the values transmitted by all nodes
having lower (or higher) relative addresses. Forward scans combine values in
order of ascending node addresses. Backward scans combine values in order of
descending node addresses.

Reduction is a special case of scanning. When a reduction message is sent, the
values from all participating nodes are combined into a single value, and then
this single result is sent to all the nodes.

The legal combiner and pattern values for scans and reductions can be specified
as symbolic constants. The combiner argument must be one of the constants

= ADD_SCAN Signed addition.

" UADD_SCAN Unsigned addition.

®" OR_SCAN Bitwise inclusive OR.
" XOR_SCAN Bitwise exclusive OR.
* MAX_SCAN Signed maximum.

and the pattern argument must be one of the constants
" SCAN_FORWARD Values are combined in ascending address order.
® SCAN_BACKWARD Values are combined in descending address order.

" SCAN_REDUCE Reduction operation.

Important: If you are sending a message that is longer than one word, the order
in which the words of the message are written depends on the combine operation:

= Maximum operations require the most significant word to be written first.
= Both types of addition require the least significant word to be written first.

®= Inclusive and exclusive OR have no word-ordering requirement.

NI Version 2.2 (CM-5E), June 1994 77
Copyright © 1994 Thinking Machines Corporation

78

NI Programmer s Handbook

Scanning with Segments

You can use segmented scanning to divide a partition into segments of nodes —
regions of nodes within which forward and backward scanning is done indepen-
dently of all other nodes in the partition. The scan values obtained within each
segment do not affect the values obtained in any other segment.

Note: Reduction operations do not use segmented scanning. Reduction scans -

ignore the current segment settings.
The following control register is used to read and set the current segmentation:
ni_scan_start One-bit control register, indicates start of scan segments.

The one-bit flag in ni_scan_start is used to indicate the starting points of
segments. Segments begin in each node where ni_scan_start is 1, and extend
through the nodes in order of node address — upward for forward scans, down-
ward for backward scans. If noni_scan_start flags are set in a partition, then
the entire partition is treated as one segment.

Note: It is an error to change the value of the scan_start flag while the com-
bine send FIFO is not empty. (For example, you can’t toggle the scan_start
flag in the middle of a series of pipelined combine operations.)

You can read and modify the value of ni_scan_start by using these macros:

int value = CMNA_segment_start () ;
CMNA_set_segment_ start (value)

Important: If you are sending a multiword message, the value of
ni_scan_start when the first value is written applies to the entire message.
Altering the flag after the first value is written has no effect on the message.

Addition Scan Overflow

Addition scans on large values can cause arithmetic overflow in some nodes. The
ni_com_scan_overflow flag in the status register indicates whether the
current scan result has suffered arithmetic overflow.

ni_com_status Status register.
ni_com_scan_overflow Flag, set if add scan had overflow.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 4.

Do s a4

4.2.9

B B I T T D N R I PR

The Control Network

L L eIt awe e e e M e v e s ermase we s e L et L n tases, e sr e wrg

This flag is 1 if the current message in the receive FIFO suffered arithmetic over-
flow; otherwise, it is 0. You can obtain the current value of this flag by using the
field extraction macro:

value = COMBINE_OVERFLOW (status) ;

Note: The com_scan_overflow flag’s value is defined only when the current
message in the receive FIFO is the result of a scan or reduction operation with
a combiner of addition or unsigned addition.

You can also instruct the NI to signal an interrupt for scan overflow. The
private register contains a flag, ni_com_scan_overflow_ie, that when set
to 1 causes an a Green interrupt (scan overflow) to be signaled when a scan
result that overflowed is read from ni_com_recv.

Network-Done Messages

Network-done messages are used to synchronize the processing nodes after a
Data Network operation. A network-done message is sent by a node when it has
completed sending its Data Network messages and is waiting for the other nodes
to finish. (Of course, even after a node has sent a network-done message, it may
still receive Data Network messages.)

Important: Although network-done messages are directly related to the opera-
tion of the Data Network, they are a feature of the combine interface of the
Control Network. All non-abstaining processors must start a network-done mes-
sage before the network-done operation can be completed.

A network-done message is always of length 1, and the actual word written is
ignored — all that matters is the sending of the message itself. Network-done
messages have a unique pair of combiner and pattern values: the combiner field
for the message must be 5, and the pattern field must be 0.

There is a unique pair of combiner and pattern constants that are used to signal
a network-done operation:

combiner: ASSERT_ROUTER_DONE pattern: SCAN_ROUTER_DONE

Network-done messages are an exception to the usual message-reception inter-
face of the combine interface. The result of a network-done message is not
delivered as a value in the receive FIFO.

NI Version 2.2 (CM-5E), June 1994 79
Copyright © 1994 Thinking Machines Corporation

80

NI Programmer s Handbook

R

Instead, the Data Network flag ni_router_done_complete is used to indi-
cate when the network-done message has been sent by all nodes:

ni_dr_status Data Network (DR) status register.
ni_router_done_complete Network-done completion flag.

When a node sends a network-done message, the ni_router_done_complete
flag of that node is set to 0. When all non-abstaining nodes have sent a network-
done message, and when the Data Network has no pending messages for any
node, the ni_router_done_complete flag is set to 1 for all nodes.

You can use the following C macro to access this flag:
DR_ROUTER_DONE (status)

Usage Note: An attempt to send a network-done message with a length other
than 1, or to send a network-done message while another such message is still
in progress (that is, while the ni_router_done_complete flag is zero) signals
a Bus Error.

How Network-Done Works...

Network-done messages continually use the combine interface hardware until
they are completed, so any combine operations started after a network-done
won’t complete until after the network-done message is completed.

The network-done operation makes use of the ni_dr_message_count register
of the Data Network to determine when the Data Network is clear. As described
in Section 3.5.4, each node increments this register when it sends a message, and
decrements the register when it receives a message. (Not counting, of course,
messages for which counting is disabled by a 0 flag in ni_count_mask.)

When the ni_dr_message_count register is zero for all non-abstaining nodes,
there should be no messages in transit through the Data Network. (Again, this
may not be the case if there are messages for which message-counting is dis-
abled, but this does not prevent the use of the network-done operation.)

A network-done message basically does a repeated addition scan on the values
of the ni_dr_message_count register for all non-abstaining nodes. When the
global result of this scan is zero, then the NI assumes that the Data Network is
clear, and sets the ni_router_done_complete flag to 1.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 4. The Control Network

4.2.10

o

i . FARORRCS S - S PR AL

..And Why You Should Care

Since network-done operations involve a combine interface scan of the value of
a Data Network register, you should be careful about setting and changing the
abstain flags of the combine interface when you intend to send a network-done
message. (See Section 4.2.10 for a discussion of the combine interface’s abstain
flags.)

For example, if you change the combine abstain flags of one or more nodes while
a Data Network operation is in progress, you may inadvertently exclude one or
more nodes that have non-zero message_count registers. If you then start a
network-done operation, these registers are ignored by the implied addition scan.
In most cases, this prevents the result of the scan from ever becoming zero, and
thus prevents the network-done message from completing.

To send a network-done message safely, make sure that the combine abstain flags
of all nodes that might send or receive a message via the Data Network are
cleared before starting the Data Network operation, and make sure those abstain
flags remain cleared until after the network-done message has been completed.

Abstaining from the Combine Interface

The combine interface has two abstain flags that you can use to cause the NI to
abstain from combine interface transactions.

ni_com_control Status register, contains combine abstain flags.
ni_rec_abstain Flag, combine interface abstain flag.
ni_reduce_rec_abstain Flag, special reduction abstain flag.

Setting the ni_rec_abstain flag to 1 causes the NI to discard any arriving
combine interface messages, and allows any messages sent by other nodes to
complete without the participation of the abstaining node.

In the case of combine operations that expect a value from each node, abstaining
nodes effectively supply an appropriate identity value for the operation.
However, no result value is written to an abstaining node’s receive queue (with
the exception of reduction operations — see below).

NI Version 2.2 (CM-5E), June 1994 81
Copyright © 1994 Thinking Machines Corporation

82

vl when W L w e L O S N R) R PP N LR AT

NI Programmer s Handbook

W

You can use the abstain flag macros described in Section 2.6.3 to read and write
the abstain flag, using the register address constant com_control_reg:

value = CMNA read_abstain flag(com_control_reg);
CMNA write_abstain flag(com _control_reg, value) ;

Important: As with all abstain flags, the ni_rec_abstain flag and the
ni_reduce_rec_abstain flag should be changed only when there are no
messages pending in the combine interface. If a message is currently being writ-
ten to the send FIFO when either abstain flag is changed, a Yellow interrupt (com
abstain changed) is signaled.

Implementation Note: Because of way the broadcast and combine interfaces
interact, a node that is abstaining from a combine operation should nor execute
a broadcast operation until the combine operation is completed. (For more in-
formation, see Section 8.2.6.)

The Reduction Receive Abstain Flag

For scan operations, no result value is written to an abstaining node’s receive
FIFO. For reduction operations, however, there is an additional abstain flag,
ni_reduce_rec_abstain, that controls whether or not the abstaining node
receives the result.

Setting this flag to 1 causes a node to ignore the results of reduction operations.
If ni_rec_abstain is 1 and ni_reduce_rec_abstain is 0, the node
receives the results of reduction operations without having to supply a value for
them. (For more detail, see the section on reduction operations below.)

You can use the following macros to read and write the receive abstain flag:

value = CMNA read rec_abstain_flag(com_control_reg);
CMNA write_rec abstain flag(com control_reg, value);

For the Curious: The reason for this distinction is that there are important cases
where it is necessary for a node to receive the result of a reduction without having
to participate in it. For example, when you want to transfer a value from the
nodes of a partition to the partition manager, you can set the combine abstain
flags so that the nodes transmit a reduction message and only the PM receives it.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 4. The Control Network

4.2.11 The Combine Private Register

The combine interface’s private register contains the following subfields:

ni_com_private Private register.
ni_rec_ok_ie Flag, “Receive OK” interrupt enable.
ni_lock Interface lock flag.
ni_rec_stop Interface stop flag.
ni_rec_full Flag, indicates receive FIFO is full.
ni_com_scan_overflow_ie Flag, scan overflow interrupt enable.
ni_com_rec_empty_ie Flag, empty rec. FIFO inter. enable.
ni_com send_length Field, send-message length.
ni_com_send combiner Field, send message combine value.
ni_com_send_pattern Field, send message pattern value.
ni_com_send_start Flag, scan segmentation flag.

The rec_ok_ie, lock, rec_stop, and rec_full subfields are as described
in Chapter 2. The ni_com_scan_overflow_ie flag is described in Section
4.2.8. The remaining fields are described in the sections below.

Empty Receive FIFO Interrupt

When the ni_com_rec_empty_1ie flag is set to 1, the NI signals a Green inter-
rupt (com rec empty) if the receive FIFO ever becomes empty (that is, when
the rec_ok flag becomes 0). This allows the supervisor to insert one or more
messages into the empty receive FIFO, so that from a user program’s point of
view, the FIFO is never empty. (This is used by the OS in context switching.)

Clearing the Combine Send FIFO

The pipelining feature of the combine interface means that when the supervisor
needs to swap a process out, there may be several complete messages pending
in the combine send FIFO, each of which has its own auxiliary information (each
message may have different combine and pattern values, for instance).

The supervisor extracts messages from the send FIFO by reading them, one at a
time, from the ni_com_send register. Reading a value from this register extracts
the word (or doubleword) that was most recently pushed into the FIFO.

Important: Once the supervisor begins reading words from the send FIFO, the
FIFO must be emptied before a new message can be written to it. (This avoids

NI Version 2.2 (CM-5E), June 1994 83
Copyright © 1994 Thinking Machines Corporation

84

NI Programmers Handbook
e B D L N

the potential for accidentally pushing a new message on top of a half-extracted
old message.) The effect of violating this restriction is undefined.

Usage Note: It is only legal to read a value from the ni_com_send register
when the combine interface is not being used (that is, when the receive FIFO is
empty and no node in the partition is or will be in the process of writing a com-
bine message while the contents of the send FIFO are being read out.

The four private register fields send_length, send_combiner,
send pattern, and send_start contain the auxiliary data and segmentation
information for the most recent message in the send FIFO (that is, the message
that includes the next word that the supervisor can read from the send FIFO).

Specifically:
ni_com_send length Field, send message length.
ni_com_send combiner Field, send message combine value.
ni_com_send_pattern Field, send message pattern value.
ni_com_send_start Flag, scan segmentation flag.

® send_length is the number of words in the entire message.
* send combiner is the combine value for the message.
* send pattern is the pattern value.

* send start is the ni_scan start register value for the message.

The supervisor can use these fields like the corresponding status register fields
to obtain the auxiliary data for messages extracted from the send FIFO. The
send_length field is undefined for a network-done message. (The message is
always one word in length.) The value of scan_start is undefined for reduc-
tion and network-done messages, which ignore the segmentation flag.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 4. The Control Network

e

4.2.12 Combine Interface Examples

The examples shown here are fragments of code that are intended to be run on
the processing nodes. See Chapter 7 for a discussion of large-scale program
structure.

Sending and Receiving a Combine Message

This function sends a message via the combine interface. The message is as-
sumed to be composed of length words of data starting at the location specified
by message, and is sent with the given combiner and pattern.

int COM_send(combiner, pattern, message, length)
int *message, combiner, pattern, length;
{ int i, start, step;
/* For max scans, send high-order word(s) first */
if (combiner==MAX SCAN) {start=length-1; step=-1;}
else { start=0; step=1; }
CMNA_com_send_first (combiner, pattern,
length, message[start]);
for (i=1; i<length; i++)
CMNA_com_send_word (message [(start+=step)l);
return (SEND_OK(CMNA_com_status())); }

This function receives a message, stores it in memory beginning at the location
specified by message, and returns the length of the message received. (Note that
a combiner must also be specified, so that maximum scans are retrieved in the
right order.)

int COM_receive (combiner, message)
int *message;
{ int i, length, start, step;
while (!RECEIVE_OK(CMNA com_status())) ({}
length=RECEIVE_LENGTH (CMNA_ com_status());
/*For max scans,receive high-order word(s) first*/
if (combiner==MAX SCAN) {start=length-1; step=-1;}
else { start=0; step=1; 1}
for (i=0; i<length; i++) {
message [start] = CMNA com_receive_word() ;
start+=step; }
return(length) ;

NI Version 2.2 (CM-5E), June 1994 85
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

Executing Scans and Reduction Scans

This function sends and receives a scan using the given message of length words,
with the specified combiner and pattern, storing the result in memory starting at
result.

int COM_scan(combiner, pattern, message,
length, result)
int *message, *result, combiner, pattern, length;

int status=0, rec_length;
while (!status)
status=COM_send (combiner,pattern, message, length) ;
rec_length = COM_receive (combiner,result);
return(rec_length) ;
}

Here’s an example of a simple scan using integer values:

int send[MAX COMBINE_MSG_WORDS],
receive [MAX COMBINE_MSG_WORDS] ;

for (i=1; i<MAX COMBINE MSG_WORDS; i++)
send[i]=1i;

COM_scan (ADD_SCAN, SCAN_FORWARD, send,
MAX COMBINE MSG_WORDS, receive);

As a practical example, you can use a reduction scan on integer values to get the
number of non-abstaining processors in the current partition:

int send = 1, receive = 0;
COM_scan (ADD_SCAN, SCAN_REDUCE, &send, 1, &receive);

printf ("Actual number of processors: %d\n",
CMNA_partition_size);

printf ("Scanned number of processors: %$d\n",
receive);

86 NI Version 2.2 (CM-5SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 4. The Control Network

Executing a Network-Done Operation
Here’s a simple network-done synchronizing function:

void network done_synch()
{
CMNA_com_send first (ASSERT ROUTER_DONE,
SCAN_ROUTER_DONE, 1, 0) ;
while (!DR_ROUTER_DONE (CMNA_dr_status())) {};
}

For example:

int message = 1;
int network done_msg = 0;
int next_processor = (CMNA_self address+1)
% CMNA partition_size;

/* Send a message */
LDR_send (next_processor, &message, 1, 0);

/* Synchronize the nodes */
network _done_synch ()

/* Retrieve the message */
LDR_receive (&amessage, 1);

NI Version 2.2 (CM-5E), June 1994 87
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook
S SR RS R i

4.3 The Global Interface

88

The global interface provides a generic synchronization mechanism for the
CM-5’s processing nodes. It is much like the network-done feature of the com-
bine interface, but without the additional condition that the Data Network must
be clear before the operation can complete.

The global interface combines a single bit from every participating node in a
logical OR operation, and then returns the result to each node. The actual values
sent by the nodes, however, can be completely arbitrary. The sending of the mes-
sage itself is sufficient to provide synchronization of the nodes.

A global interface message can be sent by one of three subinterfaces:

= the synchronous global interface, which requires that all nodes send a
message before any receive the result

= the asynchronous global interface, which permits nodes to send a message
and read the result at any time, with the network continually monitoring
the state of all participating nodes

= the supervisor asynchronous global interface, which is identical to the
asynchronous global interface save that its registers are accessible only
from the supervisor area

There is a separate register set for each of these three methods. Each of these
interfaces is described in more detail in the sections below.

The Global Interface Registers at a Glance:

hex offset

nl_sync_global_send 0X00C0
ni_hodgepodge 0X00B8
nil_async_sup_global 0%00B0
R e OX00R8
_8ync_global_abstain 0X%0098
nl_sync_global 0X%0090

Figure 16. NI registers associated with the global interface.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

t
H
i

hapter 4. The Control Network

Pt

4.3.1 The Three Global Register Interfaces

Unlike the broadcast and combine interfaces, the global interface does not use
the generic interface model presented in Chapter 2. The following registers are
used for the three interfaces:

Synchronous global interface:
ni_sync_global_send Used to send the first value of a message.
ni_sync_global_abstain Used to abstain from synch global msgs.
ni_sync_global Used to receive a message.
ni_hodgepodge Contains interrupt enable flag.
Aynchronous global interface:
ni_async_global Asynchronous send and receive flags.
ni_hodgepodge Contains interrupt enable flag.
Supervisor aynchronous global interface:
ni_async_sup_global Supervisor asynch. send and receive flags.
ni_hodgepodge Contains interrupt enable flag.

The purpose and use of these registers is described in the sections below, and

Figure 16 contains a memory map showing their relative locations in NI
memory.

4.3.2 The Synchronous Global interface

The synchronous global interface takes the global OR of a flag set by each node.
Each non-abstaining node must set its synchronous global flag (and thereby send

a synchronous global message) before the result of the operation is reported to
any node.

The following registers and flags form the synchronous global interface:

nl_sync_global_send Used to send the first value of a message.
ni_sync_global_abstain Used to abstain from synch. global msgs.

ni_sync_global Used to receive a message.
ni_sync_global_rec Synchronous global receive flag.
ni_sync_global_complete Synchronous global completion flag.

ni_hodgepodge Contains interrupt enable flag.
ni_sync_global_xrec_ie Receive interrupt enable flag.

NI Version 2.2 (CM-5E), June 1994

89
Copyright © 1994 Thinking Machines Corporation

90

NI Programmer s Handbook

SEERE

Sending and Receiving Messages

To start a synchronous global interface message, write a value (either 0 or 1) to
the the ni_sync_global_send register. To do this, use the macro

CMNA_or_global_sync_bit (value)

When you write a value to the global_send register, the ni_sync_glob-
al_complete flag is set to 0, indicating that a message is in progress. (Note:
It is an error to write to the ni_sync_global_send register when the
ni_sync_global_complete flag is 0.)

When all participating nodes have sent a message, the global interface takes the
logical OR of the ni_sync_global_send flag in each node, and then sets the
ni_sync_global_rec flag of every participating node to the result. At the
same time, the ni_sync_global_complete flag is set back to 1 to indicate
completion of the message. To detect when the message has completed and to
retrieve the resulting global value, use the macros

value = CMNA_global_sync_complete () ;
value = CMNA_global_sync_rec () ;

Abstaining from Synchronous Global Messages

The synchronous global interface includes an abstain flag that can be used to
exclude a node from the interface’s operations:

ni_sync_global_abstain Statusregister, contains global abstain flag.

When the ni_sync_global_abstain flag is set to 1, synchronous global mes-
sages complete without the node’s participation (as if the node has sent the
message withitsni_sync_global_send flag set to 0). You can use the abstain
flag operations described in Chapter 2 to read and write the value of the
ni_sync_global_abstain register. (The address constant for this register is
sync_global_ abstain_reg.) For example:

value=CMNA_read abstain_flag(sync_global_ abstain_reg);
CMNA write_abstain_ flag(sync_global abstain_reg, value) ;

Note: As with all abstain flags, ni_sync_global_abstain should be changed
only when there is no global message pending. A Bus Error is signaled if the
abstain flag is modified when the ni_sync_global_complete flag is 0. Also,
a Bus Error is signaled if the ni_sync_global_send register is written while
the abstain flag is 1.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 4. The Control Network

43.3

Synchronous Global Receive Interrupt

If the ni_sync_global_rec_ie flag in the hodgepodge register is set to 1,
then a Green interrupt (sync global rec) is signaled whenever the
ni_sync_global_rec flag changes from O to 1.

Supervisor Operations for the Synchronous Global Interface

The supervisor can write a new value into the ni_sync_global_rec flag when
the flag ni_sync_global_ complete issetto 1. Ifni_sync_global_recis
written when ni_sync_global_complete is 0, a Bus Error
(bad memory access) is signaled.

Implementation Note: Even when ni_sync_global_rec_ie is 1, the super-
visor’s writing a 1 to ni_sync_global_rec does not signal the corresponding
Green interrupt (sync global rec).

The supervisor can take control of the synchronous global interface (for exam-
ple, during a context-switch) as follows. Each node in the partition to be
context-switched should save the values of the sync_global_complete,
sync_global_rec and sync_global_send flags. All nodes for which
ni_sync_global_complete is 1 should write a 1 to the
ni_sync_global_send flag, thus completing any pending operation.

To restore the state of the synchronous global interface, all nodes restore the
value of the sync_global_send flag by writing the saved value back into it.
When the resulting global operation completes (ni_sync_global_complete
becomes 1), all nodes restore the saved value of the ni_sync_global_rec
flag. All nodes with a saved value of O for ni_sync_global_complete write
the ni_sync_global_send flag again to restart the interrupted global opera-
tion. Control can then be handed back to user code.

The Asynchronous Global Interface

The asynchronous global interface is not so much a node synchronization tool as
a means for determining whether all the nodes are still operating properly, or
whether some global action needs to be taken. As with the synchronous interface,
the asynchronous interface takes the global OR of a flag set by each node. How-
ever, this global OR is performed repeatedly, so that a change of a flag by any
node is reported almost immediately to the other nodes.

NI Version 2.2 (CM-5E), June 1994 91
Copyright © 1994 Thinking Machines Corporation

NI Programmer’s Handbook
R R N R N Y

For example, each node can set its flag to 1 before performing an operation, and
set the flag to 0 when the operation is completed. The global interface returns a
1 value until all nodes have set their flags to 0, guaranteeing that all nodes have
completed the operation.

The following registers and flags form the asynchronous global interface:

ni_async_global Control register, contains the following flags:
ni_global_send Flag, used to “send” asynchronous messages.
ni_global_rec Flag, always set to logical OR of send flags.

ni_hodgepodge Control register, includes the following flag:

nl_global_rec_ie Flag, global receive interrupt enable.

Sending and Receiving Messages

Because the asynchronous global interface operates continuously, there really is
no such thing as “sending” or “receiving” a message via this interface.

The ni_global_rec flag in each node is continually updated to reflect the
“current” logical OR of the ni_global_send flag in all nodes. When any node
writes a new value into its ni_global_send flag, the change is propagated to
the ni_global_rec flag of all other nodes after a brief interval.

Important: Because this is an asynchronous mechanism, the ni_global_rec
flag may not always reflect the present state of the ni_global_send flags in
all the nodes. There is always a delay between the instant any node changes its
ni_global_send flag and the instant that all nodes receive the result of the
change. You should not write code that depends on this delay having any exact
length, but you can assume that the delay is no longer than the time taken to
transmit a synchronous message.

To set the value of the ni_global_send flag, use the macro
CMNA_or_global_async_bit (value) ;
and to retrieve the value of the ni_global_rec flag, use the macro

value = CMNA global_async_read () ;

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 4. The Control Networ.

4.3.4

R

Asynchronous Global Receive Interrupt

If the ni_global_rec_ie flag in the hodgepodge register is set to 1, then a
Green interrupt (global rec) is signaled whenever the ni_global_rec flag
changes from O to 1.

The Supervisor Asynchronous Global Interface

The supervisor asynchronous global interface is identical to the asynchronous
interface described above, except that its registers are accessible only from the
supervisor area. This interface is typically used by the operating system to syn-
chronize the nodes during OS operations such as context switching.

For example, if each node sets its flag to 0, then the global interface returns a 0
value until one of the nodes signals a 1 instead. If any node reaches a point in
its operations where OS intervention is required, the node can set its flag to 1,
signaling a 1 value to all the other nodes, and also indicating to the OS that some
global action must be taken.

The following register and flags form the supervisor asynchronous interface:

ni_async_sup_global Control register, contains these flags:
ni_supervisor_global_send Flag, used to “send” messages.
ni_supervisor_global_rec Flag, logical OR of send flags.

ni_hodgepodge Control register, includes the flag:
ni_supervisor_global_rec_ie Supervisor receive interrupt enable.

Sending and Receiving Messages

The ni_supervisor_global_send and ni_supervisor_global_rec
flags are used to send and receive messages the same way that the asynchronous
interface does (described above).

Supervisor Asynchronous Global Receive Interrupt

If the ni_supervisor_global_rec_ie flag in the hodgepodge register is
set to 1, then a Green interrupt (supervisor global rec) is signaled when-
ever the nl_supervisor_global_rec flag changes from O to 1.

NI Version 2.2 (CM-5E), June 1994 93
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

4.3.5 Global Interface Examples

The examples shown here are fragments of code intended to be run on the pro-
cessing nodes. See Chapter 7 for a discussion of large-scale program structure.

Using the Synchronous Global Interface

Here’s a function that executes a simple barrier synchronization using the global
interface.

int global_ sync_value(value)
unsigned int value;

{
CMNA or_global_sync_bit (value); .
while (!CMNA global_sync_complete()) {};
return (CMNA global_sync_read()) ;

}

All non-abstaining nodes must execute this function for the global message to be
completed. If you don’t need to send or receive a value, you can rewrite this as

int global_sync ()

{
CMNA or_global_sync_bit(1);
while (!CMNA_global_sync_complete()) {};
(void) CMNA_global_sync_read() ;

Using the Asynchronous Global Interface

The following function sends a value using the asynchronous global interface,
and then immediately reads and returns the current value from the receive regis-
ter:

int CMNA_global async (value)
unsigned int value;

{
CMNA or_global_async_bit (value);
return (CMNA global_async_read());

}

94 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 5

NI Interrupts

The NI chip is, in many ways, the “interrupt gateway” of the CM-5. Most node
hardware and software exceptions, whether or not they originate in the NI chip,
are signaled to the node microprocessor via NI interrupts.

The NI is capable of signaling an interrupt in any of five classes and at any of
a number of levels of severity. Interrupts can be signaled by events beyond the
programmers’s control (such as hardware failures), or by fatal errors in the way
a program uses the NI, or deliberately, under program control.

Interrupts are signaled by one of two different methods:
® as a local interrupt to the NI's associated microprocessor
® as a broadcast interrupt to the other NIs in the partition
This chapter describes the kinds of interrupts available on the NI, their causes,

the registers used to determine their type and severity when they are signaled,
and the mechanism used to signal a broadcast interrupt.

5.1 Interrupt Classes
The NI can signal five different classes of interrupt: Red, Orange, Yellow, Green,
and Bus Errors. Red interrupts tend to be the most severe and Green interrupts
the least severe. The five types are distinguished as follows:
®* Red interrupts indicate a failure of the hardware, such as checksum vio-
lations and message format errors.
NI Version 2.2 (CM-3E), June 1994 95

Copyright © 1994 Thinking Machines Corporation

NI Programmer’s Handbook

They occur at unpredictable times relative to the instruction stream and are
usually irrecoverable. Determining the precise cause of a Red interrupt
may require the use of the Diagnostic Network.

The possible Red interrupts are:

internal fault Failure detected in NI chip itself.

dr checksum error Data Network checksum failure.

cn checksum error Control Network checksum failure.
cn hard errox Control Network hardware failure.
mc error Error detected in memory subsystem.
cmu error Cache/MMU error.

bec interrupt red Red broadcast interrupt.

Orange interrupts indicate that the attention of the operating system is
required, as in timer interrupts and broadcast interrupt messages.

They occur at unpredictable times relative to the instruction stream and do
not destroy any information that might be needed to determine the cause
of the interrupt.

The possible Orange interrupts are:

timer interrupt NI timer reached interrupt now.
rdone complete Router done complete interrupt.
bc interrupt orange Orange broadcast interrupt.

Yellow interrupts indicate that the software has made an error. They are
usually irrecoverable, as they indicate that your program is doing some-
thing illegal and must be rewritten. Sufficient information is retained in
the NI to permit isolation of the cause of the interrupt, but it is not always
possible to recover all the information relating to the cause of the interrupt.

Yellow interrupts are associated with particular instructions, but usually
are not signaled at the exact point of the offending instruction, because of
the loose coupling between the NI and the microprocessor.

The possible Yellow interrupts are:

dr count negative Negative DR message count.

bec or com collision Conflict in broadcast/combine ops.
com abstain changed Flag changed while interface in use.
bad relative address Address outside partition, etc.

bad memory access Bus Error signaled as interrupt.
message too long Data Network message too long.
be interrupt yellow Yellow broadcast interrupt.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 5. NI Interrupts

Green interrupts indicate the occurrence of common events for which
the software has requested notification, such as the arrival of messages,
the signaling of broadcast interrupts, arithmetic overflow in a scan, etc.
There is one interrupt for each event, and each event’s interrupt can be
enabled and disabled independently under the control of the supervisor.

Depending on the type of event, the interrupt may or may not occur syn-
chronously with a particular instruction. No information is lost by a Green
interrupt.

The possible Green interrupts are:

scan overflow Overflow in combine interface scan.
dr/ldr/rdr rec ok DR/LDR/RDR message received.
bc/sbc rec ok Broadcast received.

sbc rec ok Supervisor broadcast received.

com rec ok Combine message received.

com rec empty Empty combine receive FIFO.
dr/ldr/rdr rec tag Message with interrupt tag received.

ldr/rdr user rec tag LDR/RDR interrupt tag received.
dr rec all fall down All Fall Down message received.

sync global rec Synchronous global msg received.
global rec Asynchronous global msg received.
supervisor global rec Supervisor asynch. msg received.
dperr Vector unit error.

sfifo empty Data Network send FIFO empty.
be interrupt green Green broadcast interrupt.

Bus Errors indicate that a bus transaction cannot be completed, as in an
attempt to read an address that does not correspond to a register, or to write
a message that does not conform to sending protocol (send_£irst, then
send). Bus Errors are signaled asynchronously, and are irrecoverable.

There is basically one flavor of Bus Error:
bad memory access Meaningless or illegal reference.

Bus Errors are treated differently from the four colored interrupts. Bus
Errors are always handled as traps, primarily because they occur only on
read operations, and do not involve the NI chip.

Note: Bus Errors are distinct from segmentation violation errors. Seg-
mentation errors result from attempting to read an unmapped virtual
address, and are signaled synchronously with the offending instruction.
Bus Errors result from errors with physical addresses, once the address has
been transmitted to the Mbus itself.

NI Version 2.2 (CM-5E), June 1994 97
Copyright © 1994 Thinking Machines Corporarion

5.1.1

5.2

98

NI Programmer s Handbook

wiea St At O Y - N AN B Wy to R

Disabling Bus Errors

Some Mbus devices do not respond well to the NI signaling a bus error. In order
to allow the NI to be used in systems that include such devices, the NI can
optionally “signal” a bus error as a Yellow interrupt (bad_memory_access).
This feature is controlled by a flag in the ni_hodgepodge register,
ni_disable_bus_error. This flag is turned off by default, and by an NI reset,
to provide backward compatibility.

interrupt Pathways

The four colored interrupts (Red, Orange, Yellow, and Green) result from a num-
ber of different causes. Figure 17 shows the pathways followed by the various
types of interrupts on their way to the microprocessor. These pathways are
described in detail in the sections below.

64-bit Bus

I | Memory | s Memory
Controlier Subsystem

Network Interface

processor

LDR
RDR
BC :
SBC {l controt

COM 5 Networks

GLOBAL}

TN

| BC interrupt |

FP Unit

Figure 17. The possible pathways for colored interrupts.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

5.2.1 Red interrupts

The Red interrupts are of two varieties:
® On-chip faults — Hardware errors detected by the NI itself.
* Off-chip faults — Problems on other devices that are signaled via the NL

On-chip faults are universally fatal — that is, they always cause the OS to halt
(usually forcefully). It is then necessary to use diagnostic measures to determine
the cause of the problem.

Off-chip faults are caused by problems on other components, and it is necessary
for the OS to poll those devices to find out what happened.

Of the red interrupts, the following are off-chip faults:

mc errox — Error in MC (memory controller).
cmu error — Error in CMU (cache and memory unit).

The cause of these faults can only be determined by examining the state of the
appropriate hardware:

= MC errors are caused by either a fault in the MC itself (usually fatal), or
(if the CM-5 has the vector unit option installed) by an error signaled from
one or more of the vector units. In either case, it is necessary to examine
the state of the appropriate hardware to determine the actual cause of the
interrupt.

®* CMU errors are only caused by bad memory writes (typically memory
writes to illegal addresses) and are always fatal. CMU errors are asynchro-
nous, so that the error is not signaled until some time after the offending
write instruction.

All the remaining Red interrupts are on-chip faults. Three are caused by network
problems:

dr checksum error — Data Network fault.
cn checksum error — Control Network fault.
cn hard error — Control Network hardware fault.

One is caused by NI chip problems:

internal fault — NI chip fault.

NI Version 2.2 (CM-5E), June 1994 99
Copyright © 1994 Thinking Machines Corporation

5.2.2

5.2.3

100

NI Programmer’s

Handbook
S SR

R e

And one can be signaled by software:
bc interrupt red — Red broadcast interrupt.

Warning: A Red broadcast interrupt is functionally equivalent to deliberately
causing a fatal error, so use it with caution — if you use it at all!

Orange Interrupts

There are three Orange interrupts. One is caused by the NI timer:
timer interrupt — Timer alarm interrupt.

One is caused by the completion of a Data Network network-done operation:
rdone complete — Network-done-complete interrupt.

And the remaining interrupt can be signaled by software:

be interrupt orange — Orange broadcast interrupt.

Yellow Interrupts

The Yellow interrupts are, with one exception (the Yellow broadcast interrupt),
caused by NI violations produced in user code:

com abstain changed — Illegal abstain flag change.

bc or com collision — Multiple message collision.
bad relative address — Illegal DR destination.

dr count negative = — Negative DR message count.
bad memory access — Bus Error signaled as interrupt.
message too long — Data Network message too long.

There is also a Yellow broadcast interrupt that can be signaled by software:

bc interrupt yellow — Yellow broadcast interrupt.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

5.2.4 Green Interrupts

The Green interrupts are, for the most part, indications of non-error network
events for which the user may want to assign a specific code handler.

For example, there are nine Green interrupts, one for each major network inter-
face, that indicate when a message has arrived in the interface’s recv register:

bc rec ok — BC interface message received.

sbc rec ok — SBC interface message received.

com rec ok — COM interface message received.

dr rec ok — DR interface message received.

ldr rec ok — LDR supervisor message received.

rdr rec ok — RDR supervisor message received.
global rec — Asynchronous global message received.
sync global rec — Synchronous global message received.

supervisor global rec — Supervisor asynchronous global message.
In addition, there is a Green interrupt for an important combine interface event:
scan overflow — Combine interface add-scan overflow.

There are a number of interrupts for OS-related events:

dr rec tag — DR message arrived with interrupting tag.
1dr rec tag — LDR message arrived with interrupting tag.
rdr rec tag — RDR message arrived with interrupting tag.
ldr user rec tag — LDR message with user interrupt tag received.
rdr user rec tag — RDR message with user interrupt tag received.
dr rec all fall down — DR All Fall Down mode message received.
com rec empty — Combine receive FIFO empty.

dperxr — Vector unit error.

sfifo empty — Data Network send FIFO empty.

And as usual there is a broadcast interrupt that can be signaled by software:

be interrupt green — Green broadcast interrupt.

NI Version 2.2 (CM-5E), June 1994 101
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

5.3 The Interrupt Cause and Clear Registers

102

There are six NI registers that you can use to determine which interrupt(s) have
been signaled, to clear the interrupts once you have finished handling them, and
to force interrupts to be signaled when necessary:

ni_interrupt_cause Flags set by non-Green interrupts.
ni_interrupt_cause_green Flags set by Green interrupts.
ni_interrupt_clear Flags used to clear non-Green interrupts.
ni_interrupt_clear_green Flags used to clear Green interrupts.
ni_interrupt_set Flags used to set non-Green interrupts.
ni_interrupt_set green Flags used to set Green interrupts.

When an event causing an interrupt occurs, a bit in the ni_interrupt_cause
orni_interrupt_cause_green register is set. Which bit is set indicates what
the event was. If more than one interrupt occurs before any are cleared, several
bits in these registers may be set simultaneously.

Interrupts can be cleared by writing a value to the ni_interrupt_clear or
ni_interrupt_clear_green registers. Any value written to these registers
should contain ones in locations corresponding to the interrupts that are to be
cleared. It is not possible to read the value of the ni_interrupt_clear or
ni_interrupt_clear_green registers — use the corresponding cause reg-
ister to determine whether any interrupts have not yet been cleared.

Note: If a given interrupt has an interrupt enable flag (a flag with a name ending
in _ie) and the flag is set to 0, then the interrupt is not signaled and the corre-
sponding ni_interrupt cause or ni_interrupt cause_green flag is
not set.

Interrupts can be triggered artificially by writing to either of the
ni_interrupt_set or ni_interrupt_set_green registers. The value
written to the register should contain one bits in locations corresponding to the
interrupts that are to be signaled. In the case of an interrupt with an enable bit,
the interrupt can be signaled even if the interrupt is currently disabled. It is not
possible to read the ni_interrupt clear, ni_interrupt_clear_green,
ni_interrupt_set or ni_interrupt_set_green registers.

The interrupt_cause and interrupt_cause_green registers may also be
written explicitly (by the supervisor, not user code) to cause interrupts to be sig-
naled without their usual triggering event occurring,.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 5. NI Inter

At e o

5.4 Interrupt Levels

Each of the four color classes of interrupt includes a “level” or “priority” value
that can be used to provide the software with information about the relative im-
portance or priority of interrupts of various colors.

Any interrupt level can be assigned to each color of interrupt. It is, for example,
permissible to give Green interrupts a level of 15 while Red interrupts have a
level of 4. However, the relative interrupt levels are intended to indicate priority
or severity; for example, there are mechanisms for masking all interrupts (of any
color) below a given level.

The following register is used to set the priority value for each interrupt color:

ni_interrupt level Control register, contains these fields:
ni_interrupt_level_red Red interrupt priority level.
ni_interrupt_level_orange Orange interrupt priority level.
ni_interrupt_level_yellow Yellow interrupt priority level.
ni_interrupt_level_green Green interrupt priority level.

The four eight-bit fields, level red through level green, each indicate the
level at which the corresponding color of interrupt is signaled. For example, if
the 1level red field is set to 13, all red interrupts from that point onwards are
signaled to the microprocessor with a level of 13.

If more than one color of interrupt is signaled simultancously, the interrupt level
signaled to the processor is the inclusive OR of the levels for each interrupt color.

If any of the interrupt_level fields is set to O, then all interrupts of the corre-
sponding color are suppressed. (When the NI is reset, for example, all four
interrupt level fields are set to 0.)

Implementation Note: Currently, only the low-order Uit of each interrupt level
field is used. The other bits are required to be O.

NI Version 2.2 (CM-5E), June 1994 103
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

5.5 Broadcast interrupts

104

The broadcast interrupt mechanism allows an interrupt to be signaled from one
NI to all other NIs in the current partition. Each NI receiving the broadcast im-
mediately signals an interrupt to its associated microprocessor.

Important: Only one NI in each partition can use the broadcast interrupt facility.
If two or more NIs try to broadcast simultaneously in the same partition, a Yel-
low interrupt (bc or com collision) is signaled to all nodes in the
partition, and the broadcast interrupt messages that are received are undefined.

The broadcast interrupt can be of any color, Red, Orange, Yellow, or Green. A
unique flag exists in the cause, clear, and set registers for each color of
broadcast interrupt. Only Bus Errors cannot be broadcast — mainly because it
is not useful (and doesn’t really make sense) to do so.

The following register and flags are used to send a broadcast interrupt:

ni_interrupt_send Register used to send broadcast interrupt.
ni_hodgepodge Control register, includes the flags:
ni_interrupt_send ok Flag, set when broadcast is sent.

ni_interrupt_rec_enable Flag, enables receipt of interrupts.

To send a broadcast interrupt, write a value to the ni__interrupt_send register
indicating the color of interrupt to be signaled. The permissible values for each
color of interrupt are as follows:

Value - Interrupt Description
8 bc interrupt red Red broadcast interrupt.
4 bec interrupt orange Orange broadcast interrupt.
2 be interrupt yellow Yellow broadcast interrupt.
1 bec interrupt green Green broadcast interrupt.

Note: More than one color of interrupt can be broadcast at a time (for example,
by combining the above values with a logical-OR operation). Multi-colored
broadcast interrupts are signaled by the hardware exactly as if each colored inter-
rupt was signaled separately. The software effects of such multi-colored
interrupts are determined entirely by the current interrupt handlers on the nodes.

Writing a value to ni_interrupt_send sets the ni_interrupt_send_ok
flag to O until the interrupt has been successfully broadcast, at which point the
flag is set back to 1. An attempt to write a value to ni_interrupt_send while
ni_interrupt_ send ok is O signals a Bus Error.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 5. NI Interrup

Any NI can disable broadcast interrupts by setting its ni_interrupt_rec_en-
able flag to 0. Doing so causes all broadcast interrupts received by that NI chip
to be ignored. Setting the flag back to 1 re-enables broadcast interrupts.

Note: There is a special class of broadcast interrupt, the Reset interrupt, which
cannot be disabled. See Section 6.10 for more information about the cause and
effects of an NI Reset.

5.6 Recovering from Interrupts

The methods used to recover from an interrupt depend heavily on the type of
interrupt itself. Appendix B of this manual provides guidelines describing the
steps needed to recover from each of the possible interrupts.

NI Version 2.2 (CM-5E), June 1994 105
Copyright © 1994 Thinking Machines Corporation

Chapter 6
Other NI Interfaces and Features

SRR

This chapter describes the remaining NI registers and features (those not covered
in the preceding chapters). Except as noted, all registers and features described
in this chapter are accessible only to the supervisor.

6.1 The “Hodgepodge” Register

The ni_hodgepodge register, as its name suggests, contains a collection of mis-
cellaneous flags that are used by various features of the NI.

ni_hodgepodge Register with “hodgepodge” of flags:

ni_sync_global_rec_ile
nl_global_rec_ie
nl_supervisor_global_ rec_ie
ni_interrupt_send_ok
nl_interrupt rec_enable
nl_flush complete
nl_timer_ie
nl_configuration_ complete
ni_cn_stop_send
ni_disable bus_error
nl_ldr_rec_tag_ie
ni_rdr_rec_tag le
ni_ldr_user_rec_tag_ie
ni_rdr_ user_xec_tag ile
ni_msg_too_long_ ile

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Sync global receive interrupt enable.
Asynch global receive intrpt. enable.
Supervisor asynch. rec. intrpt. enable.
Broadcast interrupt send ok flag.
Broadcast interrupt receive enable.
Combine flush complete flag.

NI timer interrupt enable flag.
Configuration complete flag.
Control Network disable flag.

Bus Error disable flag.

LDR supervisor tag interrupt enable.
RDR supervisor tag interrupt enable.
LDR user tag interrupt enable.

RDR user tag interrupt enable.
Message too long interrupt enable.

107

6.2

6.3

6.3.1

108

NI Programmer s Handbook

R O L R S

B S S

£

For more information on the meaning and use of these flags, refer to the sections
describing the NI features that use them. (Look up the individual flags by name
in the Index.) :

Node Address Registers

There are three NI registers that provide information about the physical address
of the current node within the CM-5, as well as the size and location of the cur-
rent partition:

ni_physical_self 20-bit physical address of current node.
ni_partition_base 20-bit address of first node in partition.
ni_partition_size Number of nodes in current partition.

These registers are used by other NI chip features, such as the chunk table
address translation mechanism described in Section 6.3 below.

NI Chunk Table and Address Translation

The NI chunk table is a small array stored in the NI itself that determines the
locations of the “chunks” of processing nodes that make up a Data Network
partition on the CM-5. A chunk is a contiguous sequence of physical addresses
that correspond to real, working processing nodes. Addresses corresponding to
broken or missing hardware are isolated by not being included in any chunk.

Important: The chunk table specifies chunks of node addresses — the chunk
table has nothing to do with memory allocation on the nodes.

Node Address Translation

The chunk table is used to convert from relative node addresses used within a
partition to the physical addresses required by the Data Network.

For the Curious: A side effect of the use of the chunk table is that it implicitly
divides the Data Network up into “partitions” of nodes. That is, there is no hard-

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 6. Other NI Interfaces and Features

O

ware restriction preventing a Data Network message from traveling between
partitions; it is the chunk tables that determine whether a relative address is legal

for a given partition of nodes.

The mapping from relative to physical addresses is performed in three steps:

First, the relative address is compared with the ni_partition_size register,
to determine whether it is legal for the current partition. (If the relative address
is greater than or equal to ni_partition_size, the address is guaranteed not

to correspond to a node in the current partition, and an error is signaled.)

Next, the relative address is split into two parts (see Figure 18).

Relative Ad&ress

T Chunk —1_chunk aqdress

al__ Table (a bits)
2 R
: —i— select address
(2 nl_chunk_size bits)

——_..chunk position
(p bits)

Absolute Addres}s

|]

ni_partition_base

Physical Address

Figure 18. Translation from relative addresses to physical addresses.

The two parts of the address are:
the high-order bits of the address, known as the chunk address

the low-order bits of the address, known as the select address

NI Version 2.2 (CM-5E), June 1994

109

Copyright © 1994 Thinking Machines Corporation

6.3.2

110

NI Programmer s Handbook
T

The chunk address is used as a pointer into the NI’s chunk table. The referenced
chunk table entry, known as the chunk position, is recombined with the select
address to form an absolute address — essentially an offset from the address of
the first processor in the current partition.

Finally, the absolute processor address is added to the value of the register
ni_partition_base to get the required physical address.

Chunk Sizes and Address Allocation

The size of the chunk table is determined by the number of bits in a chunk ad-
dress (call this a), and the number of bits in a chunk position (call this p). The
chunk table consists of 2¢ entries, each p bits long. The values of a and p are
currently fixed by hardware at a = 6 and p = 8. Thus, the chunk table contains
64 entries, each 8 bits long.

However, while the size of the chunk table is fixed, the size of the chunks it refer-
ences (that is, the number of physical addresses per chunk) is under supervisor
control. The following register is used to set the chunk size:

ni_chunk_size Size of chunks referenced by the chunk table.

- The ni_chunk_ size register contains a three-bit value that determines the

number of bits in the select address part of a relative address, and thus sets the
number of addresses per chunk.

The number of bits in a select address is 28i_chunk_size Ags 3 result, the number
of physical addresses in a chunk is 4ni_chunk_size gand this means that the num-
ber of possible relative addresses (in other words, the number of accessible
nodes) is 22 * 4ni_chunk_size This also means that the total physical address
space accessible through the chunk table is 2P * 4ni_chunk_size Thys, the acces-
sible physical address space is always 2P-2 times the size of the relative address
space. This extra “unused” space between chunks is used to isolate regions of
broken or missing hardware. (See Figure 19.)

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Relative Address Space ni-P“““’“f-““

5 T il 2 P O R T Y

Chunk

Physical Address Space

Figure 19. The chunk table is used to map contiguous relative addresses
onto discontiguous physical addresses.

In the simplest case, the chunk table is set up to map all relative addresses to a
contiguous region of 22 * 4ni_chunk_size physical addresses. In this case, chunk
table entry n simply has the value n. '

The table below lists the permissible values for the ni_chunk_size register,
along with the corresponding number of relative addresses (nodes) per chunk,
and the maximum size of the physical address space in nodes and addresses.

ni_chunk size Addresses/chunk Nodes Phys. address space
1 4 256 1K
2 16 1K 4K
3 64 4K 16K
4 256 16K 64K
5 1K 64K 256K
6 4K 256K M

Note: The effects of writing ni_chunk_size with a value not listed in this table
are undefined, but almost certainly disastrous.

NI Version 2.2 (CM-5E), June 1994 111
Copyright © 1994 Thinking Machines Corporation

6.3.3

6.4

112

Modifying the Chunk Table

The following registers are used to read and write chunk table entries:

ni_chunk_table_data Location used to read/write table entries.
ni_chunk_table_address Chunk table location that is read/written.

Note: The chunk table is set up by the OS when the nodes are grouped into parti-
tions, and from then on the chunk table is normally not modified. Accordingly,
the registers listed above are accessible only from the supervisor area.

When the ni_chunk_table_data register is written, the value written is
stored in the chunk table entry indicated by ni_chunk_table_address. When
the table_data register is read, the value read is the current contents of that
chunk table entry. '

The ni_chunk_table_address register determines the entry of the chunk
table that is affected by reading or writing the ni_chunk_table_data regis-
ter. The size of the values that are read from and written to this register depends
on the size of chunk addresses (see the discussion in Section 6.3.2).

Important: In order for the Control Network to operate correctly, the entries of
the chunk table must be in ascending order. In other words, each chunk table
entry must contain a larger address than the entry that precedes it.

Note: The effects of reading or writing the table_data register while the Data
Network is in use are undefined, and best avoided.

Combine Interface Flush

The combine interface flush operation is used to reset the hardware of the com-
bine interface, canceling any uncompleted combine operations. As with all other
Control Network operations, a combine flush must be started in unison by all of
the nodes in a partition — nodes cannot “abstain” from a flush. Also, flushes
only affect the single partition in which they are started; they don’t cross partition
boundaries. ~

Important: The broadcast and global interfaces are not affected by flushing, and
must be cleared separately.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 6.

6.5

B P R " D N A AT P P e

Other NI Interfaces and Features

The combine flush interface consists of the following registers and flags:

ni_com_flush_send Single-flag register used to start a flush.
ni_hodgepodge Control register, includes the flag:
ni_flush_complete Flag, set when flush is completed.

To start a flush operation, write a value (either O or 1, the actual value is unimpor-
tant) to the ni_com_f£lush_send register. This sets ni_flush_complete to
0, and then starts the interface flush. When the flush is completed, the
flush_complete flag is set back to 1. Attempting to write the
ni_com_£flush_send register while ni_flush_complete is O or
ni_com_abstain is 1 signals a Bus Error.

Important: A flush operation should be executed only when there are no mes-
sages in transit through the combine interface, that is, when
ni_com_send empty is 1, and ni_com_rec_ok is 0.

Usage Note: The combine flush operation is useful only when the send and
receive FIFOs of the combine interface are empty. The combine flush operation
does not clear out the FIFOs — it merely resets the communications hardware of
the interface itself. The flush operation is only intended to be used in context
switches, after the FIFOs have been cleared and saved.

The NI Timer

The NI contains a simple timing mechanism that can be used to measure the time
between two events and to interrupt the microprocessor after a specific interval.

The following registers and flags form the timer interface:

ni_time Timer register, regularly incremented.

ni_interrupt_now Register, timer value that triggers interrupt.

ni_hodgepodge Control register, includes the flag:
ni_timer_ie Timer interrupt enable flag.

The 32-bit register ni_time contains an unsigned value that is incremented at
every microprocessor clock cycle. When the timer value exceeds the register’s
capacity, it wraps around to 0.

The value of the ni_time register can be read at any time, and can be written
by the supervisor to set the NI’s timer to a chosen value.

NI Version 2.2 (CM-5E), June 1994 113
Copyright © 1994 Thinking Machines Corporation

6.6

114

NI Programmer s Handbook

The NI timer can signal an interrupt at a specific timer value. When the value of
ni_time equals the value stored in the ni_interrupt_now register, an Orange
interrupt (timer interrupt) is signaled.

This interrupt can be enabled and disabled by setting the ni_timex_ie flag in
the hodgepodge register. When this flag is 1, timer interrupts are enabled. When
this flag is O, timer interrupts are disabled.

The Bad Address Register

When a Bus Error is signaled as the result of an illegal memory reference, the
ni_bad_address register contains the illegal address, the data size, and the
type (read or write) of the transaction. The data returned by a read from an illegal
memory address is undefined. Data written to an illegal memory address is lost.

ni_bad address Bad address register, contains the fields:
ni_bad_address_low Low 20 bits of illegal address.
ni bad address_type Size and type of transaction.

Usage Note: The ni_bad_address register is updated every time a memory
transaction is made, not just when an error occurs. Thus, its value is valid only
when a Bus Error (ni bad memory access) has actually been signaled. If
more than one illegal access is performed before the first one is handled, the val-
ue of the ni_bad_address register is the most recent bad memory address.

Currently, the format of the ni_bad_address_type field is
31 29 28 27 26 24 23 20

e

pins | lok|csh :size: . ty:pe

where
type indicates the transaction type (0 = write, 1 = read)
size gives the data size (2 = word, 3 = doubleword)
csh, lok are the MBUS cacheable and lock bits
pins is the setting of the NI's two physical base address pins

Values for the type and size fields other than those shown above are reserved. The
csh, lok, and pins fields are hardware-related and not useful to NI programmers.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 6. Other NI Interfaces and Features
8 R

6.7 NI Partition Configuration

The NI has a register that can be used to change the partitioning of the CM-5.
The following register and flag are used to control the partitioning feature:

ni_configuration Partition configuration control register.
ni_hodgepodge Control register, includes the flag:
ni_configuration_complete Flag, set when partitioning is done.

The ni_configuration is a five-bit register that controls the configuration, or
set of processor partitions, that is in use. The value in this register is actually the
“height” (number of layers) of the Control Network partition to which the node
belongs. Control Network operations use this value to determine the maximum
height of the network to which a message needs to be sent.

By writing a value to the configuration register, you can temporarily change
the size of the current partition. (Since the actual size of the partition is currently
determined by the state of the Control Network itself, you can only reduce the
size of the partition.)

Note: Only one NI per partition needs to write a value to the configuration
register — the configuration operation includes all nodes in the same partition.

The actual value written to the ni_configuration register is an encoded ver- -
sion of the new partition size:

configuration = log2(partition _size) + 2

Extra for Experts: By writing a 0 to the configuration register, you can tem-
porarily isolate each node in the partition in its own “mini-partition,” so that
network operations performed by each node apply only to that node. Obviously,
you should restore the original value of the configuration register when you
are finished using this “mini-partition” effect.

The flag ni_configuration_complete is set to 0 while the repartitioning is
in progress, and then set back to 1 to indicate its completion. At the same time,
the ni_configuration register of the NI that sent the message is updated to
the new partitioning value. The configuration registers and flags of the other NIs
are not affected. An attempt to write a value to the ni_configuration register
while ni_configuration_complete is O signals a Bus Error.

Important: A partition change should not be done when the Control Network
is in use — the effect of doing so is undefined, but certainly disastrous.

NI Version 2.2 (CM-5E), June 1994 115
Copyright © 1994 Thinking Machines Corporation

6.8

6.9

116

NI Programmer s Handbook
R M S B s B 525

Disabling the Control Network

There is one last flag in the hodgepodge register that has not yet been described:

ni_hodgepodge Control register, includes the flag:
ni_cn_stop_send Flag, disables Control Network sending.

This flag is used to completely disable the Control Network, preventing any mes-
sages from being sent into it — including the periodic “idle” packets that are sent
when the network is not otherwise being used.

The stop_send flag is generally used only during an NI Reset (see Section
6.10) when it is necessary to totally disable the Control Network. When the
stop_send flag is 1, the Control Network is disabled. When the stop_send
flag is set to 0, normal network operations resume.

For the Curious: The Control Network is designed in such a way that packets
are periodically sent into it even when the network is not in use. When no mes-
sage is being sent by the user or by the OS, these “idle” packets simply contain
no data, and have no effect on the nodes. However, idle packets can affect the
state of the Control Network itself in unwelcome ways, especially during a Reset
operation, when it is important for the state of the network to remain unchanged.

For the Even More Curious: Because the Data Network operates in an essen-
tially asynchronous manner, with messages being sent from the nodes “on
demand,” the Data Network does not transmit idle packets, and thus has nothing
analogous to the Control Network’s stop_send flag.

NI Serial Number

Finally, one NI register contains the hardware serial number of the NI chip:
ni_serial number Version serial number of NI chip.
This serial number identifies the version of NI chip that is installed.

Usage Note: Most revisions of the NI chip do not have usefully distinguishable
serial numbers, so this register is not particularly valuable.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 6. Other NI Interfaces and Features
3 SRR A SR

B S

6.10 NI Reset

Under the following conditions, the NI chip is completely reset:
® The system administrator requests a repartitioning of the CM-5.

= The system administrator uses the diagnostic hardware of the CM-5 to
reset the processing nodes and networks.

When the NI is reset, a number of its register fields and flags are set to known .
states. The following events occur on an NI Reset:

®* ni disable_bus_error is negated.

* ni longest_dr_message is set to a value of 5.

= All abstain and lock flags are set to 1, thus isolating the NI from all net-
works. These flags are:

nl_dr_lock nl_1ldr_ lock nl_rdr_ lock

ni_bc_lock nl_sbec_lock ni_com_lock
ni_reduce_rec_abstain ni_com_abstain
nl _bc_rec abstain ni_sbc _rec_abstain

ni_sync_global_abstain
®* ni_ interrupt_level is set to 0. This disables all colored interrupts.
= All sending and receiving FIFOs are cleared.

®* ni_flush complete and ni_sync_global_complete are set to 1.
The values of all other NI registers are undefined, and must be set by software.

NI Reset is triggered by a special broadcast interrupt, the Reset interrupt, that can
. be sent from another NI or from the partition manager. This interrupt is always
effective and cannot be disabled.

NI Version 2.2 (CM-5E), June 1994 117
Copyright © 1994 Thinking Machines Corporation

Chapter 7

Writing NI Programs

T PR A A LR

In this chapter we’ll start applying some of the tools presented in the preceding
chapters. First, we’ll cover important small-scale issues, such as exchanging data
between the nodes in a partition and the partition manager. Next, we’ll look at
a short program that makes use of every network interface of the NI.

7.1 Transferring Data between Nodes and the PM

As described in Section 3.3, each node in a partition has a unique address based
on its location in the partition. However, the PM is not part of this addressing
scheme. The PM is always located outside of the address space of the partition
that it manages:

- W._\\
Nodes pliPi|lP||P|/P| - --|P PM
Addresses 0 | 2 3 4 n Partition Manager

Figure 20. The partition manager stands apart from the partition it manages.

This means that sending messages to and from the partition manager involves
some careful coordination between the PM and the nodes.

NI Version 2.2 (CM-5E), June 1994 119
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook
B P S A e

7.1.1 Sending Messages from the PM to Nodes

To send a message from the PM to a node, the PM does two broadcast operations:
one to send the address of the node that should “receive” the message, and one
to transmit the message itself.

For example:

void PM_send_to_NODE (node_address, value)
int node_address, value;

{
CMNA _bc_send first (1, node_address) ;
CMNA bc_send first(1, value);

}

Each of the nodes should perform two broadcast reads, one to determine whether
the address of the message matches the node’s own address, and one to either
receive and store the message or to ignore it, based on the supplied node address:

int NODE_get_from_PM(dest)
int *dest;
{
int address, value;
while (!RECEIVE_OK(CMNA_bc_status())) {};
address=CMNA_bc_receive_word() ;
while (!RECEIVE_OK(CMNA_bc_status())) {};
value=CMNA_bc_receive_word() ;
if (address == CMNA_self_address) *dest=value;
}

Notice that the node waits until the rec_ok flag is set each time it tries to receive
a value from the broadcast interface. This is important — while these routines
are written so that the PM’s two broadcast values should arrive in the node’s re-
ceive queue nearly simultaneously, it’s still necessary to check the rec_ok flag
before each broadcast read, because the two values are still separate messages.

Also, notice that in this example only one node “accepts™ the value sent from the
PM, but there’s no reason why you can’t have more than one node “accept” the
value — you can use any test you like to decide whether the nodes keep or dis-
card the values they receive.

120 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

&

Chapter 7. Writing NI Programs

7.1.2 Sending Messages from Nodes to the PM

Sending a message from a node to the PM is almost as straightforward, but in-
volves two interfaces this time: broadcast and combine.

First, the PM sets its ni_com_abstain flag to 1 and its ni_reduce_rec_ab-
stain flagto 0, so that it can receive a combine message without having to send
a value. (Note: We’ll handle this step separately in Section 7.2, below.)

Next, the PM broadcasts a message containing the address of a processing node,
as in the PM_send_to_NODE example above. The nodes respond by signaling
a combine message (a UADD_SCAN reduction), in which only the node with the
address specified by the PM transmits a value. (The other nodes supply an identi-
ty value of O for the reduction.) The PM then receives this message to get the
requested value.

Here’s the function that handles the PM side of this transaction:

int PM_get_ from NODE (node_address)
int node_address;
{
CMNA bc_send first(l, node_address);
while (!RECEIVE_OK(CMNA com_status())) {};
return (CMNA_com_receive_word()) ;

}
And here’s the corresponding node function:

void NODE_send_to_PM(value)
int value;
{
int address;
while (!RECEIVE_OK(CMNA bc_status())) {};
address = CMNA_bc_receive_word() ;
if (address != CMNA_self address) value = 0;
CMNA_com_send_ first (UADD_SCAN, SCAN_REDUCE, 1,value) ;
while (!RECEIVE_OK(CMNA_com_status())) ({};
(void) CMNA_ com_receive_word() ;

}

Notice that immediately after the nodes send a combine message, they perform
a combine read to discard the resulting value. You might think it would be a good
idea to temporarily toggle the combine abstain flags for the nodes, so that they
will simply ignore the result. However, this is not such a good strategy. (Why
not? See Section 7.2.)

NI Version 2.2 (CM-5E), June 1994 121
Copyright © 1994 Thinking Machines Corporation

7.1.3

7.1.4

122

NI Programmer s Handbook

Signaling the PM

Because the above PM/node communication functions use both the broadcast and
combine interfaces, we’ll want a function that forces the PM to wait until the
nodes have finished their computations before the PM broadcasts a request for
the results. A single function will suffice for both the PM and the nodes:

veid PM_NODE_synch ()

{
CMNA or_global_sync_bit(1l);
while (!CMNA_global_sync_complete()) {};
(void) CMNA _global_sync_read();

}

This function uses the global interface to create a simple barrier synchronization.

For the Curious: Using the Data Network

You can also use the Data Network to send messages between the partition man-
ager and the nodes. However, owing to the distinction between addressing on the
nodes and on the partition manager, it’s not as clear-cut an operation as using the
broadcast and combine methods described above.

To send a message from the partition manager to a specific node via the Data
Network, you can use the methods presented in Chapter 3, using the node’s ad-
dress as the destination for the message.

To send a message from a node to the partition manager, however, you must
make a system function call:

int *source, length, tag
CMNA_interface_send_packet_to_scalar (source, length, tag)

where the interface abbreviation is dr, 1dr, or rdz, depending on the network
interface you wish to use, and the other arguments are as noted in Chapter 3. The
partition manager can then receive this message as usual. There is a catch, how-
ever — this system call is currently implemented as a trap instruction, which in
practical terms means it is much less efficient than the combine network method
shown in Section 7.1.2.

Sending messages to and from the PM via the Data Network is primarily useful
when you want to send a message to a specific node without requiring all the
other nodes to stop and do a network operation at the same time.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 7. Writing NI Programs

7.2 Setting the Abstain Flags

Both the PM and the nodes will need to modify their abstain flags in order to use
the above functions. Since they will also need to restore the previous values of
these flags afterwards, it makes sense to use a single pair of functions to handle
saving and restoring the flags, rather than individually toggling flags within a
program.

Also, while changing abstain flags in the middle of a program does work, it’s
error-prone because it requires that you ensure the corresponding network(s) are
empty before changing the abstain flag settings. It’s much more straightforward
to simply set the abstain flags appropriately at the beginning of your program,
and then leave them alone as much as possible.

With these factors in mind, here is a pair of functions that handle saving and
restoring the abstain flags, giving them whatever intermediate settings you se-
lect.

First, a routine that saves the current values of the abstain flags and then sets
them to new values:

int bc_abstain_flag,
com_abstain_flag,
com_rec_abstain flag,
sync_global_abstain_flag;

void save_and_set_ abstain flags
(new_bc, new_com, new_com_rec, new_sync_global)
int new_bc, new_com, new_com _rec, new_sync_global;

bc_abstain flag =
CMNA read_abstain_flag(bc_control_reg) ;
com_abstain_ flag =
CMNA_read abstain flag(com_control_reg);
com_rec_abstain _flag =
CMNA read_rec_abstain flag(com_control_reg) ;
sync_global_abstain flag =
CMNA read_abstain_flag(sync_global_ abstain_reg);
CMNA write abstain flag(bc_control_reg, new_bc);
CMNA _write_abstain_flag(com_control_reg, new_com);
CMNA write_rec_abstain flag(com_control_reg,
new_com_rec) ;
CMNA write_ abstain_flag(sync_global_abstain_reg,
new_com) ;

NI Version 2.2 (CM-5E), June 1994 123
Copyright © 1994 Thinking Machines Corporation

o

NI Programmer s Handbook

Next, a function that restores the old values:

void restore_abstain_flags()
{
CMNA_write_abstain flag(bc_control_reg,
bc_abstain flag);
CMNA write_abstain flag(com_control_reg,
com_abstain_ flag);
CMNA_write rec abstain flag(com control_reg,
com_rec_abstain flag);
CMNA write_abstain flag(sync_global_abstain reg,
sync_global_abstain flag);
}

One caveat about these functions: they assume that none of the Control interfaces
are in use when you call them. This should be the case if you call them at the
beginning and end of your program, as they are intended to be used. If you need
to use functions like these within the body of a program, you should precede and
follow them with code (function calls, etc.) that synchronizes the nodes, thus en-
suring that none of the affected interfaces are in use.

For example, you can use the global interface to synchronize the nodes while you
change the abstain flags for the other interfaces, and then use the network-done
operation of the combine interface to synchronize while you change the abstain
flags for the global interface. (You can probably now see why it’s easier just to
set these flags once and then ignore them!)

7.3 Broadcast Enabling

Along with setting the abstain flags, there’s one other important operation that
needs to be included in any NI program. As noted in Section 4.1.8, you need to
call the macro

CMNA participate_in(NI_BC SEND_ENABLE) ;

to enable broadcast sending — even if you clear the broadcast abstain flag. The
best point in your program to do this is the same place you set the abstain flags.

124 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

7.4

NI Program Structure

Now, with these tools we can turn to the task of designing an NI program.

An NI program consists of three files:
® code to be run on the partition manager
® code to be run on the nodes (one program executed by all nodes)

= an interface file defining the node routines that are callable from the PM

The sections below describe each of these parts in detail, and show you how to
bring them together into a working program.

7.4.1 The cmna.h Header File
Important: Both the partition manager code file and the node code file must
#include the header file cmna.h, as follows:
#include <cm/cmna.h>
This header file contains #include directives that load the other files needed to
define the NI programming tools described in this manual. Nete: If you plan to
call cMos_signal () (see Section 3.5.4), you must also #include the header
file <cmsys/cm_signal.h>.)
7.4.2 Partition Manager Code
Code that runs on the PM may contain anything ordinarily included in a program
running on a Sun computer. This includes print£ calls, system calls, I/O calls,
and calls to other specialized libraries. The simplest PM program might look
something like this:
#include <cm/cmma.h>
void main() {
/* start node program running */
node_program(); }
This program does nothing more than call the corresponding node program de-
fined below. Typically, however, the PM code will include operations that send
data to the nodes and retrieve the results of the node computations.
NI Version 2.2 (CM-5E), June 1994 125

Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

7.4.3 Node Code

126

Code written for execution on the nodes consists of one or more subroutines that
perform local computations and make NI calls to send messages through the net-
works. Node programs can also include simple I/O calls to display intermediate
results.

In particular, the output of print£ calls from all nodes is collected and saved
in a file (typically named “cMTSD_printf .pn.pid”) that you can examine dur-
ing and/or after execution of your program. However, the handling of printf
calls from the nodes slows down program execution considerably, so this method
of output is best used only for debugging your program.

Note: As of this release, many UNIX system calls are not supported on the
nodes. If node programs invoke these unsupported calls, segmentation violations
may be signaled. You should use node subroutines primarily for computations
and NI operations, and use the PM code for system calls and external J/O.

The Node’s “Main” Routine

The first subroutine in the node file must be the one initially called by the PM.
This routine serves much the same function as the “main” routine in standard C
programming — it is the trigger that starts everything else running.

While you can give a node subroutine any name that you wish, if it is to be called
from the PM, then you must add the prefix cMPE__ to the subroutine name when
defining it and when calling it from another node subroutine. This prefix is used
by the compiler to determine which subroutines will be called from the PM. You
do not have to use the CMPE__ prefix anywhere outside of the node subroutine file.

The simplest node program, corresponding to the PM program given above, is

#include <cm/cmna.h>
void CMPE_node_program() {
/* Node program, does nothing, just an entry point
*/
}

As you can see, this is less than the bare bones of a subroutine — it does nothing
at all. We’ll see an example of a complete node program below.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 7. Writing NI Programs

7.4.4

Interface Code

The “interface code” file is nothing more than a file of function prototypes, as
might appear in a header file. It is used in the compilation process to produce
special declaration code that allows the nodes to respond correctly to subroutine
calls from the PM.

The interface code file for the skeletal program given above has just one line:
void node_program() ;

Important: Before you compile it, the interface code file must be preprocessed
by the utility program sp-pe-stubs.This utility program translates your inter-
face prototypes into complete subroutine calls that can be compiled with the PM
and node code files to produce an executable NI program.

This is the reason that node functions callable from the PM require the CMPE__
prefix — the sp-pe-stubs utility adds this prefix to the name of each host-
callable function, so that there’s no possibility of collision with names of node
functions that you have not defined as host entry-points.

7.5 A Sample Program

As an example, here’s a simple NI program that uses each of the CM-5 network

interfaces. First, the partition manager source file:

Filename: NI_test.c

/* Sample NI program - PM program */

#include <cm/cmna.h> .

#include "utils.h®

void main () {
int input, result, high node;
printf (*\nSimple NI test program, by W.R.Swanson,\n");
printf ("Thinking Machines Corporation--1/31/92.\n\n");
/* Enable broadcast sending */
CMNA participate in (NI_BC_SEND_ENABLE) ;

NI Version 2.2 (CM-5E), June 1994 127

Copyright © 1994 Thinking Machines Corporation

}

NI Programmer s Handbook
R AR]

/*Abstain from broadcast reception, combine sending */
save_and_set_abstain flags(1,1,0,0);

/* Start node programs running */
node_main () ;

/* Get value from the user, send it to the nodes. */
printf (*This CM-5 partition has %d nodes.\n",
CMNA partition_size);

printf ("Please type an integer to send: ")
scanf ("%d", &input);

PM_send_to_NODE (0, input);
printf ("Sent value %d to node 0...\n",input);

/* Wait for the nodes to finish juggling numbers */
PM_NODE_synch() ;

/* Get value from high-address node */
/* (size - 2, because scan result starts with 0) */
high node = CMNA partition _size-2;

result = PM_get_ from_ NODE (high node) ;

printf ("Got value %d (should be %d) from node %d.\n",
result, input, high node);

result = PM get_from NODE(0);

printf (*Got value %d (should be %d) from node 0.\n",
result, (input* (high_node+1)));

restore_abstain_flags();

Next, the corresponding code for the processing nodes:

Filename: NI_test.node.c

/* Sample NI program - node program */
#include <cm/cmna.h>
#include "utils.h®

void CMPE_node_main () {

128

int value=0, scan_value, flipped value;
int mirror_node_addr;
CMNA_participate_in(NI_BC_ SEND_ENABLE) ;
save_and_set_abstain flags(0,0,0,0);

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 7. Writing NI Programs

/* Node 0 gets the value sent by the PM... */
NODE_get_ from PM(&value);

/* and broadcasts it to all nodes */

if (CMNA_self address==0) CMNA _bc_send first(il,value);
while (!RECEIVE_OK(CMNA bc_status())) {};

value = CMNA _bc_receive_word() ;

/* Do an addition scan to put a different value

in each node */
CMNA_com_send_first (UADD_SCAN, SCAN_FORWARD, 1,value) ;
while (!RECEIVE_OK(CMNA com_status())) ({};
scan_value = CMNA_com_receive_word() ;

/* Use LDR to "flip" order of values in nodes */
mirxor_node_addr =

(CMNA_partition_size-1) - CMNA_self address;
CMNA_ldr_send first(0, 1, mirror_node_addr);
CMNA_1dr_send word(scan_ value);
while (!RECEIVE_OK(CMNA ldr_status())) {};
flipped value = CMNA_ ldr_receive_word() ;

/* Signal to PM that answer is ready */
PM_NODE_synch () ;

/* Send value from high-order node back to PM */
NODE_send_to_PM(flipped value) ;

/* Send value from node 0 back to BPM */
NODE_send_to_PM(flipped value);

restore_abstain_ flags();

}

And the interface code file:
Filename: NI_test.proto

/* Sample NI program - interface code */
node_main () ;

NI Version 2.2 (CM-5E), June 1994 129
Copyright © 1994 Thinking Machines Corporation

130

NI Programmer's Handbook

Finally, both the PM and node programs include a utilities file, which includes
such tools as the abstain-flag functions and the PM/node communications
functions:

Filename: utils.h

/* Utility code */
int bc_abstain flag, com_abstain_ flag,
com_rec_abstain_flag, sync_global_abstain_flag;

veid save_and_set_abstain_ flags(new_bc, new_com,
new_com_rec,
new_sync_global)
int new_bc, new_com, new_com_rec, new_sync_global;
{
bc_abstain_flag =
CMNA_ read_abstain_flag(bc_control_reg) ;
com_abstain flag =
CMNA_read_abstain_ flag(com_control_reg);
com_rec_abstain_flag =
CMNA_ read rec_abstain flag(com_control_reg);
sync_global_ abstain_ flag =
CMNA read abstain flag(sync_global abstain reg);

CMNA write_abstain_ flag(bc_control_reg, new_bc) ;
CMNA write_abstain_flag(com_control_reg, new_com) ;
CMNA write_rec_abstain flag(com _control_reg,
new_com_rec) ;
CMNA_write_ abstain_ flag(sync_global abstain reg,
’ new_sync_global) ;

}

void restore_abstain flags()
{
CMNA write_abstain_flag(bc_control_reg,
bc_abstain_ flag);
CMN2 write_abstain flag(com_control_reg,
com_abstain_flag);
CMNA_write_rec abstain_flag(com_control_reg,
com_rec_abstain flag);
CMNA _write_abstain flag(sync_global_abstain_reg,
sync_global_ abstain flag) ;

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

E

Chapter 7. Writing NI Programs

void PM_send to_NODE (node_address, value)

{

int

int

int node_address, value;

CMNA _bc_send_first(l, node_address);
CMNA_bc_send first(1, value);

NCDE_get_from_PM(dest)
int *dest;

int address, value;

while (!RECEIVE_OK(CMNA_bc_status())) {};
address=CMNA_bc_receive_word() ;

while (!RECEIVE_OK(CMNA_bc_status())) {};
value=CMNA_ bc_receive_word() ;

if (address == CMNA_self address) *dest=value;

PM_get_ from_ NODE (node_address)
int node_address;

CMNA bc_send first (i1, node_address);
while (!RECEIVE_OK(CMNA com_status())) {};
return (CMNA_com_receive_word()); }

void NODE_send to_PM(value)

{

}

int wvalue;

int address;

while (!RECEIVE_OK(CMNA_bc_status())) {};

address = CMNA_bc_receive_word() ;

if (address != CMNA_self_ address) value = 0;

CMNA_com_send_ first (UADD_SCAN, SCAN_REDUCE,
1,value) ;

while (!RECEIVE_OK(CMNA_ com_status())) {}:

(void) CMNA_com receive_word() ;

void PM_NODE_synch ()

{

CMNA_or_global_sync_bit(1);
while (!CMNA_global_sync_complete()) {};
(void) CMNA_global_sync_read() ;

NI Version 2.2 (CM-5E), June 1994 131
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

7.6 Compiling and Executing an NI Program

132

Note: This section presents a brief overview of the process of compiling and
executing an NI program. It’s very much like the procedure used in compiling
and executing a CMMD program — so much so that you should also read the
CMMD User’s Guide for more information. (In particular, the CMMD User's
Guide includes examples of using a generic makefile to compile your code. This
may be more appropriate to your needs and inclinations than the script example
shown below.)
To compile an NI program you must:

= preprocess the interface file by calling sp-pe-stubs

= compile the resulting file, as well as the PM and node routine files

= link the three object files together with the CM linking program emld

To illustrate this, here are the steps you would take in compiling the sample pro-
gram shown above:

First, preprocess the interface code file:
/usr/bin/sp-pe-stubs < NI_test.proto > NI_test.intf.c
Next, compile the three code files:

cc NI_test.c -c¢ -g -DCM5 -DMAIN=main

-I/usr/include

cc NI_test.node.c -¢ -g -DCM5 -dalign -Dpe_obj
~I/usr/include

cc NI_test.intf.c -c -g -DCM5 -DMAIN=main
-I/usr/include

Finally, link everything together. For this purpose, you must use the CM-specific
linking program emld:

/usr/bin/cmld -o NI_test
NI_test.o NI_test.intf.o
~L/usr/lib -lcmna_sp -lcmrts -1m
-pe NI_test.node.o
-L/usr/lib -lcmna_pe -lcmrts_pe -1lm

The result is a single executable file, NI_test, which you can run by logging
on to one of the partition managers of a CM-5 and executing the file.

NI Version 2.2 (CM-5SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 7. Writing NI Programs

7.6.1 A Simple Compiling Script

Here’s a short UNIX script that automates this process. It takes as its single argu-
ment the name of an NI program, constructs the names of the three component
files from the program name, compiles the files, and links them together as
shown above.

Note: This script assumes that the program files are all present in the current
directory.

#! /usr/bin/csh -e -£
nicc2 -- Compiles an NI program
echo "Script: $0, Compiling $1 for the NI...*"

set PMFILE = %g1,c"

set PMOFILE = "g]. o"

set NODEFILE = "$1l.node.c"
set NODEOFILE = "“$l1l.node.o¥
set INTFFILE = "Sl.proto"
set INTFCFILE = "$l.intf.c®
set INTFOFILE = "S$1l.intf.o"

set OUTFILE ngan
set NODEOUTFILE = "$i1.pn"

set EXECUTABLE = "a,out"
set NODEEXECUTABLE = "a.out.pn'
echo ’Preprocessing interface code file: ' SINTFFILE

/usr/bin/sp-pe-stubs < $INTFFILE > SINTFCFILE

echo ’‘Compiling PM code file: ’ S$PMFILE

cc -c -g -DCM5 -DMAIN=main -I/usr/include $PMFILE -0

SPMOFILE

echo ‘Compiling node code file: ’ S$NODEFILE

cc -c -g -Dpe_obj -DPE_CODE -I/usr/include $SNODEFILE
-0 SNODEOFILE

echo ’‘Compiling interface code file: ' SINTFCFILE

cec -c -g -DCM5 -DMAIN=main -I/usr/include $INTFCFILE
-0 SINTFOFILE

echo ‘Linking it all together...’

/usr/bin/cmld -1lg $PMOFILE $INTFOFILE -o $OUTFILE \
-L/usr/lib -lcmna_sp -1lm \
-pe -lg $NODEOFILE -L/usr/lib -lcmna_pe -1lm

echo ’‘Done. Executable written to: * S$OUTFILE

NI Version 2.2 (CM-5E), June 1994 133
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook
A S A P 4 S

i

7.6.2 Compiling and Running the Program

Note: The following examples assume that you are currently logged in to one of
the partition managers of a CM-5.

The output of the compiling script for the NI_test program looks like this:

% nicc2 NI_test

Script: nicc2, Compiling NI_test for the NI...
Preprocessing interface code file: NI_test.proto
Compiling PM code file: NI_test.c

Compiling node code file: NI_test.node.c
Compiling interface code file: NI_test.intf.c
Linking it all together...

Done. Executable written to: NI_test

The script produces a single executable file NI_test, which can be executed as
follows:

50: NI_test

Simple NI test program, by W.R.Swanson,
Thinking Machines Corporation -- 1/31/92.

This CM~5 partition has 32 nodes.

Please type an integer to send to the nodes: 42
Sent value 42 to node 0...

Received value 42 (should be 42) from node 30.
Received value 1302 (should be 1302) from node 0.

7.6.3 On-Line Code Examples

134

As of Version 7.1.3 of the CM system software, there are on-line copies of the
sample program and script in this chapter, along with copies of the programming
examples in Appendix C. '

Depending on where your system administrator has chosen to store the CM soft-
ware, these files may be located under the pathname

/usr/examples/ni-examples

or they may also be located somewhere else entirely. Check with your system
administrator for help in locating these files.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 8

NI Programming Issues

8.1

8.1.1

This chapter presents a number of NI programming issues that you should keep
in mind, as well as important performance and programming hints and warnings.

Note: Some of the notes and warnings below are included in earlier chapters.
They are repeated here so that you can find them quickly.

Performance Hints

NI Register Operation Times

Here are some rough estimates of the time taken by a number of basic operations:

register access (register variable): 1 cycle

cache memory (previously accessed variable): 2-3 cycles
NI register read (ni_interface_status, etc.): 7-8 cycles
NI register write (ni_interface_status, etc.): 3-4 cycles
memory access (newly accessed variable): ~25 cycles

The time taken to perform an NI register read or write operation is longer than
the time taken for cached memory accesses, but much shorter than the time for
full memory accesses. (NI register writes are faster than reads because an NI read
operation requires that the node microprocessor wait for the read operation to
move through the Mbus buffer before a value is actually read and returned.)

For the Curious: This is why the NI status register tools are designed so that you
can read an NI status register once and then extract fields from the retrieved val-
ue. Once you have retrieved the value of the NI register and stored it in cached
memory, the access time for extracting multiple fields decreases substantially.

NI Version 2.2 (CM-5SE), June 1994 135
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook
A S e

8.1.2 Reading and Writing Registers with Doubleword Values

136

While this document focuses for the most part on reading and writing network
messages in terms of single (32-bit) words, you can also use doubleword (64-bit)
operations in reading and writing network registers.

Writing a doubleword to a register has the same effect as writing two singleword
values, but involves only one register operation. Likewise, reading a doubleword
from a register is the same as reading two singlewords.

The combine interface is an exception to this rule, because of its pipelining fea-
ture. You can’t use doubleword writes when you are pipelining combine
operations. However, you can use doubleword reads with pipelined operations,
and doubleword writes are permitted for non-pipelined combine operations.

In addition, attempting a doubleword read or write for a message that consists of
only one word (as is the case for network-done tests) signals an error.

For C Programmers: To use doubleword read and write operations, the values
you send must be doubleword-aligned in memory. To ensure that this is the case,
use the compiler switch ~dalign when compiling any file that includes double-
word function calls or variable definitions. For example,

cc -c —-g -DCM5 -dalign -I/usr/include ni_code.c

Example: LDR Send/Receive

Here’s the LDR_send receive_msg function from the Data Network chapter,
rewritten to use doubleword writes:

int tag_limit = 3;

LDR_send_receive_msg(dest_address,message, length, tag,dest)
unsigned dest_address, tag;
int *message, *dest, length;

int send_size, send _size2, receive_size,receive_size2;
int offset, source_offset=0, dest_offset;

int words_to_send=length, words_received=0;

int packet_size, count, rec_tag, status;

double *dbl;

if (((int)message & 3) || ((int)dest & 3))

CMPN_panic ("Message or dest not doubleword aligned");
packet_size = (MAX ROUTER_MSG_WORDS-1) & ~1;

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 8. NI Programming Issues

while ((words_received < length) || (words_to_send)) {
/* First try to receive a packet */
status=CMNA_ldr_status();
if (words_received<length && RECEIVE_OK(status) &&
RECEIVE_TAG (status) <=tag_limit) {
dest_offset = CMNA ldr_receive_word() ;
receive_size =
RECEIVE_LENGTH_LEFT (CMNA_ldr_status());
for (count=0; count<(receive_size>>1); count++) {
dbl = (double *) (&dest[dest_offset++]);
dest_offset++;
*dbl = CMNA_ldr_receive_double();
dbl++; }
if (receive_size & 1) /* If word left over */
dest [dest_offset++] = CMNA_ldr_ receive word();
words_received += receive_size;

Y o/* if +/

/* Now try sending a packet */
if (words_to_send) {
send_size = ((words_to_send < packet_size) ?
words_to_send : packet_size);
send_size2 = send_size >> 1;
do {
CMNA_ldr_send_first(tag,send size+l,
dest_address) ;
CMNA 1dr_send word(source_offset);
offset=source_offset;
/* Send as many doubles as possible */
for (count=0; count<send size2; count++) {
dbl = (double *) (&message [offset++]);
offset++;
CMNA_ldr_send _double(*dbl++); }
if (send_size & 1) /* If a word is left over */
CMNA_ldr_send_word (message [cffset++]);
} while (!SEND_OK(CMNA_ldr_status()));
source_offset=offset;

words_to_send -= send_size;
}o/* if */
} /* while */
}
NI Version 2.2 (CM-5E), June 1994 137

Copyright © 1994 Thinking Machines Corporation

SRR

NI Programmer s Handbook

8.1.3 Use Message Discarding for Efficiency

When a message you are writing to a network send FIFO is discarded, it is com-
pletely discarded — effectively, it is as if you never began writing the message.

Many NI programmers take advantage of this property by writing a complete
message to a network FIFO, and only then checking to see whether it was dis-
carded (and if so, writing it again). This might seem a sloppy practice, but it is
actually a safe and efficient strategy.

Because messages are typically only a few words long, and because the NI com-
pletely ignores a discarded message, it’s perfectly reasonable to check the
send_ok flag just once, after you’ve written the entire message. Also, if your
code is properly written it should be rare for a message to be discarded, and thus
unlikely that checking the send_ok flag after writing each value of the message
provides any benefit. In fact, checking the send_ok flag after you write each
value of a message can slow your code down considerably.

8.1.4 Set the Abstain Flags Once and Forget Them

In most cases, abstain flags of a network interface can be changed only when the
network is not in use — that is, when there are no messages pending in either the
send or receive FIFOs, and no messages in transit in the network. While this cer-
tainly does not prevent you from toggling the state of the abstain flags within
your code, it does make this kind of flag-toggling more prone to programming
errors.

A more straightforward strategy to use is to set the values of the abstain flags
once, at the beginning of your program, leave them alone while the program
runs, and then restore their original values before your program exits.

Note: This last point is important. As noted in Section 2.6.5, some programming
systems (such as CMMD) use the abstain flags for their own purposes. These sys-
tems are written with the assumption that the abstain flags won’t change
unexpectedly, so if the flags do change these systems may not operate correctly.

When you alter the values of the abstain flags, you must take care to save the
original settings of these flags and to restore them before your code exits. Failing
to do so can cause your code to signal obscure errors that are hard to trace.

138 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

———4

Chapter 8. NI Programming Issues

8.2

8.2.1

8.2.2

Potential Programming Traps and Snares

Here are some potential sources of serious errors that you should keep in mind.

Note: Some of the notes and warnings below are included in earlier chapters.
They are repeated here so that you can find them quickly.

Address Calculation on the Partition Manager

On any of the processing nodes, the NI_BASE address (the base address of the
NI register region) is constant, and furthermore is set to a value that is zero in
all the low-order bits used for the send-first auxiliary data fields. Thus, it is pos-
sible on the nodes to logically IOR the auxiliary data with the base address to get
the final result.

On the partition manager, however, the base address of the NI register region can
be any arbitrary address assigned by the operating system. Hence, on the parti-
tion manager you must use arithmetic addition when combining auxiliary data
with the base address of a send-first register.

As a point of style, it is simplest to just use addition in all cases, as this will work
on either the PM or the nodes. (This is the usage shown in this document.)

Pay Attention to Data Network Addresses

When sending a Data Network message with a relative address, the address must
be valid within the current partition. If an address higher than cMNA_parti-
tion_size is supplied, the NI signals an error.

Also, there is currently a 20-bit limit on the length of a Data Network address,
and the remaining high-order bits in a 32-bit address value must be 0. If any of
these high-order bits are nonzero, the NI signals a serious error, and in some
cases the entire partition of nodes may crash. You should either write your code
so that the high-order bits of a network address can never be other than zero, or
failing that mask out the top 12 bits of an address before using it.

Implementation Note: Currently, there is an additional restriction on the most
significant (19th) bit of the address — it too must be 0, or an error will result.

NI Version 2.2 (CM-5E), June 1994 139
Copyright © 1994 Thinking Machines Corporation

8.2.3

8.2.4

8.2.5

8.2.6

140

NI Programmer s Handbook

“Middle” Data Network Interface Restrictions

Because of design limitations, it is not possible to receive messages via the
“middle” Data Network interface. This is a permanent restriction — the corre-
sponding recv registers in fact do not exist in the 2.2 version of the NL

Make Sure Doubleword Data Is Doubleword-Aligned

C Programmers: This is also mentioned in the performance section above, but
it doesn’t hurt to re-emphasize it. When you use doubleword read and write op-
erations in your C code, you must compile your code with the ~dalign compiler
switch, so that doubleword values are properly aligned in memory:

cc -c -g ~-DCM5 -dalign -I/usr/include ni_code.c

If the doubleword values in your code are not properly aligned, the nodes will
most likely signal “illegal address™ errors, and your code won’t run.

Order Is Important in Combine Messages

As noted in Section 4.2.8, for scan messages longer than one word, the order in

which the words of the message are written depends on the combine operation:
®= Maximum operations require the most significant word to be written first.
= Both types of addition require the least significant word to be written first.

* Inclusive and exclusive OR have no word-ordering requirement.

Broadcast and Combine Interface Conflicts

Because of the way the broadcast and combine interfaces interact, you should be
careful in using the abstain flags of these interfaces. If your code causes a node
(processing node or PM) to abstain from the combine interface, and if

= the abstaining node is sending a broadcast message

= simultaneously, the other nodes are sending a combine message

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Chapter 8. NI Programming Issues

8.2.7

8.2.8

8.2.9

then because of timing conflicts in the Control Network hardware, the two types
of messages can collide, possibly causing your partition to crash. This situation
most often occurs when you have instructed the PM to abstain from the combine
interface so that it can receive the results of a scan or reduction operation, yet at
the same time you want the PM to broadcast messages to the nodes telling them
what to do. The conflict arises when the PM needs to broadcast a message at the
same time that the nodes are sending a combine message. To avoid this problem,
your code must include safety checks that prevent broadcast messages from
backing up in the network at the same time that other nodes are sending a com-
bine message. The CMOST operating system includes a function you can call to
send a broadcast message that implicitly performs this safety checking:

int *msg, length;
CMNA_bc_send msg(msg, length);

Broadcast Enabling

As noted in Section 4.1.8, each broadcast interface has a send_enable flag.
These flags are set to 0 by default in the CMOST operating system, and must be
set to 1 before broadcasts are used. The CMOST system call to set these flags is:

CMNA participate_in(NI_BC_SEND_ENABLE) ;
CMNA _participate_in(NI_SBC_SEND ENABLE) ;

Combine Interface Pipelining Restriction

As noted in Section 8.1.2, pipelined combine operations cannot be started using
doubleword operations. However, you can use doubleword reads with pipelined
operations, and doubleword writes are permitted for non-pipelined combine op-
erations.

Restriction on Scan Segment Start Flag

As noted in Section 4.2.8, it is an error to change the state of the
ni_scan_start register while the combine send FIFO is not empty.

NI Version 2.2 (CM-5E), June 1994 141
Copyright © 1994 Thinking Machines Corporation

8.2.10

8.2.11

8.2.12

8.2.13

8.2.14

142

NI Programmer s Handbook

Be Careful When Altering Abstain Flags

As mentioned in Section 2.6.5, some programming systems use the abstain flags
for their own purposes. When you alter the abstain flags, you must save the origi-
nal settings and restore them before handing control back to these systems.
Failing to do so can cause user or OS code to signal errors that are hard to trace.

Simulating Receipt of Messages

As noted in Section 3.4.3, a hardware defect in the NI chip does not allow recv
registers to be written by the supervisor. The workaround is for a node to send
a message into the network using its own address as the destination. Assuming
the network is clear (as it is, for example, during context switches) this causes
the message to be delivered to the front of the node’s receive queue.

Message Too Long Interrupt Restriction

Currently, the message too long interrupt, described in Section B.3.7, does
not work properly. The bus error still occurs, however. There is at present no
workaround for this restriction.

All Fall Down Restriction

All Fall Down messages sometimes don’t set the all_f£all_down bit in the
private register The workaround for this restriction is to check that
rec_len_left is greater than rec_len.

Send/Receive and FIFO Locking Restrictions

It is an error to send a message while in the middle of receiving one — a bug in
the NI causes the receive status information to get written to the send status regis-
ter. Also, it is an error to lock the send/receive FIFOs while in the middle of
receiving a message — doing so can cause the remainder of the message to be
lost. In general, it is best to lock and unlock the FIFOs only when both the send
and receive FIFOs are clear.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendixes

143

Appendix A

NI Registers, Fields, and Constants

A1

This appendix lists the registers and fields of the NI chip, as well as the constants
used to locate them. To use these constants, either include the header file cmna.h
(see Section 1.3.4), or the appropriate CMINA header file (see Appendix H).

Note: The notation “2.2” indicates new registers/fields in Version 2.2 of the NI.

NI Registers

For each register the following information is provided:
® the name of the register
= the hex offset of the register from the user or supervisor base address
= the size of the register in bits, and its memory length in words

= the read/write permissions of the register for both user and supervisor

Register Constants

Note: With the exception of the send_f£irst and send_f£first_long registers
(which are described in Section A.3 and A.4 below), the names of the constants
used to access NI registers are derived from the names of the registers themselves
by uppercasing the register name and adding the suffix “_aA”. Each register
constant provides the absolute address of the register, in either the user or super-
visor memory area, depending on which header file (cmna.h or cmna_sup.h)
has been included.

NI Version 2.2 (CM-5E), June 1994 145
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook
A S e e iy S

A.1.1 Global and System Registers

Permissions:

Register Name: Address: Size: Len: Super: User:
ni_interrupt_cause 0x0000 15 1 R/W None
ni_interrupt_cause_green 0x0008 14 1 R/W None
ni_interrupt_level 0x0010 32 1 R/W None
ni_physical_self 0x0018 20 1 R/W None
ni_partition_base 0x0020 20 1 R/W None
ni_partition size 0x0028 20 1 R/W None -
ni_chunk table_address 0x0030 6 1 R/W None
ni_chunk table data 0x0038 8 1 R/W None
ni_chunk size 0x0040 3 1 R/W None
ni_dr_message_count 0x0048 32 1 R/W None
ni_count_mask 0x0050 16 1 R/W None
ni_rec_interrupt_mask 0x0058 16 1 R/W None
ni_user_tag_mask 0x0060 16 1 R/W None
ni_time 0x0070 32 1 R/W R
ni_configuration 0x0078 S 1 R/W None
ni_interrupt_send 0x0080 5 1 R/W None
ni_serial number 0x0088 32 1 R None
ni_sync_global 0x0090 2 1 R R
ni_sync_global_abstain 0x0098 1 1 R/W R/W
ni_com_flush_ send 0x00A0 1 1 A None
ni_async_global 0x00A8 2 1 R/IW R/W
ni_async_sup_global 0x00BO 2 1 R/W None
ni_hodgepodge 0x00B8 6 1 R/W None
ni_sync_global_send 0x00C0 1 1 R/W R/W
ni_interrupt_clear 0x00C8 15 1 w None
ni_interrupt_clear_green 0x00DO 14 1 W None
ni_interrupt now 0x00D8 32 1 R/W None
ni_scan_start 0x00E0 1 1 R/W R/W
ni_bad_ address 0x00ES8 32 1 R/W None
ni_longest_dr_message 0x0160 5 1 R/W R 22
ni_user_rec_interrupt mask(0x0168 16 1 R/W R/W 22
ni_interrupt_set 0x0190 20 1 W None 2.2
ni_interrupt_set_green 0x0198 19 1 W None 2.2
146 NI Version 2.2 (CM-5E), June 1994

Copyright © 1994 Thinking Machines Corporation

Appendix A. NI Registers, Fields, and Constants

A.1.2 Network Interface Registers

Combined Data Network Interface (DR)

Permissions:

Register Name: Address: Size: Len: Super: User:
ni_dr_status 0x0200 24 1 R/W R
ni_dr_private 0x0208 10 1 R/W None
ni_dr_send 0x0230 32 16 W w
ni_dr_status_all 0x0250 32 1 R R 22
ni_dr_status_long 0x0260 32 1 R R 22
ni_dr_send_f£irst (block) 0x1000 32 2 w W
ni_dr_send_first_long 0x8000 32 2 w W 22

Left Data Network Interface (LDR)

Permissions:

Register Name: Address: Size: Len: Super: User:
ni_ldr_status 0x0c00 32 1 R/W R
ni_ldr_private 0x0c08 24 1 R/W None
ni_ldr_recv 0x0c20 32 16 R/W R
ni_ldr_send 0x0c30 32 16 w W
ni_ldr_status_pop 0x0c40 32 2 R R 22
ni_ldr_status_all 0x0c50 32 1 R R 22
ni_ldr_status_long 0x0c60 32 1 R R 22
ni_ldr_send_first (block) 0x6000 32 2 W w
ni_ldr_send first_long 0x10000 32 2 W W 22
Right Data Network Interface (RDR)

Permissions:
Register Name: Address: Size: Len: Super: User:
ni_rdr_status 0x0e00 32 1 R/W R
ni_rdr_private 0x0e08 24 1 R/W None
ni_rdr_recv 0x0e20 32 16 R/W R
ni_rdr_send 0x0e30 32 16 W W
ni_rdr_status_pop 0x0e40 32 2 R R 22
ni_xdr_status_all 0x0e50 32 1 R R 22
ni_rdr_status_long 0x0e60 32 1 R R 22
ni_rdr_send_f£irst (block)0x7000 32 2 w W
ni_rdr_send_first_long 0x18000 32 2 w W 22

NI Version 2.2 (CM-5E), June 1994 147

. Copyright © 1994 Thinking Machines Corporation

Broadcast interface (BC)

Register Name:

Address: Size: Len:

NI Programmer's Handbook
St 2

Permissions:
Super: User:

ni_bc_status
ni_bc_private
ni_bc_control
ni_bc_recv
ni_bec_send

ni_bc_send_first (block) 0x3000 32

0x0600 6 1
0x0608 17 1
0x0610 1 1
0x0620 32 16
0x0630 32 16
2

Supervisor Broadcast Interface (SBC)

Register Name:

Address: Size: Len:

R R
R/W None
R/IW R/W
R/W R

W \
w \

Permissions:
Super: User:

nl_sbc_status
ni_sbc_private
nl_sbc_control
ni_sbc_recv
nil_sbc_send

ni_sbc_send first (block) 0x4000 32

0x0800 6 1
0x0808 17 1
0x0810 1 1
0x0820 32 16
0x0830 32 16
2

Combine Interface (COM)

Register Name:

Address: Size: Len:

R None
R/W None
R/W None
R/W None

W None
w None

Permissions:
Super: User:

nil_com_status
ni_com private
ni_com_control
ni_com_recv
nl_com_send

0x0a00 12 1
0x0a08 6(18) 1
0x0al0 2 1
0x0a20 32 16
0x0a30 32 16
2

ni_com_send_first (block) 0x5000 32

R/W R
R/W None
R/W R/W
R/W R
R'W W
W W

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Fields, and Constants

A.2 NI Message Length Limit Constants

The following constants give the message length limits of the network interfaces:

MAX ROUTER_MSG_WORDS DR/LDR/RDR interface length limit.
MAX COMBINE MSG_WORDS Combine (COM) interface length limit.
MAX_ BROADCAST MSG_WORDS Broadcast (BC) interface length limit.
MAX_ SBC_MSG_WORDS Supervisor broadcast (SBC) length limit.

These constants determine the maximum values that can be supplied in the length
component of the auxiliary data of a network message. (See the descriptions of
the auxiliary data formats for the various interfaces below.)

A.3 Send First Register Addresses

The send_£irst address for a network message is a 32-bit value of the form

31 15 14 12 11 3 0
SS base address | interface SS auxiliary data 0 00

where interface is the interface number (an integer from O to 7 representing the
interface being used), and auxiliary data is the auxiliary information of the mes-
sage. (The base address portion is the base address of the NI memory area, either
user Or supervisor.)

The following constants are used to construct send_g£irst addresses:

NI_BASE The NI base address.

SF_FIFO_OFFSET The interface field offset (12).

AUXILIARY_ START_P The auxiliary data field offset (3).
To construct a send_£irst address, add the following values, left-shifted as
shown:

The NI base address: NI_BASE

The interface constant: interface_number << SF_FIFO_OFFSET

The auxiliary data: auxiliary_data << AUXILIARY_START P

NI Version 2.2 (CM-5E), June 1994 149

Copyright © 1994 Thinking Machines Corporation

150

NI Programmer s Handbook

The following interface_number constants are defined:

DATA_ROUTER_FIFO DR network interface (1).
LEFT_DR_FIFO LDR network interface (6).
RIGHT_DR_FIFO RDR network interface (7).
USER_BC_FIFO User broadcast (BC) interface (3).
SUPERVISOR_BC_FIFO Supervisor broadcast (SBC) interface (4).
COMBINE_FIFO Combine (COM) interface (5).

The constants specifying the auxiliary data format for each interface are listed
in the sections below.

Data Network (DR/LDR/RDR) Auxiliary Data Fields

The format of the auxiliary data of a Data Network message is
8 4 0

md tcjzg

1

l length

i

where
md is the addressing mode (0 = relative, 1 = physical).
tag is the 4-bit tag value.

length is the length of the message in words, excluding address word.
The following constants specify the starting bit positions of these fields:

NI_DR_SEND_AUXILIARY ADDRESS_MODE_P The md field offset (8).
NI_DR_SEND_AUXILIARY_ TAG_P The tag field offset (4).
NI_DR_SEND_AUXILIARY_ LENGTH_P The length field offset (0).

To construct a send_£irst address, add the following values:

The md flag: md << NI_DR_SEND_AUXILIARY_ ADDRESS_ MODE_P
The tag value: tag << NI_DR_SEND_AUXILIARY_ TAG_P
The length value: length << NI_DR_SEND_AUXILIARY_ LENGTH P

The following constants can be used to specify the md flag:

RELATIVE Relative node addressing (0).
PHYSICAL Physical node addressing (1).

The tag can be any value from 0 to 3 inclusive for user messages, or from 0 to
15 for supervisor messages. (The length value limit is given in Section A.2.)

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix A. NI Registers, Fields, and Constants

Broadcast (BC/SBC) Auxiliary Data Fields

The format of the auxiliary data of a broadcast message is:

8 0
01010‘0|0 length

where length is the length of the message in words. (The high-order bits of the
auxiliary data have no useful meaning, but must always be 0.) The following
constant specifies the starting bit position of the length field:

NI_BC_SEND_AUXILIARY LENGTH P The length field offset (0).

Combine Auxiliary Data Fields
The format of the auxiliary data of a combine interface message is:

8 4 0

pattern| combiner length

where
Dpattern is a two-bit value selecting the order in which values are combined
combiner is a three-bit value selecting the combine operation performed

length is the length of the message in words
The following constants specify the starting bit positions of these fields:

NI_COM_SEND_AUXILIARY PATTERN_P The partern field offset (7).
NI_cOM SEND_AUXILIARY COMBINER_P The combiner field offset (4).
NI_COM_SEND AUXILIARY_ LENGTH_P The length field offset (0).

To construct 2 send_first address, add the following values:

The pattern value: pattern << NI_COM _SEND_AUXILIARY PATTERN_P
The combiner value: combiner << NI_COM_SEND_AUXILIARY_ COMBINER_P
The length value: length << NI_COM_SEND_AUXILIARY_ LENGTH_P

The following constants can be used to specify the value of the pattern field:

SCAN_FORWARD Forward scan pattern (2).
SCAN_BACKWARD Backward scan pattern (1).
NI Version 2.2 (CM-5E), June 1994 151

Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook
R 5%

SCAN_REDUCE Reduction scan pattern (3).
SCAN_ROUTER_DONE Network-done operation (0).

The following constants can be used to specify the value of the combiner field:

OR_SCAN Inclusive OR (0).
ADD_SCAN Signed addition (1).
XOR_SCAN Exclusive OR (2).
UADD_SCAN Unsigned add (3).

MAX SCAN Signed maximum (4).
ASSERT_ROUTER_DONE Network-done operation (5).

A.4 Send First Long (Data Network) Register Addresses

The send_£1irst_long address for a Data Network message is a 32-bit value
of the form

31 19 17 15 13 12 3 0

——

[easeadar [0 0] iny [0 0] & auritiarydwa | 0 0 0

where intf is the interface number (an integer from 0 to 3 representing the Data
Network interface being used), and auxiliary data is the auxiliary information.
(The base address portion is the base address of the NI memory area, user or
supervisor.)

The following intf values are defined:

0 - Not used 2 - LDR network interface
1 - DR network interface 3 - RDR network interface
The format of the auxiliary information is:
9 4 0
md| | length . tag

where
md is the addressing mode (0 = relative, 1 = physical).
length is the length of the message in words, excluding address word.
tag is the 4-bit tag value.

152 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

3

A.5 NI Fields

The register subfields of the NI are presented below, grouped by register. For
each field, the following information is provided:

® the name of the field
* the name of the position constant used to access the field (see note below)
= the starting position and bit length of the field

®* the read/write permissions of the field for both user and supervisor
Note: The programming constants used to access NI fields come in pairs.

One constant, with a suffix of “_p”, gives the starting bit position of the field.
In the tables below, this value appears in the Pos: (position) column.

The other constant, with a suffix of “_L”, gives the length of the field. In the
tables below, this value appears in the Len: (length) column.

Only the “_P” constant name is shown in the tables below. Unless otherwise
noted, you can assume that the “_L” constant exists as well.

A.5.1 Combined Data Network (DR) Fields

The ni_dr_status Register
Permissions:

Field Name: Constant: Pos: Len: Super: User:
ni_send_space NI_SEND_SPACE P 0 4 R R
ni rec_ ok NI_REC OK P ...couuvunnn 4 1 R R
nil send ok NI_SEND_ OK Pc.co.. 5 1 R R
ni_router_done_complete NI_ROUTER_DONE_COMPLETE P . 6 1 R R
ni_rec_length_left..... NI_REC_LENGTH_LEFT P ... 7 4 R/W R
ni_rec_length NI_REC LENGTH P 11 4 R/W R
ni dr_rec_tag NI_DR_REC TAG P 15 4 R/W R
ni dr_send_state NI_DR_SEND_STATE_P 21 2 R R
ni_dr_rec_state NI_DR_REC_STATE P 23 2 R R

NI Version 2.2 (CM-5E), June 1994 153

Copyright © 1994 Thinking Machines Corporation

154

NI Programmer's Ha

ndbook
N

The ni_dr_status_long Register

Permissions:

Field Name: Constant: Pos: Len: Super: User:
ni_send space NI_SEND_SPACE LONG_P ... O 5 R R 22
ni_rec_ ok0..n NI_REC_OK_LONG P 5 1 R R 22
ni_send ok NI_SEND_OK_LONG_P 6 1 R R 22
ni_router_done_complete NI_ROUTER_DONE_COMPLETE_LONG_P ... / 1 R R 22
ni_rec_length_left..... NI_REC_LENGTH_LEFT_LONG_P 8 5 R/W R 22
ni_rec_length NI_REC_LENGTH_LONG_P ... 13 5 R/W R 22
ni_dr_rec_tag NI_DR_REC_TAG_LONG_P ... 18 4 R/W R 22
ni_dr_send_state NI_DR_SEND_STATE_ LONG_P 24 2 R R 22
ni_dr_rec_state NI_DR_REC_STATE_LONG_P .26 2 R R 22
The ni_dr_status_{all/pop} Registers

Permissions:
Field Name: Constant: Pos: Len: Super: User:
D1 1AY_TEC_0K . vovvvvneenrneonenennnsneencensns 0 1 R R 22
Dl_ZAY_TEC_0K ...iiniiiiiaiititiii s 1 1 R R 22
Nl _Ar_8end_0Kc.ciiiiinetaiiaae e 2 1 R R 22
Ni_1AY_T@C_tAG . .vvverenernnt it 3 4 R R 22
Nl _TAY_YEC_tAG-iiiiiiii it 7 4 R R 22
ni_ldr_rec_length_lODGccocoerueencencannns 11 5 R R 22
nil_rdr_rec_length 1ONG......couvtveernnnennnsns 16 5§ R R 22
ni Ar_Bend_BDACEcctcieiataacaecanaannn 21 5 R R 22
ni_ldr_rec_all_fall QOWHc.ccnvvncsnannnns 26 1 R R 22
ni_rdr rec_all fall dOWDocvenevenannnnns 27 1 R R 22
ni_router_done_completecoceeenennn. 31 1 R R 22
The ni_dr_private Register

Permissions:
Field Name: Constant: Pos: Len: Super: User:
ni_rec_ok _ie NI_REC OK IE P 0 1 R/W None
ni_lock NI_LOCK Povuvuvennnn 1 1 R/W Nomne
ni_rec_BEOP NI_REC STOP P 2 1 R/W None
ni_rec_full NI_REC FULL_P 3 1 R None
ni_dr_rec_all_fall_ down NI_DR_REC_ALL_FALL DOWN P . 5 1 R/W None
ni_all_fall down_ie.... NI_ALL FALL DOWN_IE_P 6 1 R/W None
ni_all_fall down_enable NI_ALL_FALL_DOWN_ENABLE_P 7/ 1 R/W None
ni_sfifo_goes_empty_le . NI_SFIFO_GOES_EMPTY TE P . 8§ 1 R/W None 22
ni_rdone_complete_ie ... NI_RDONE_COMPLETE IE P ... 9 1 R/W None 2.2

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

e

Appendix A. NI Registers, Fields, and Constants

A.5.2 Left Data Network Interface (LDR) Fields

The ni_ldr_status Register

Permissions:
Field Name: Constant: Pos: Len: Super: User:
ni_send _space NI_SEND_SPACE P 0 4 R R
ni_rec_ ok NI REC OK_ Pccnuvvvun 4 1 R R
ni_send ok NI_SEND OK P 5 1 R R
ni_rec_length left..... NI_REC_LENGTH_LEFT P ... 7 4 R/W R
ni_rec_length NI_REC LENGTH P 11 4 R/W R
ni_dr rec_tag NI_DR REC_TAG P 15 4 R/W R
The ni_ldr_status_long Register

Permissions:
Field Name: Constant: Pos: Len: Super: User:
ni_send space NI_SEND_SPACE LONG P ... 0 5 R R 22
ni rec ok NI_REC OK_LONG_ P 5 1 R R 22
ni send ok NI_SEND_OK_LONG_P 6 1 R R 22
ni_rec_length left..... NI_REC_LENGTH LEFT LONG P ... 8 5 R/W R 22
ni_rec_length NI_REC_LENGTH_LONG_P ... 13 5 R/W R 22
ni_dr rec_tag NI_DR_REC_TAG_LONG P ... 18 4 R/W R 22
The ni_ldr_status_{all/pop} Registers

Permissions:
Field Name: Constant: Pos: Len: Super: User:
DL_1AY_T@C_OK . .uvvvrvrnnneneeneeeeeeeeneeennnn 0 1 R R 22
Dl YAY_Z@C_OK ...viviiiiiiiii it 1 1 R R 22
Dl _1dr_8end 0Kciiiieniiiananneaaeanannn 2 1 R R 22
Nl 1dr_TeC_tagcivieiiiiiiai i 3 4 R R 22
Bl XATY_TEC_tAG ...ttt 7 4 R R 22
ni_ldr_rec_length _10nGccoveereneencnnsnns 11 5 R R 22
ni_rdr_rec_length 1ong.........ovuieimeenenannns 16 5 R R 22
ni_ldr send SPaceccie0biieciianaans 21 5 R R 22
ni_ldr_rec_all fall QOWRcucuvvuennennnnnn 26 1 R R 22
ni_rdr_rec_all_fall GOWNcecueveennnnnn 27 1 R R 22
ni_router_done_completeocnurnannn 31 1 R R 22

NI Version 2.2 (CM-5E), June 1994 155

Copyright © 1994 Thinking Machines Corporation

A.53

156

The ni_ldr_private Register

Permissions:

Field Name: Constant: Pos: Len: Super: User:
ni_rec_ok_ie NI_REC OK IE P 0 1 R/W None
ni_lockc.000.nn NI_LOCK P ..ovvvvunernnn 1 1 R/W None
ni_rec_full NI_REC FULL P 3 1 R None
ni_dr_rec_all_fall_down .. NI_DR_REC_ALL_FALL DOWN_ P . 5 1 R/W None
Right Data Network Interface (RDR) Fields
The ni_rdr_status Register

Permissions:
Field Name: Constant: Pos: Len: Super: User:
ni_send_space NI_SEND SPACE P 0 4 R R
ni_rec_ ok0.n.. NI_REC OK P 4 1 R R
ni_ send ok NI_SEND OK_ P 5 1 R R
ni_rec_length_left..... NI_REC_LENGTH LEFT P ... 7 4 R/W R
ni_rec_length NI_REC_LENGTH P 11 4 R/W R
ni_dr_rec_tag NI_DR REC TAG P 15 4 R/W R

The ni_rdr_status_long Register

Permissions:

Field Name: Constant: Pos: Len: Super: User:

ni_send space NI_SEND_SPACE_LONG P ... 0 5 R R 22
ni rec_ ok NI_REC OK_LONG_P 5 1 R R 22
ni send ok NI_SEND_OK LONG P 6 1 R R 22
ni_rec_length_left..... NI_REC_LENGTH_LEFT LONG_P ... 8 5 R/W R 22
ni _rec_length NI_REC_LENGTH_LONG_P ... 13 5 R/W R 22
ni_dr_rec_tag NI_DR_REC_TAG_LONG_P ... 18 4 R/W R 22

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix A. NI Registers, Fields, and Constants

A5.4

e S el A et s N . R "

The ni_rdr_status_{all/pop} Registers

Permissions:
Field Name: Constant: Pos: Len: Super: User:
DI _XAT_T@C_0K .t ivitttiitie it e 0 1 R R 22
Ni 1T T@C_ 0K tivittteettt et e 1 1 R R 22
Nl _rdr_Send 0K ...ttt e 2 1 R R 22
Dl _XAr_Tec £ag ...t 3 4 R R 22
Di_1AY_TEC_tAG et tiii i e 7 4 R R 22
ni_rdr_rec_length_longvvuueennennnnnnnn 11 5 R R 22
ni_ldr_rec_length_lOomguovuveinuuennnnn. 16 5 R R 22
ni_rdr_send _SPACEiiiniuieneanee 21 5 R R 22
ni_rdr_rec_all_fall dOWDce.ueeuusenneanns 26 1 R R 22
ni_ldr_zec_all_fall dOWHc.ovveuuennnennnn 27 1 R R 22
ni_router_done_completec.veuvrueennn. 31 1 R R 22
The ni_rdr_private Register

Permissions:
Field Name: Constant: Pos: Len: Super: User:
ni_rec_ok ie NI_REC OK_IE_ P 0 1 R/W None
ni_lock NI_LOCK P ..covvueuunnnn. 1 1 R/W None
ni_rec_full NI_REC FULL_P 3 1 R None
ni_dr_rec_all_fall_down .. NI_DR_REC_ALL_FALL DOWN_ P . 3 1 R/W None
Broadcast Interface (BC) Fields
The ni_bc_status Register

Permissions:
Field Name: Constant: Pos: Len: Super: User:
ni_send _space NI_SEND_SPACE P 0 4 R R
ni_rec_ok NI_REC OK_ P 4 1 R R
ni_send ok NI_SEND OK Po.o.... 5 1 R R
ni_send empty NI_SEND_EMPTY P 6 1 R R
ni_rec_length_left..... NI_REC_LENGTH_LEFT P ... 7 7 R R 22

(NI_BC_REC_LENGTH_LEFT LONG_L)
157

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

—

A.5.5

158

NI Programmer s Handbook

The ni_bc_private Register

Permissions:

Field Name: Constant: Pos: lLen: Super: User:
ni_rec_ok_ie NI_REC OK_ IE_P 0 1 R/W None
ni lock -..ciiinnennns NI_LOCK Povvevnenns 1 1 R/W None
ni_rec_Stop NI_REC STOP_ P 2 1 R/W None
ni rec_full NI_REC_FULL P 3 1 R None
ni_send _enable NI_SEND_ENABLE P 4 1 R/W None

The ni_bc_control Register

Permissions:
Field Name: Constant: Pos: Len: Super: User:
ni_rec_abstain NI_REC_ABSTAIN P 0 1 R/W R/W
Supervisor Broadcast Interface (SBC) Fields
The ni_sbc_status Register

Permissions:

Field Name: Constant: Pos: Len: Super: User:
ni_send space NI_SEND_SPACE_ P 0 4 R None
ni_rec_ok R NI_REC OK Pcouvvnnn 4 1 R None
ni_send ok NI _SEND OK Poovoun 5 1 R None
ni_send empty NI_SEND_EMPTY P 6 1 R None
ni_rec_length_left..... NI_REC_LENGTH LEFT P 7 4 R ~None

The ni_sbc_private Register

Permissions:

Field Name: Constant: Pos: Len: Super: User:
ni_rec_ok ie NI_REC OK TE P 0 1 R/W None
ni_lock000nnnn NI_LOCK Poovuenennn 1 1 R/W None
ni_send stop NI_SEND_STOP P 2 1 R/W None
ni_rec_full NI_REC FULL_P 3 1 R None
ni_send enable NI_SEND _ENABLE P 4 1 R/W None

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix A. NI Registers, Fields, and Constants

The ni_sbc_control Register

Permissions:

Field Name: Constant: Pos: Len: Super: User:
ni_rec_abstain NI_REC_ABSTAIN_ P 0 1 R/W None
A.5.6 Combine Interface (COM) Fields
The ni_com_status Register
Permissions:
Field Name: Constant: Pos: Len: Super: User:
ni_send space NI_SEND SPACE_P 0 4 R R
ni rec ok NI_REC OK Pco0cnnn 4 1 R R
ni_ send ok NI_SEND_ OK_ P R 1 R R
ni_send empty NI_SEND_EMPTY P 6 1 R R
ni_rec_length_left..... NI_REC_LENGTH LEFT P ... 7 4 R/W R
ni_rec_length NI_REC_LENGTH P 11 4 R/W R
ni_com scan_overflow... NI_COM_SCAN_OVERFLOW_P .20 1 R/W R
The ni_com_private Register
Permissions:
Field Name: Constant: Pos: Len: Super: User:
ni_rec_ok ie NI_REC OK IE P 0 1 R/W None
ni_10ock ...viiinieanans NI_LOCK P .ovevennannnnn 1 1 R/W None
ni_rec_stop NI_REC STOP_ P 2 1 R/W None
ni_rec_full NI_REC FULL P 3 1 R None
ni_com_scan_overflow_ie NI_COM SCAN OVERFLOW_IE P . 4 1 R/W None
ni_com_rec_empty_ie.... NI_COM REC EMPTY IE P .. 5 1 R/W None
nil_com_send length..... NI_COM SEND_LENGTH P ... 8§ 4 R None
ni_com_send_combiner ... NI_COM_SEND_COMBINER P . 12 3 R None
ni_com_send pattern.... NI_COM SEND_PATTERN P .. 15 2 R None
ni_com_send start NI_COM SEND_START P 17 1 R None
NI Version 2.2 (CM-5E), June 1994 159

Copyright © 1994 Thinking Machines Corporation

A.5.7

A.5.8

160

NI Programmer s Handbook

The ni_com_control Register

Permissions:
Field Name: Constant: Pos: Len: Super: User:
ni_rec_abstain NI_REC ABSTAIN P 0 1 R/W R/W
ni_reduce_rec_abstain .. NI_REDUCE_REC_ABSTAIN P 1 1 R/W R/W

Global Interface Fields

The ni_sync_global Register

Permissions:

Field Name: Constant: Pos: Len: Super: User:
ni_sync_global_rec..... NI_SYNC_GLOBAL _REC P ... O 1 R R
ni_sync_global_complete NI_SYNC_GLOBAL_COMPLETE P . 1 1 R R

The ni_async_global Register

Permissions:

Field Name: Constant: Pos: Len: Super: User:
ni_global_send NI_GLOBAL SEND P 0 1 R/'W R/W
ni_global_rec NI_GLOBAL REC P 1 1 R R

The ni_async_sup_global Register

Permissions:
Fieid Name: Constant: Pos: Len: Super: User:
ni_supervisor_global_send NI_SUPERVISOR_GLOBAL_SEND P 0 1 R/W None
ni_supervisor_global_rec . NI_SUPERVISOR_GLOBAL_REC_P 1 1 R None

Interrupt Register Fields

Note: The position (“_P”) constants for these flags are as described above. The
length for all flags (1) is given by the single constant NI_INTERRUPT_L. To lo-
cate the flags in the interrupt_clear/set registers, use the constants
defined for the interrupt cause registers — the flag positions are the same.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix A. NI Registers, Fields, and Constants

The ni_interrupt_cause Register

Permissions:

Flag Name: Pos: Len: Super: User:
ni_cause_intermal_fault............. 0 1 R/W None
ni_cause mMC_EIIOTocenue 1 1 R/W None
ni_cause_Cmu_€XIor.................. 2 1 R/W None
ni_cause_bc_interrupt_red........... 3 1 R/W None
ni_cause_cn_checksum erxor 4 1 R/W None
ni_cause_cn _hard error 5 1 R/W None
ni_cause_dr_checksum_error 6 1 R/W None
ni_cause_timer_interrupt............ 7 1 R/W None
ni_cause_bc_interrupt orange 8 1 R/W None
nl_cause bc_interrupt_yellow........ 9 1 R/W None
ni_cause_bc_or_com collision........ 10 1 R/W None
ni_cause_com_abstain_changed 11 1 R/W None
ni_cause_dr_count_negative 12 1 R/W None
ni_cause_bad_relative_address 13 1 R/W None
ni_cause_bad memory_access 14 1 R/W None
ni_cause_message_too_long........... 15 1 R/W None 2.2
ni_cause_rdone_complete 16 1 R/W None 2.2

The ni_interrupt_cause_Qreen Register

Permissions:

Flag Name: Pos: Len: Super: User:
nl_cause_bc_interrupt_green......... 0 1 R/W None
ni_cause_scan_overflow.......... R | 1 R/W None
ni_cause bc_Tec_O0K......c.cieenionas 2 1 R/W None
ni_cause sbc rec_oK........c.ovuvunnn 3 1 R/W None
ni_cause_com rec_ok.............. .. 4 1 R/W None
ni_cause_com rec_empty 5 1 R/W None
ni_cause_sync_global_rec............ 6 1 R/W None
nl_cause_global _reC..........ccvunnn 7 1 R/W None
ni_cause_supervisor_global_rec 8 1 R/W None
ni_cause dr_rec ok.........ciniuinnn 9 1 R/W None
ni_cause_ldr_rec_OK.........couvunnn 10 1 R/W None
ni_cause rdr_rec_ok................n 11 1 R/W None
ni_cause dr_rec_tag..........oc00unn 12 1 R/W None
ni_cause_dr_rec_all fall down....... 13 1 R/W None
ni_cause _1dr_reC_tAg..-.............. 14 1 R/W None 2.2
ni_cause _rdr_rec_tag................ 15 1 R/W None 2.2
ni_cause_ldr_user_rec_tag........... 16 1 R/W None 2.2
ni_cause_rdr_user _rec_tag........... 17 1 R/W None 2.2
ni_cause_sfifo_empty 18 1 R/W None 2.2
ni_cause dperrcc00000.. 19 1 R/W None 2.2
NI Version 2.2 (CM-5E), June 1994 161

Copyright © 1994 Thinking Machines Corporation

NI Programmer’s Handbook

The ni_interrupt_{clear,set} Registers

Permissions:

Field Name: Pos: Len: Super: User:
ni_{clear,set}_internal_fault 0 1 W None
ni_{clear,set}_mc error 1 1 w None
ni_{clear,set}_cmu error............ 2 1 W None
ni_{clear,set}_bc_interrupt_red 3 1 w None
ni_{clear,set}_cn_checksum error 4 1 A\ None
ni_{clear,set}_cn_hard _error 5 1 W None
ni_{clear,set}_dr_checksum_error 6 1 w None
ni_{clear,set}_timer_interrupt 7 1 W None
ni_{clear,set}_bc_interrupt orange .. 8 1 w None
ni_{clear,set}_bc_interrupt_yellow.. 9 1 w None
ni_{clear,set}_bc_or_com_collision .. 10 1 W None
ni_{clear,set}_com_abstain_changed .. 11 1 w None
ni_{clear,set}_dr_count_negative 12 1 w None
ni_{clear,set}_bad_relative_address . 13 1 w None
ni_{clear,set}_bad memory access 14 1 w None
ni_{clear,set}_message_too_long 15 1 w None 2.2
ni_{clear,set}_rdone_complete 16 1 W None 2.2

The ni_interrupt_{clear,set}_green Registers

Permissions:

Field Name: Pos: Len: Super: User:
ni_{clear,set}_bc_interrupt_green ... O 1 w None
nl_{clear,set}_scan _overflow........ 1 1 w None
ni_{clear,set}_bc_rec Ok............ 2 1 W None
ni_{clear,set}_sbc_rec_ok........... 3 1 w None
ni_{clear,set)_com rec oK........... 4 1 w None
ni_{clear,set}_com_rec_empty 5 1 w None
ni_{clear,set}_sync_global_xec...... 6 1 w None
ni_{clear,set}_global rec........... 7 1 w None
ni_{clear,set)_supervisor_global_rec 8 1 w None
ni_{clear,set}_dr_rec ok............ 9 1 W None
ni_{clear,set}_ldr_rec_ok........... 10 1 w None
ni_{clear,set}_rdr_rec_ok........... 11 1 w None
ni_{clear,set}_dr_rec_tag........... 12 1 w None
ni_{clear,set}_dr_rec_all_fall down . 13 1 w None
ni_{cleaxr,set}_ldr_rec_tag.......... 14 1 w None 2.2
ni_ {clear,set}_xdr_rec_tag.......... 15 1 w None 2.2
ni_{clear,set}_ldr_user_xec_tag 16 1 w None 2.2
ni_{clear,set}_rdr_user_rec_tag..... 17 1 w None 2.2
ni_{clear,set}_sfifo_empty.......... 18 1 W None 2.2
ni_{clear,set}_dperr................ 19 1 W None 2.2
162 NI Version 2.2 (CM-5E), June 1994

Copyright © 1994 Thinking Machines Corporation

pER

Appendix A. NI Registers, Fields, and Constants

M A § L A A AN S
ST SENSRSE RO TN IR VI I N SRR

A.5.9 Other Register Fields and Constants

Note: The programming constants for these flags are obtained by uppercasing
the name of the flag, then adding “_P” for the position, or “_L” for the length.

The ni_interrupt_level Register

Permissions:

Field Name: Pos: Len: Super: User:
ni_interrupt_level green............ 0 1 R/W None
ni_interrupt_level_vellow........... 8 1 R/W None
ni_interrupt_level_orange 16 1 R/W None
ni_interrupt_level red.............. 24 1 R/W None

The ni_hodgepodge Register

Permissions:

Field Name: Pos: Len: Super: User:
ni_global rec_iecccun.. 0 1 R/W None
ni_supervisor_global_rec_ie......... 1 1 R/W None
ni_flush completecco... 2 1 R None
ni_interrupt send OkK................ 3 1 R None
nil configuration_complete 4 1 R None
ni_interrupt_rec_enable............. 5 1 R/W None
ni_sync_global rec_ie............... 6 1 R/W None
ni_timer_deiiiiiiiinnn 7 1 R/W None
ni_cn stop_sendc..0... 8 1 R/W None
ni_disable_bus_error................ 9 1 R/W None 2.2
ni_ldr rec_tag le 10 1 R/W None 2.2
ni_rdr_rec_tag_ie00.n.n 11 1 R/W None 2.2
ni_1dr_user_rec_tag_le.............. 12 1 R/W None 2.2
ni_rdr_user_rec_tag le.............. 13 1 R/W None 2.2
ni_msg too_long ie................0.. 14 1 R/W - None 2.2
NI Version 2.2 (CM-5SE), June 1994 163

Copyright © 1994 Thinking Machines Corporation

164

NI Programmer s Handbook

wa e T T e T e T s PR

The ni_bad_address Register

Permissions:
Field Name: Pos: Len: Super: User:
ni_bad address_low.................. 0 20 R/W None
ni _bad address type................. 20 12 R/W None

Note: The contents of the ni_bad_address register are implementation-
dependent, so there are no predefined constants for this register.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix B

NI Interrupts

The methods used to recover from an NI interrupt depend heavily on the type of
interrupt itself. This appendix describes each of the possible interrupts in detail,
and provides guidelines for recovering from them.

For each interrupt, the following information is provided:
» the name and color of the interrupt

= theni_interrupt_cause orni_interrupt_cause_green flagthat
is set when the interrupt is signaled

* theni interrupt_clear orni_interrupt_clear_green flagthat
is used to clear the interrupt when it has been handled

» the ni_interrupt_set or ni_interrupt_set_green flag that is
used to artificially trigger the interrupt

= the triggering event that causes the interrupt to be signaled

» the effect of the interrupt on the NI and the networks

® the correct method for handling the interrupt

Note: It is possible for the supervisor to trigger an interrupt artificially, by setting
the appropriate flag in one of the registers ni_interrupt_cause/set or
ni_interrupt_cause/set_green. Since this can be done for any interrupt,
it is not documented under the triggering events for each interrupt.

Also, since the ni_interrupt_clear and ni_interrupt_clear_green
flags must be used to clear every interrupt once the required handling operations
have been performed, this step is assumed, and is not listed under the handling
guidelines for each interrupt.

NI Version 2.2 (CM-5E), June 1994 165
Copyright © 1994 Thinking Machines Corporation

B.1

B.1.1

B.1.2

166

NI Programmer s Handbook

Red Interrupts

Red interrupts indicate a failure of the hardware, such as checksum violations
and message format errors. They occur at unpredictable times relative to the in-
struction stream and are usually irrecoverable. Determining the precise cause of
a Red interrupt may require the use of the Diagnostic Network.

The cause, clear, and set flags listed for each interrupt are found in the registers:
ni_interrupt_cause
nl_interrupt clear
nl_interrupt set

internal Fault Red Interrupt

Flags: ni_cause/clear/set_internal_fault
Cause: A fault has been detected in the NI chip.
Effect: The effects are undefined and irrecoverable.

Handling: No software-serviceable parts inside. Please report this fault to your
applications engineer or systems manager for correction.

CN Checksum Error, DR Checksum Error Red Interrupt

Flags: ni_cause/clear/set_cn_checksum error
ni_cause/clear/set_dr_ checksum_ error

Cause: A message with a bad checksum value was received from either the
Control Network or Data Network. This interrupt is signaled as
soon as the bad checksum value is received by the NI.

Effect: None. The received message(s) may still be read. However, they
will almost certainly contain an error in either data or address.

Handling: This interrupt indicates that a network chip (or the NI chip itself)
has failed. The failed chip must be tracked down with the Diagnos-
tic Network. Please report this fault to your applications engineer
or system manager for correction.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix B. NI Interrupts

B.1.3

B.1.4

CNHardErrorcooiiiiiiiiii i Red Interrupt

Flags: ni_cause/clear/set_cn_hard_errox
Cause: A hardware error occurred in the Control Network.
Effect: The effects are undefined and irrecoverable.

Handling: This interrupt indicates one of two things: either a hardware prob-
lem in the Control Network, which must be located by use of the
Diagnostic Network; or a serious software problem (specifically, a
double trap forcing a processor (IU) reset). Please report this fault
to your applications engineer or system manager for correction.

MC Error, CMUErrorcciiviiiiiinnn.. Red Interrupt

Flags: nil_cause/clear/set_mc_error
nl_cause/clear/set_cmu_error

Cause: An interrupt is being signaled by either the memory controller, or
by the CMU (cache and memory management unit). These two
kinds of external interrupt are signaled to the microprocessor by
way of the NI chip.

Effect: None, aside from the interrupt itself.

Handling: These interrupts continue to be signaled until they are cleared on the
memory controller or CMU.

Note: Unlike most NI interrupts, these two interrupts are not
cleared by writing the corresponding ni_interrupt_clear flag.
Instead, a flag on the memory controller or CMU must be reset.

Nevertheless, it is legal to write a 1 to the ni_interrupt_clear
flags for these interrupts. While this has no effect, it is permitted so
that you can write uniform interrupt handler code.

NI Version 2.2 (CM-5E), June 1994 167
Copyright © 1994 Thinking Machines Corporation

B.1.5

B.2

B.2.1

168

NI Programmer s Handbook

BCinterruptRed ... Red Interrupt

Flags: ni_cause/clear/set_bc_interrupt red

Cause: The NI received a Red broadcast interrupt, and the broadcast inter-
rupt enable flag ni_interrupt_rec_enable was set to 1.

Effect: None, aside from the interrupt itself.

Handling: This is a software-signaled interrupt. Your interrupt handler should
detect and handle this interrupt as appropriate for your program.

Orange Interrupts

Orange interrupts indicate that the attention of the operating system is required,
as in timer interrupts and broadcast interrupt messages. They occur at unpredict-
able times relative to the instruction stream and do not destroy any information
that might be needed to determine the cause of the interrupt.

The cause, clear, and set flags listed for each interrupt are found in the registers:
ni_interrupt_cause
nl interrupt clear
- nl_interrupt_set

Timerinterruptoll Orange Interrupt
Flags: nl_cause/clear/set_timer_interrupt
Cause: The ni_time register is equal to the ni_interrupt_now register,

and the timer interrupt flag ni_timer_ie flagis 1.
Effect: None, aside from the interrupt itself.

Handling: This interrupt is software-controlled, and should be handled by
your interrupt handler.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix B. NI Interrupts

B.2.2

B.2.3

B.3

4R Y A e L L e e W sl RN L el s T e WL TS T LT Sl

Network Done Complete Orange Interrupt

Flags: nl_cause/clear/set_rdone_complete

Cause: The ni_rdone_complete_ie flag is true, and a network-done
operation has just completed (that is, the flag ni_router_
done_complete flag has been set).

Effect: None, aside from the interrupt itself.

Handling: This interrupt is software-controlled, and should be handled by
your interrupt handler. It is intended to allow system code to do
operations such as setting the ni_dr_message_count register to
zero at the end of a network-done operation.

BC InterruptOrange Orange Interrupt

Flags: ni_cause/clear/set_bc_interrupt_orange

Cause: The NI received a Orange broadcast interrupt, and the broadcast in-
terrupt enable flag ni_interrupt_rec_enable was set to 1.

Effect: None, aside from the interrupt itself.

Handling: This is a software-signaled interrupt. Your interrupt handler should
detect and handle this interrupt as appropriate for your program.

Yellow Interrupts

Yellow interrupts indicate a software error. They are usually irrecoverable, as
they indicate that your program is doing something illegal. Sufficient informa-
tion is retained in the NI to permit isolation of the cause of the interrupt, but it
is not always possible to recover all information relating to the cause. Yellow
interrupts are associated with particular instructions, but are not signaled at the
exact point of the error, because of the loose NI/microprocessor coupling. The
cause, clear, and set flags listed for each interrupt are found in the registers:

ni_interrupt_cause

nl_interrupt_ clear

ni_interrupt_ set

NI Version 2.2 (CM-5E), June 1994 169
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

B.3.1 BCinterruptYellow Yellow Interrupt
Flags: nil_cause/clear/set_bc interrupt_vellow
Cause: The NI received a Yellow broadcast interrupt, and the broadcast in-
terrupt enable flag ni_interrupt rec_enable was set to 1.
Effect: None, aside from the interrupt itself.
Handling: This is a software-signaled interrupt. Your interrupt handler should
detect and handle this interrupt as appropriate for your program.
B.3.2 Bad Memory AccesSceunnnn. Yellow Interrupt
Flags: ni_cause/clear/set_bad_memory_access
Cause: The NI would have signaled a Bus Error, but the flag
ni_disable_bus_error was setto 1.
Effect: Same as described for Bus Errors in Section B.S5.
Handling: Examine the ni_bad_address register to determine what
memory transaction caused the error.
B.3.3 COM AbstainChanged Yellow Interrupt
Flags: nl_cause/clear/set_com abstain_changed
Cause: The ni_com_abstain or ni_reduce_rec_abstain flags were
changed while the combiner send FIFO was not empty.
Effect: The attempted change does not occur. Whether execution is allowed
to continue depends on the interrupt handler.
Handling: Your interrupt handler should decide whether to signal this as an

170

error, or to recover from it quietly, perhaps displaying a warning
message.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix B. NI Interrupts

B.3.4 DR Count Negative Yellow Interrupt

Flags:

Cause:

Effect:

Handling:

nl_cause/clear/set_dr_count_negative

The combined value of all ni_dr_message_count registers in
the Data Network has become negative, indicating a mismatch in
the sending and/or receiving of Data Network messages.

None, but this interrupt is signaled repeatedly until the situation is
corrected.

This may occur either when a failure in a Data Network or NI chip
causes the annihilation of a message, or when an OS error causes
a countable Data Network message to be sent out of its partition.
This interrupt may also occur if two or more nodes in a paritition
do not agree on which Data Network message tags are to be counted
(that is, their ni_count_mask registers are not equal).

To restore the Data Network to a proper state, make sure that the
partition is empty of Data Network messages, and then set all the
ni_dr_message_count registers in the partition to 0.

Note: It may be that by the time the interrupt is signaled, the values
of one or more of the ni_dr message_count registers will have
changed. This may make it difficult to locate the error, since the
sum of the ni_dr_message_count registers may be positive by
the time the interrupt is signaled.

B.3.5 BCorCOMCollision Yeliow Interrupt

Flags:

Cause:

Effect:

nl_cause/clear/set_bc_or_com collision

Three separate conditions cause this interrupt:
« Two NIs attempted to broadcast at the same time.
»« Two different combine operations signaled at the same time.
= Two NIs simultaneously attempted a broadcast interrupt.
No combining or broadcast operations can proceed while the

ni_cause_bc_or_com_collision flag is set. If the error was
colliding broadcast interrupts, the broadcast is not signaled.

NI Version 2.2 (CM-5E), June 1994 171
Copyright © 1994 Thinking Machines Corporation

Handling:

mer s Handbook

S

If the error was colliding combine messages, the messages are still
in the combine send FIFO. The supervisor should take control of
this FIFO and read out the messages to determine where the colli-
sion occurred. If the error was colliding broadcast messages, the
ni_bc_send empty (or ni_sbc_send_empty) flags will be set
to 0 in the contending processors. If the error was colliding broad-
cast interrupts, the ni_interrupt_send_ok will be O in the
processors that sent the colliding broadcast interrupts.

The proper way to handle this interrupt is to set all the combine stop
flags, then set the FIFO lock flags, then read out any remaining data
values from the combine send FIFO.

Note: When the ni_clear_bec_or_ com_collision flag is writ-
ten, all messages in the broadcast and supervisor broadcast send
FIFOs disappear, and the ni_interrupt_send_ok flagissetto 1.
None of the other FIFOs, either send or receive, are affected.

B.3.6 Bad Relative Address Yellow Interrupt
. Flags: ni_cause/clear/set_bad relative_address

Cause: An attempt was made to send a Data Network message with a rela-
tive address that is illegal for the current partition.

Effect: The message with the bad address is discarded and the appropriate
ni_interface_send_ok flag is set to 0, indicating that the attempt
to send the message failed.

Handling: Your interrupt handler should decide whether to signal this as an
error, or to recover from it quietly, perhaps displaying a warning
message.

B.3.7 Message Toolong Yellow Interrupt

Flags: ni_cause/clear/set_message_too_long

Cause: An attempt was made to send a Data Network message with a
length greater than is allowed for the interface in use. For each of
the three send_first_long interfaces, this is the value of the

172 NI Version 2.2 (CM-5E), June 1994

Copyright © 1994 Thinking Machines Corporation

Appendix B. NI Interrupts

B4

B.4.1

ni_longest_dr_message register. For the send first register
interfaces this is either the ni_longest_dr_message value or
five words, whichever is less.

Effect: The message with the bad address is discarded and the appropriate
ni_interface_send_ok flag is set to 0, indicating that the attempt
to send the message failed. A bus error is also signaled.

Handling: Your interrupt handler should decide whether to signal this as an
error, or to recover from it quietly, perhaps displaying a warning
message.

Green Interrupts

Green interrupts indicate the occurrence of common events for which the soft-
ware has requested notification, such as the arrival of messages, the signaling of
broadcast interrupts, arithmetic overflow in a scan, etc. There is one interrupt for
each event, and each event’s interrupt can be enabled and disabled independently
under the control of the supervisor.

Depending on the type of event, the interrupt may or may not occur synchronous-
ly with a particular instruction. No information is lost by a Green interrupt.

The cause, clear, and set flags listed for each interrupt are found in the registers:
nl_interrupt_cause
ni_interrupt_clear
ni_interrupt_set

BC Interrupt Green Green Interrupt

Flags: nl cause/clear/set_bc_interrupt_green

Cause: The NI received a Green broadcast interrupt, and the broadcast in-
terrupt enable flag ni_interrupt_rec_enable was set to 1.

Effect: None, aside from the interrupt itself.

Handling: This is a software-signaled interrupt. Your interrupt handler should
detect and handle this interrupt as appropriate for your program.

NI Version 2.2 (CM-5E), June 1994 173
Copyright © 1994 Thinking Machines Corporation

Programmer s Handbook

B.42 DRReceiveTagcccoviviininnene, Green Interrupt

Flags: ni_cause/clear/set_dr_rec_tag

Cause: A message arrived at the front of a Data Network receive FIFO that
has an interrupting tag (a tag corresponding to a set flag in the regis-
ter ni_rec_interrupt_mask).

Effect: None, aside from the interrupt itself.

Handling: This interrupt is software-controlled, and should be handled by
your interrupt handler.

B.4.3 DR Receive AllFallDown Green Interrupt

Flags: ni_cause/clear/set_dr_rec_all_fall_down

Cause: An All Fall Down mode message arrived at the front of a Data Net-
work receive FIFO, while ni_all_f£all down_ie is 1.

Effect: The first word read from the FIFO is the All Fall Down mode ad-
dress word, which is used to determine the correct destination
address for the message. The rec_length field contains the origi-
nal length of the message (that is, not counting the address word),
while the rec_length left field contains the total length of the
message counting the address word.

Handling: Your handler should receive and store the message in such a way
that it can later be resent to its correct destination.

B.4.4 Interface (DR, BC, COM, etc.) Receive OK ... Green Interrupt

174

Flags:

ni_cause/cleax/set_bc_rec ok
nl_cause/clear/set_sbc_rec_ok
nl_cause/clear/set_com_rec_ok
nl_cause/clear/set_dr_rec_ ok
ni_cause/clear/set_ldr_rec_ok
nl_cause/clear/set_rdr_rec_ok

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix B. NI Interrupts

Cause:

Effect:

Handling:

A new message became available from the receive FIFO of one of
the interfaces while the corresponding ni_interface_rec_ok_ie
flag was set to 1.

While enabled, each of these interrupts is signaled once for each
arriving message in the appropriate interface’s receive FIFO.

This interrupt is software-controlled, and should be handled by
your interrupt handler. (Typically, your handler reads the interrupt-
ing message from the FIFO, but you can decide to do otherwise.)

B.4.5 Gilobal Rec (Sync, Global, or Supervisor) Green Interrupt

Flags:

Cause:

nl_cause/clear/set_sync_global_rec
nil_cause/clear/set_global_rec
ni_cause/clear/set_supervisor_global_rec

One of the following events happened:

A synchronous global operation completed with a result of 1, and
the ni_sync_global_rec_ie flagis 1.

The asynchronous global receive flag ni_global_ rec changed
from O to 1, and the ni_global_rec_ie flag is 1.

The supervisor asynchronous receive flag ni_supervi-
sor_global_rec changed from O to 1, and the
ni_supervisor_global_rec_ie flagis 1.

None, aside from the interrupts themselves.

These interrupts are software-controlled, and should be handled by
your interrupt handler.

B.4.6 Com Receive Emptyee Green Interrupt

Flags:

Cause:

nl_cause/clear/set_com rec_empty

The combine receive FIFO became empty while the empty receive
FIFO interrupt flag ni_com_rec_empty_ie is 1.

NI Version 2.2 (CM-5E), June 1994 175
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

Effect: None, aside from the interrupt itself.

Handling: This interrupt is software-controlled, and should be handled by
your interrupt handler.

B.4.7 ScanOverflowcccoiiiii.. Green Interrupt

Flags: ni_cause/clear/set_scan_overflow

Cause: The first word of a scan or reduce message that suffered arithmetic
overflow was read from the combine receive FIFO, and the
ni_scan_overflow_ie interrupt enable flag is 1. This can only
happen if the message combiner is a signed or unsigned addition.

Effect: None. The arrived message may be read normally.

Handling: Your interrupt handler should decide whether to signal this as an
error, or to recover from it quietly, perhaps displaying a warning
message.

B.4.8 DP Error (Vector UnitError) Green Interrupt

Flags: ni_cause/clear/set_dperr

Cause: An interrupt has been signaled by the node’s memory controlier
(the vector units in CMs so equipped). These interrupts are sent to
the PE by way of the NI.

Effect: This interrupt will continue to be signaled until it is cleared both on
the memory controller and in the NI

Handling: This interrupt is introduced in Version 2.2 so that the vector units,

176

integrated into the memory controller chips, can signal green inter-
rupts. Both the NI ni_interrupt_ clear_green flag and the
corresponding flag on the memory controller (or VU) must be
written to clear this interrupt.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix B. NI Interrupts

B.4.9 Send FIFO Empty (Data Network Only) Green Interrupt

Flags:

Cause:

Effect:
Handling:

nl_cause/clear/set sfifo_empty

The ni_sfifo_empty_ie flag is set, and a send FIFO in one of
the Data Network interfaces (DR, LDR, RDR) has become empty.

None. The arrived message may be read normally.

This interrupt is intended as an aid in sending Data Network mes-
sages; in particular, the supervisor can wait until this condition
occurs before sending messages, rather than attempting several
failed sends when the Data Network is congested.

B.4.10 LDR/RDR Tag, LDR/RDR UserTag Green Interrupt

Flags:

Cause:

Effect:

Handling:

ni_cause/clear/set_ldr_tag
nl_cause/clear/set_rdr_tag
nil_cause/clear/set_ldr_user_tag
ni_cause/clear/set_rdr_user_tag

A message arrives at the front of the left (or right) Data Network
receive FIFO, having a tag that corresponds to a 1 bit in the register
ni_rec_interrupt_mask (for 1dr/rdr_tag interrupts) or in
ni_user_rec_interrupt_mask (for the 1dx/rdr_user_tag
interrupts).

For the user_tag interrupts, not only must the appropriate tag
mask be setin the ni_user_rec_interrupt_mask, but the same
bit must be cleared in the ni_rec_interrupt_mask register.

None. The arrived message may be read normally.

These interrupts are intended as an aid in receiving Data Network

messages. Your interrupt handler should determine the appropriate

action to take to receive the tagged message that signaled the inter-.
rupt.

NI Version 2.2 (CM-5E), June 1994 177
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

B.5 Bus Errors

B.5.1

178

Bus Errors indicate that a bus transaction cannot be completed, as in an attempt
to read a virtual address that does not correspond to a register, or to write a mes-
sage that doesn’t conform to protocol. Bus Errors are signaled asynchronously
and are usually irrecoverable. Bus Errors are distinct from segmentation viola-
tion errors, which result from attempting to read an unmapped virtual address,
and are signaled synchronously with the offending instruction.

The cause and clear flags listed for each interrupt are found in these registers:

ni_interrupt_cause ni_interrupt_ clear
Bad Memory Accesscoiiiiiiiiinennn. Bus Error
Flags: ni_cause/clear/set_bad_memory_access

Cause: Bus Errors are signaled for number of reasons, including:
= attempting to read a read-protected address
= attempting to write a write-protected address
= attempting to read or write a value that does not fit in a register
= attempting to read or write an address that is not a register

Note: Iftheflagni_disable_bus_error is set, Bus Errors are signaled as
a Yellow Interrupt (see Section B.3.2 above).

Some specific examples of Bus Error causes are:

Bus Errors caused by reads or writes:
= reading or writing a supervisor-only register from the user area
* reading the ni_interface_rec register of an empty receive FIFO

= attempting to read a doubleword from a FIFO that has only a word left, or
attempting to use a doubleword operation to write a singleword message

= writing the send_£irst register of a network interface while there is an
incomplete message pending in the send FIFO

= writing the send register of a network interface without having first writ-
ten a value to the corresponding send_first register

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix B. NI Interrupts

writing a message to any of the Data Network’s send_first registers
with a length value that is greater than either five words or the value of the
register ni_longest_dr_message, whichever is less.

writing a message to any of the Data Network’s send_first_long reg-
isters with a length value that is greater than the value of the register
nl_longest_dr_ message.

Bus Errors caused by sending a message:

attempting to send a message longer than the entire send FIFO

attempting to send a message via a network interface for which the corre-
sponding abstain flag is set

attempting to send a user message with a supervisor-reserved tag

attempting to send or receive a message through an excluded Data Net-
work interface

attempting to send a combine message with an illegal combiner or pattern
value

attempting to send a network-done message with a length greater than 1,
or attempting to send any network-done message while the ni_net-
work_done flag is O or the nl_com_abstain flagis 1

attempting to send a synchronous global message or to change the
ni_sync_global_abstain flag while the ni_sync_global_com-
plete flagis 0

Bus Errors caused by other operations:

attempting to start a flush operation while the ni_£1lush_complete flag
is0

attempting to start a configuration operation while the ni_configura-
tion_complete flag is 0

attempting to send a broadcast interrupt while the ni_inter-
rupt_send_ok flag is 0

attempting to write a value to the ni_interface_rec register when the re-
ceive FIFO is full.

NI Version 2.2 (CM-5E), June 1994 179
Copyright © 1994 Thinking Machines Corporation

180

Effect:

Handling:

The address, size, and type of the offending memory transaction is
stored in the ni_bad_address register.

Any data written by the offending transaction is lost. Any side
effects that would have been triggered by the offending transaction
(such as the initiation of a synchronous global operation) do not oc-
cur. In particular, an attempted doubleword read from a receiving
FIFO containing only one word will not result in popping the word.

Examine the ni_bad_address register to determine what
memory transaction caused the error.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix C

Programming Tools

Ca

This appendix describes the important C macros and constants defined by the
CMNA software layer (that is, those relating to the NI chip itself).

Generic Variables and Macros

To determine the address of a node, and its place within its partition, use these
variables:

int CMNA_self_address — Relative address of current node.
int CMNA_partition_size - Number of nodes in partition.

These are the macros used to examine fields of the ni_interface_status regis-
ter (but not the status_all register) for any interface that has such a register:

Field Name: Macros Used to Read Value of Field:

ni_send_ok SEND_OK (status_value)

ni_send space SEND_SPACE (status_value)
ni_send_empty SEND_EMPTY (status_value)
ni_rec_ok RECEIVE_OK (status_value)
ni_rec_length RECEIVE_LENGTH (status_value)
ni_rec_length_left RECEIVE_LENGTH_LEFT (status_value)

For interfaces that have an abstain flag, there is a pair of macros that can be used
to read and write the value of the flag:

value = CMNA_read_abstain_flag (register_address) ;
CMNA_write_abstain_flag (register_address, value) ;

NI Version 2.2 (CM-5E), June 1994 181
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

For both macros, register_address is a symbolic constant giving the address of
the abstain flag register (this is defined separately for each interface that has such
a register).

For the write macro, value is the new value (0 or 1) to be written to the flag.

C.2 Data Network Constants and Macros

Send and Receive Register Macros

The send_first registers for the Data Network interfaces are accessed via the
macros below:

Register Name: Macros Used to Write First Value of Message:

ni_dr_send first CMNA _dr_send_first{_long} (tag, length, value)
CMNA_dr_send_first_double{_long} (tag, length,value)

ni_ldr_send_first CMNA_ldr_send first{_long} (tag, length, value)
CMNA_ldr_send first_double{_long} (tag, length, value)

ni_rdr_send_first CMNA_rdr_send first{_long} (tag, length, value)
CMNA_rdr_send_first_double{_long} (tag, length, value)

The length argument in each case is the total length in words of the message to
be sent (excluding the address word), and the zag argument is the message’s tag
value.

The send and rec registers of the Data Network interfaces can be written to and
read from by the generic register macros in Section C.1, and by the following

special-purpose macros:
Register Name: Macros Used to Access Register:
ni_dr_send CMNA_dr_send_word (word_value)

CMNA_dr_send_float (float_value)
CMNA_dr_send_double (double_value)
ni_ldr_send CMNA_ldr_send_word (word_value)
CMNA_ldr_send float (float_value)
CMNA_1ldr_send_double (double_value)
ni_ldr_recv word_value = CMNA_ ldr_receive_word();
float_value = CMNA _ldr_receive_ float();
double value = CMNA_ldr_receive_double();

182 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

NECY

Appendix C. Programming Tools

Register Name:

Macros Used to Access Register:

ni_rdr_send

CMNA_rdr_send_word (word_value)

CMNA_rdr_send_float (float_value)
CMNA_rdr_send_double (double_value)

ni_rdr_rec

word _value = CMNA_rdr_receive_word() ;

float_value = CMNA_rdr_receive_float();
double_value = CMNA_rdr_ receive_double();

Status Register Macros

The values of the Data Network status registers can be obtained by using these

macros:

int dr_status = CMNA_dr_send status();
int 1dr_status = CMNA_ ldr_status();
int rdr_status = CMNA_rdr_status():

You can extract the fields of the status registers by applying these macros:

Register/Field Name:

Macros Used to Access Fields:

ni_dr_status
ni_send ok
ni_send_space
ni_send_state
ni_rec_state
ni_router_done_complete

ni_ldr_status
ni_send_ ok
ni_send_space
ni_rec_ok
ni_ldr_rec_tag

"ni_rec_length

ni_rec_length left

ni_rdr_status
ni_send_ok
ni_send_space
ni_rec_ok
ni_rdr_rec_tag
ni_rec_length
ni_rec_length left

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

SEND_OK (dr_status)
SEND_SPACE (dr_status)
DR_SEND_STATE (dr_status)
DR_RECEIVE_STATE (dr_status)
DR_ROUTER_DONE (dr_status)

SEND_OK(1ldr_status)

SEND_SPACE (1dr_status)
RECEIVE_OK(ldr_status)
RECEIVE_TAG (1dr_status)
RECEIVE_LENGTH (1dr_status)
RECEIVE_LENGTH_LEFT (ldr_status)

SEND_OK(rdr_status)

SEND_SPACE (rdr_status)
RECEIVE_OK(rdr_status)
RECEIVE_TAG (xdr_status)
RECEIVE_LENGTH (rdr_status)
RECEIVE_LENGTH_LEFT (rdr_status)

183

C3

184

NI P

rogrammer s Handbook
SRR A

i

Message Length Limit

The maximum length of a Data Network message (not counting the address word
attached in sending it) is given by the constant

MAX ROUTER_MSG_WORDS

Broadcast Interface Constants and Macros

Send and Receive Register Macros

The send_£irst register for the broadcast interface is accessed via the macros
listed here:

Register Name: Macros Used to Write First Value of Message:

ni_bc_send_first CMNA_bc_send_first (length, value)
CMNA_bc_send_first_double (length, value)

The send and rec registers of the broadcast interface can be written to and read
from by the following special-purpose macros:

Register Name: Macros Used to Access Register:

ni_bc_send . CMNA_bc_send_word (word_value)
CMNA_bc_send_float (float_value)
CMNA_bc_send_double (double_value)

ni_bc_recv word_value = CMNA bc receive_word();
float_value = CMNA bc_receive_ float();
double _value = CMNA bc_receive_double();

Status Register Macros

The value of the broadcast interface status register can be obtained by using this
macro:

int bc_status = CMNA_bc_status();

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

ey

Appendix C. Programming Tools

P P P AP AN e e P T s

You can extract the fields of the status register by applying the following macros:

Register/Field Name: Macros Used to Access Fields:

ni_bc_status

ni_send ok SEND_OK (bc_status)
ni_send_space SEND_SPACE (bc_status)
ni_send empty SEND_EMPTY (bc_status)
ni_rec_ok RECEIVE OK(bc_status)
ni_rec_length left BC_RECEIVE_LENGTH(bc_status)

Abstain Register Macros

The broadcast abstain register contains a single flag bit, which can be read and
written using the generic abstain bit operations described in Section C.1.

Register/Field Name: Macros Used to Access Fields:

ni_bc_control
ni_rec_abstain value=CMNA read_ abstain_ flag
(bc_control_reg) ;
CMNA_write_abstain flag
(bc_control_reg,value) ;

Message Length Limit

The maximum length of a broadcast message is given by the constant

MAX BROADCAST MSG_WORDS

NI Version 2.2 (CM-5E), June 1994 185
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

C.4 Combine Interface Constants and Macros

Send and Receive Register Macros

The send_first register for the combine interface is accessed via the macros
below:

Register Name: Macros Used to Write First Value of Message:

ni_com _send first CMNA_com send first
(combiner, pattern, length, value)
CMNA_com_send_first_double
(combiner, pattern, length, value)

For scan operations, the combiner argument can be any one of the constants

ADD_ SCAN MAX SCAN OR_SCAN
UADD_SCAN XOR_SCAN

and the pattern argument can be any one of the constants
SCAN BACKWARD SCAN_FORWARD SCAN_REDUCE
For network-done operations there is a unique combiner and pattern pair:

combiner: ASSERT_ROUTER_DONE
pattern: SCAN_ROUTER_DONE

The send and rec registers of the combine interface can be written to and read
from by the generic register macros in Section C.1, and by the following special-
purpose macros:

Register Name: Macros Used to Access Register:

ni_com_send CMNA_com_send_word (word_value)
CMNA_com_send _float (float_value)
CMNA_com_send_double (double_value)
ni_com recv word_value = CMNA com_receive_word();
float_value = CMNA_com receive_float();
double value
= CMNA com_receive_double();

186 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix C. Programming Tools

IR AR N ER TR T ARG

B T I
O e

Message Length Limit

The maximum length of a combine message (with the exception of network-done
messages, which are always 1 word) is given by the constant

MAX_COMBINE_MSG_WORDS

Segment Start Register Macros

The ni_scan_start register is accessed by the following special purpose mac-

TOS:
Register Name: Macros Used to Access Register:
ni_scan_start CMNA_set_segment_start (value)

value = CMNA segment_start();

Status Register Macros

The value of the combine interface status register can be obtained by using the
macro

int com_status = CMNA_com_status();
You can extract the fields of the status register by applying the following macros:

Register/Field Name: Macros Used to Access Fields:

ni_com_status

ni_send_ok SEND_OK (com_status)
ni_send_space SEND_SPACE (com_status)
ni_send empty SEND_EMPTY (com_status)
ni_rec_ok RECEIVE_CK(com_status)
ni_rec_length RECEIVE_LENGTH (com_status)
ni_rec_length_left RECEIVE_LENGTH_LEFT (com_status)
ni_com_scan_overflow COMBINE OVERFLOW (com_status)

NI Version 2.2 (CM-5E), June 1994 187

Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

Abstain Register Macros

The combine abstain register contains two single-bit flags, which can be read and
written by the macros listed below:

Register/Fieid Name: Macros Used to Access Fields:

ni_com_control
ni_rec_abstain value=CMNA_read abstain flag
(com_control_reg);
CMNA_write_abstain flag
(com_control_reg,value) ;
ni_reduce_rec_abstain

value=CMNA_read_rec_abstain flag(com control_reg);
CMNA write_rec_abstain flag(com _control_reg,value) ;

C.5 Gilobal Interface Constants and Macros

Synchronous Global Register Macros

The synchronous global registers are read and written by the following macros:

Register Name: Macros Used to Access Registef:

ni_sync_global_send CMNA_or_global_sync_bit (value)

ni_sync_global

ni_sync_global complete value =
CMNA global_sync_complete ()
ni_sync_global_rec value =

CMNA_global_sync_rec()

ni_sync _global_abstain
value=CMNA_read abstain_flag
(sync_global_abstain_reg) ;
CMNA write abstain_ flag
(sync_global_abstain_reg,value) ;

188 NI Version 2.2 (CM-5SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix C. Programming Tools

- Asynchronous Giobal Register Macros

The two flags of the asynchronous global register are read and written by these
macros:

Register/Flag Name: Macros Used to Access Register:

ni_async_global

ni_global_send CMNA_or_global_async_bit (value)
ni_global_rec value = CMNA global_ async_read()
NI Version 2.2 (CM-5E), June 1994 189

Copyright © 1994 Thinking Machines Corporation

Appendix D
Predefined Low-Level NI Constants

For ease of reference, here are the low-level programming constants defined in
the header files cmsys/ni_constants.h, and ecmsys/ni_defines.h (see
Appendix H), grouped by register and field.

Note for C Programmers: These constants are defined as raw, unsigned integer
values. If you use them in C code, you must recast them as pointer values of type
(unsigned *). Otherwise, the C compiler will treat them as integers, possibly
causing “illegal pointer operation™ errors.

=== Send First Register Constants ===
Field Offsets:

SF_FIFO_OFFSET (12)
AUXILIARY_START P (3)

Length Constant: NI_SEND FIRST L (32)

Interface Number constants:

DATA_ROUTER_FIFO (1)
LEFT_DR_FIFO (6)
RIGHT DR_FIFO (7)
USER_BC_FIFO (3)
SUPERVISOR_BC_FIFO (4)
COMBINE_FIFO (5)

=== Auxiliary Data Field Constants ===
--- DR/LDR/RDR Interface ---
NI_DR_SEND_AUXILIARY ADDRESS MODE_P (8)
RELATIVE (0)

PHYSICAL (1)

NI_DR_SEND_AUXILIARY TAG P (4) NI_DR_TAG_L (4)
NI_DR_SEND_AUXILIARY LENGTH_P (0) NI_DR_LENGTH L (4)
NI Version 2.2 (CM-5E), June 1994 191

Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook
R 9

=== Auxiliary Data Field Constants, cont. ===
--—- BC/SBC Interface ---
NI_BC_SEND_AUXILIARY LENGTH_P (0) {no length constant)

——~~ COM Interface ~—-
NI_COM SEND AUXILIARY_PATTERN P (7)
NI_COM SEND PATTERN L (2)

SCAN_ROUTER_DONE (0)
SCAN_BACKWARD (1)
SCAN_FORWARD (2)
SCAN_REDUCE (3)

NI_COM_SEND_AUXILIARY COMBINER P (4)
NI_COM_SEND_COMBINER L (3)

OR_SCAN (0)
ADD_SCAN (1)
XOR_SCAN (2)
UADD_SCAN (3)
MAX SCAN (4)

ASSERT_ROUTER_DONE (5)
NI_COM_SEND_AUXILIARY LENGTH P (0)
NI_COM_SEND_LENGTH_ L (4)

=== Interface send/receive FIFO size limits ===
MAX_ROUTER_MSG_WORDS (5)
MAX_COMBINE_MSG_WORDS (5)

MAX BROADCAST MSG_WORDS (4)

MAX_SBC_MSG_WORDS (4)

=== Send Registers ===

NI_DR SEND A (NI__BASE | 0x0230)
NI_LDR_SEND_A (NI_BASE | 0x0c30)
NI_RDR_SEND_A (NI_BASE | 0x0e30)
NI_BC_SEND_ A (NI_BASE | 0x0630)
NI_SBC_SEND_A (NI_BASE | 0x0830)
NI_COM_SEND_A (NI_BASE | 0x0a30)
NI_SEND_L (32)
=== Recelve Registers ===
NI_DR_RECV_A (NI_BASE | 0x0220)
NI_LDR_RECV_A (NI_BASE | 0x0c20)
NI_RDR_RECV_A (NI_BASE | 0x0e20)
NI_BC_RECV_A (NI_BASE | 0x0620)
NI_SBC_RECV_A (NI_BASE | 0x0820)
NI_COM_RECV_A (NI_BASE | 0x0a20)
NI_REC_L (32)

192 NI Version 2.2 (CM-5E), June 1994

Copyright © 1994 Thinking Machines Corporation

Appendix D. Predefined Low-Level NI Constants

=== Status Register ===

NI_DR_STATUS_A (NI_BASE | 0x0200)
NI_DR_STATUS_ALL_A (NI_BASE + 0x0250) /* 2.2 */
NI_DR_STATUS_LONG_A (NI_BASE + 0x0260) /* 2.2 */
NI_LDR_STATUS_A (NI_BASE | 0x0c00)
NI_LDR_STATUS ALL_A (NI_BASE + 0x0c50) /* 2.2 */
NI_LDR_STATUS_LONG_A (NI_BASE + 0x0c60) /* 2.2 */
NI_RDR_STATUS_A (NI_BASE | 0x0e00)
NI_RDR_STATUS_ALL_A (NI_BASE + 0x0e50) /* 2.2 */
NI_RDR_STATUS_LONG_A (NI_BASE + 0x0e60) /* 2.2 *

/’; 2.2 */

NI_XDR_STATUS L (19) NI_STATUS_LONG_L (28)
NI_BC_STATUS_A (NI_BASE | 0x0600)
NI_SBC_STATUS_A (NI_BASE | 0x0800)

NI_BC_STATUS_L (11)
NI_COM STATUS_A
NI_COM STATUS_L
NI_STATUS_L (25)

(21)

Field Constants:
NI_SEND_SPACE_P (0)
NI_REC_OK P (4)
NI_SEND_OK_P (5)
NI_ROUTER_DONE_COMPLETE_ P (6)
NI_SEND_EMPTY P (6)
NI_REC_LENGTH_LEFT_P (7)

(NI_BASE | 0x0a00)

NI_SEND_SPACE L (4)
NI_REC_OK L (1)
NI_SEND OK_L (1)
NI_ROUTER_DONE_COMPLETE_L
NI_SEND_EMPTY L (1)
NI_REC_LENGTH LEFT L

(1)

(4)

'NI_BC_REC_LENGTH_LEFT LONG_L (7) /* 2.2 */

NI_REC_LENGTH_P (11)
NI_DR_REC_TAG_P (15)
NI_COM_SCAN_OVERFLOW_P
NI_DR_SEND_STATE P (21)
NI_DR_REC_STATE_P (23)
/* 2.2 */
NI_SEND_SPACE_LONG_P
NI_REC_OK_LONG_P (5)
NI_SEND_OK_LONG_P (6)

(20)

(0)

NI_ROUTER_DONE_COMPLETE_LONG_P
NI_ROUTER_DONE_COMPLETE_LONG_L

NI_REC_LENGTH_LEFT_LONG_P (8)
NI_REC_LENGTH_LONG_P (13)
NI_DR_REC_TAG_LONG_P (18)
NI_DR_SEND_STATE_LONG_P (24)
NI_DR_REC_ STATE_LONG_P (26)

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

NI_REC_LENGTH_L (4)
NI_DR_REC_TAG L (4)
NI_COM_SCAN_OVERFLOW_L
NI_DR_SEND_STATE L (2)
NI_DR_REC_STATE L (2)

(1)

NI_SEND_SPACE_LONG_L (5)
NI_REC_OK_LONG_L (1)
NI_SEND_OK_LONG_L (1)

(7)

(1)
NI_REC_LENGTH_LEFT_LONG_L (5)
NI_REC_LENGTH_LONG_L (5)
NI_DR_REC_TAG_LONG_L (4)
NI_DR_SEND STATE LONG_L
NI_DR_REC_STATE_LONG_L

(2)
(2)

193

NI Programmer s Handbook

=== Control Registers ===

NI_BC_CONTROL_A (NI_BASE | 0x0610)
NI_SBC_CONTROL_ 2 (NI_BASE | 0x0810)
NI_BC_CONTROL_L (1)

NI_COM_CONTROL_A (NI_BASE | 0x0al0)

NI_COM CONTROL_L (2)
NI_CONTROL_L (2)

Field Constants:
NI_REC_ABSTAIN P (0) NI_REC_ABSTAIN L (1)
NI_REDUCE_REC_ABSTAIN P (1) NI_REDUCE REC ABSTAIN_L (1)

=== Private Registers ===
NI_DR_PRIVATE A (NI_BASE | 0x0208)
NI_DR_PRIVATE L (10)

NI_LDR_PRIVATE_ A (NI_BASE | 0x0c08)
NI_RDR_PRIVATE A (NI_BASE | 0x0e08)
NI_XDR_PRIVATE_L (6)

NI_BC_PRIVATE A (NI_BASE | 0x0608)
NI_SBC_PRIVATE_A (NI_BASE | 0x0808)
NI_BC_PRIVATE L (5)

NI_COM_PRIVATE_A (NI_BASE | 0x0a08)
NI_COM_PRIVATE_L (18)

NI_PRIVATE_L (18)

Field Constants:

NI_REC _OK_IE_P (0) NI_REC_OK_IE L (1)
NI_LOCK P (1) NI_LOCK_L (1)
NI_REC_STOP_P (2) NI_REC_STOP_L (1)
NI_REC_FULL P (3) NI_REC_FULL L (1)
NI_SEND_ENABLE P (4) NI_SEND_ENABLE L (1)
NI_BC_SEND_ENABLE_P (4) NI_BC SEND_ENABLE: L (1)

NI_COM_SCAN_OVERFLOW_IE_ P(4) NI_COM SCAN_OVERFLOW_IE L (1)
NI_DR_REC_ALL_FALL DOWN_P(5) NI_DR_REC_ALL_FALL DOWN L (1)

NI_COM REC_EMPTY IE P (5) NI_COM_REC_EMPTY IE L (1)
NI_ALL FALL DOWN_IE P (6) NI_ALL_FALL_DOWN_IE_L (1)
NI_ALL_FALL_DOWN_ENABLE P(7) NI_ALL FALL DOWN_ENABLE L (1)
NI_COM_SEND_LENGTH P (8) - NI_COM SEND LENGTH L (4)
NI_COM SEND_COMBINER_P (12) NI_COM_SEND_COMBINER L (3)
NI_COM_SEND_PATTERN P (15) NI_COM SEND_PATTERN L (2)
NI_COM _SEND_START P (17) NI_COM_SEND_START L (1)

194 NI Version 2.2 (CM-5E), June 1994

Copyright © 1994 Thinking Machines Corporation

Appendix D. Predefined Low-Level NI Constants

=== Global and System Registers ===
NI_INTERRUPT_ CAUSE_A (NI_BASE | 0x0000)
NI_INTERRUPT SET_A (NI_BASE + 0x0190) /* 2.2 */
NI_CAUSE INTERNAL_FAULT_P (0)
NI_CAUSE_MC_ERROR_P (1)
NI_CAUSE_CMU_ERROR_P (2)
NI_CAUSE_BC_INTERRUPT_RED P (3)
NI_CAUSE_CN_CHECKSUM_ERROR_P (4)
NI_CAUSE_CN_HARD_ERROR_P (5)
NI_CAUSE_DR_CHECKSUM_ ERROR P (6)
NI_CAUSE_TIMER_INTERRUPT_P (7)
NI_CAUSE_BC_INTERRUPT_ORANGE P (8)
NI_CAUSE_BC_ INTERRUPT_YELLOW_P (9)
NI_CAUSE_BC_OR_COM_COLLISION_P (10)
NI_CAUSE_COM_ABSTAIN CHANGED P (11)
NI_CAUSE_DR_COUNT_NEGATIVE P (12)
NI_CAUSE_BAD RELATIVE ADDRESS_P (13)
NI_CAUSE_BAD MEMORY_ACCESS_P (14)
NI_CAUSE_MESSAGE_TOO_LONG_P (15) /* 2.2 */
NI_CAUSE_RDONE_COMPLETE P (16) /* 2.2 */
NI INTERRUPT L (1)

NI_INTERRUPT_CAUSE_GREEN_A (NI_BASE | 0x0008)
NI_INTERRUPT_SET GREEN_A (NI_BASE + 0x0198) /* 2.2 */
NI_CAUSE_BC_INTERRUPT_ GREEN_P (0)
NI_CAUSE_SCAN_OVERFLOW_P (1)
NI_CAUSE_BC_REC_OK_P (2)

NI _CAUSE_SBC_REC_OK_P (3)
NI_CAUSE_COM_REC_OK P (4)
NI_CAUSE_COM_REC_EMPTY P (5)
NI_CAUSE_SYNC_GLOBAL_REC_P (6)
NI_CAUSE_GLOBAL_REC P (7)
NI_CAUSE_SUPERVISOR_GLOBAL REC_P (8)
NI_CAUSE_DR_REC_OK_P (9)
NI_CAUSE_LDR_REC_OK P (10)
NI_CAUSE_RDR_REC_OK P (11)
NI_CAUSE_DR_REC_TAG_P (12)
NI_CAUSE_DR_REC_ALL_FALL DOWN_P (13)
NI_CAUSE_LDR_REC_TAG_P (14) /* 2.2 */
NI_CAUSE_RDR_REC_TAG_P (15) /* 2.2 */
NI_CAUSE_LDR_USER_REC_TAG_P (16) /* 2.2 */
NI_CAUSE_RDR_USER_REC_TAG_P (17) /* 2.2 */
NI_CAUSE_SFIFO_EMPTY (18) /* 2.2 */
NI_CAUSE_DPERR (19) /* 2.2 */
NI_INTERRUPT L (1)

NI Version 2.2 (CM-5E), June 1994 195
Copyright © 1994 Thinking Machines Corporation

196

R N S S e I R R

B e A1 D DA

NI_INTERRUPT_LEVEL_A
NI_INTERRUPT LEVEL L (32)

NI_INTERRUPT_LEVEL_COLOR_L (8)

NI_LONGEST DR_MESSAGE_2

NI_PHYSICAL_SELF_A
NI_PARTITION_BASE A
NI_PARTITION SIZE A
NI_PHYSICAL_ADDRESS L (20)

NI_CHUNK_TABLE ADDRESS A
NI_CHUNK_TABLE ADDRESS L (6)

NI_CHUNK_TABLE_DATA A
NI_CHUNK_TABLE_DATA L (8)

NI_CHUNK SIZE A
NI_CHUNK_SIZE L (3)

NI_DR_MESSAGE_COUNT A
NI_DR_MESSAGE_COUNT L (32)

NI_COUNT_MASK_A
NI_REC_INTERRUPT_MASK_ A
NI_USER_TAG_MASK_A
NI_TAG MASK L (16)

NI_TIME A
NI_TIME L (32)

NI_CONFIGURATION_A
NI_CONFIGURATION L (5)

NI_INTERRUPT_ SEND A
NI_INTERRUPT SEND L (5)

NI_SERIAL_NUMBER_A
NI_SERIAL_NUMBER_L (32)

NI_SYNC_GLOBAL_A
NI_SYNC GLOBAL_REC_P (0)
NI_SYNC_GLOBAL REC_L (1)
NI_SYNC_GLOBAL_COMPLETE_P (1)

NI Programmer s Handbook

(NI_BASE

(NI_BASE
(NI_BASE
(NI_BASE

(NI_BASE

(NI_BASE

(NI_BASE

(NI_BASE

(NI_BASE
(NI_BASE
(NI_BASE

(NI_BASE

(NI_BASE

(NI_BASE

(NI_BASE

(NI_BASE

l

(NI_BASE + 0x0160)
NI_USER_REC_INTERRUPT MASK A (NI_BASE + 0x0168)

|
I
l

0x0010)

0x0018)
0x0020)
0x0028)

0x0030)

0x0038)

0x0040)

0x0048)

0x0050)
0x0058)
0x0060)

0x0070)

0x0078)

0x0080)

0x0088)

0x0090)

<7

/* 2.2 %/
/* 2.2 */

NI Version 2.2 (CM-5E), June 1994

Copyright © 1994 Thinking Machines Corporation

Appendix D. Predefined NI Constants

NI_SYNC_GLOBAL_COMPLETE L (1)
NI_SYNC_GLOBAL L (2)

NI_SYNC_GLOBAL_ ABSTAIN A (NI_BASE | 0x0098)
NI_SYNC_GLOBAL_ABSTAIN L (1)

NI_COM_FLUSH_SEND_ A (NI_BASE | 0x00a0)
NI_FLUSH_SEND_ L (1)

NI_ASYNC_GLOBAL_A (NI_BASE | 0x00a8)
NI_GLOBAL_SEND P (0) NI_GLOBAL_SEND L (1)
NI_GLOBAL REC_P (1) NI_GLOBAL REC_L (1)

NI_GLOBAL_L (2)

NI_ASYNC_SUP_GLOBAL_A (NI_BASE | 0x00bO)
NI_SUPERVISOR_GLOBAL_ SEND_P (0)
NI_SUPERVISOR_GLOBAL_SEND_L (1)
NI_SUPERVISOR_GLOBAL_REC_P (1)
NI_SUPERVISOR_GLOBAL_REC L (1)

NI_GLOBAL_L (2)

NI_HODGEPODGE_ A (NI_BASE | 0x00Db8)
NI_GLOBAL_REC_IE P (0)

NI_GLOBAL _REC_IE L (1)
NI_SUPERVISOR_GLOBAL_REC_IE P (1)
NI_SUPERVISOR_GLOBAL_REC_IE_L (1)
NI_FLUSH_COMPLETE_P (2)
NI_FLUSH_COMPLETE_L (1)
NI_INTERRUPT_SEND_OK P (3)
NI_INTERRUPT_ SEND OK_ L (1)
NI_CONFIGURATION_COMPLETE P (4)
NI_CONFIGURATION_COMPLETE_L (1)
NI_INTERRUPT_REC_ENABLE P (5)
NI_INTERRUPT REC_ENABLE L (1)
NI_SYNC_GLOBAL_REC_IE P (6)
NI_SYNC_GLOBAL_REC_IE L (1)
NI_TIMER_IE_P (7)

NI_TIMER_IE_L (1)

NI_CN_STOP_SEND_P (8)
NI_CN_STOP_SEND_L (1)
NI_DISABLE_BUS_ERROR_P (9) /* 2.2 */
NI_DISABLE_BUS_ERROR_L (1) /* 2.2 */
NI_LDR REC_TAG_IE P (10) /* 2.2 */
NI_LDR_REC_TAG_IE L (1) /* 2.2 */
NI_RDR_REC TAG_IE P (11) /* 2.2 */
NI_RDR_REC_TAG_IE L (1) /* 2.2 */

NI Version 2.2 (CM-5SE), June 1994 197
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

NI_LDR_USER REC_TAG_IE P (12) /* 2.2 */
NI_LDR _USER_REC TAG_IE_L (1) /* 2.2 */
NI_RDR_USER_REC TAG_IE_P (13) /* 2.2 */
NI_RDR _USER_REC_TAG_IE L (1) /* 2.2 */
NI_MSG_TOO_LONG_IE P (14) /* 2.2 */
NI_MSG_TOO_LONG_IE L (1) /* 2.2 */
NI_HODGEPODGE_ L (15)

NI_SYNC_GLOBAL_SEND A ' (NI_BASE | 0x00C0)
NI_SYNC_GLOBAL_SEND L (1)

NI_INTERRUPT CLEAR A (NI_BASE | 0x00c8)
NI_INTERRUPT_CLEAR_ GREEN_A (NI_BASE | 0x00d0)
(use same constants as for CAUSE register)

NI_INTERRUPT NOW_A (NI_BASE | 0x00d8)
NI_INTERRUPT NOW_L (32)

NI_SCAN_START A (NI_BASE | 0x00e0)
NI_SCAN_START L (1)

NI_BAD ADDRESS_A (NI_BASE | 0x00e8)
NI_BAD_ADDRESS_L (32)

198 NI Version 2.2 (CM-5SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix E

cMOS_signal — asynchronous event handlers on the nodes
Syntax:

#include <cmsys/cm_signal.h>
(*CMOS_signal (sig, func, mask)) ()
int sig;

void (*func) ();

int mask;

Description:

cMos_signal allows code on the nodes to specify software handlers for certain asynchro-
nous events. It is the responsibility of the user to ensure that the signal handler does not
change the state of the node in any way that will disrupt execution of the interrupted code.

A node program can specify that the arrival of Data Network messages with a certain set
of tags will generate an interrupt. The program specifies the message handler and the set
of tags with a call to cMOS_signal () with sig = SIGMSG, *func set to the address of
the user-written handler function, and mask set to a bit mask specifying which tags will
interrupt. (Bit O corresponds to tag 0, bit 1 corresponds to tag 1, and so forth.) Currently,
tags 0 to 3 are reserved for user messages. Bits 4 and up are reserved for system messages,
and may not be used or referenced by user code.

The context of the node except for the floating point context and the global registers g5,
%g6, and %g7 is saved before the user message handler is called. Thus, use of floating-point
instructions in the user message handler will cause unpredictable errors in the interrupted
- code. Also, the network state of the CM is not altered before entering the user message
handler. Thus, the message(s) that produced the interrupt will still be in the receiving FIFO
when the user message handler is invoked. It is the responsibility of the user message
handler to empty these messages.

NI Version 2.2 (CM-5E), June 1994 199
Copyright © 1994 Thinking Machines Corporation

NI Programmer 5 Handbook

Return Values:

cMOS_signal () returns the previous action on success. On failure, it returns -1 and sets
errno to indicate the error.

Errors:

cMOS_signal () will fail and no action will take place if one of the following occurs:
EINVAL sig was not a valid signal number.

Notes:

The handler routine can be declared:

void handler ()

The routine is not passed any parameters relating to the received message. The user mes-
sage handler must read the NI registers to determine such details as the tag of the message
and whether the message has arrived via the left or right Data Network interface, etc.

Message interrupts are disabled while user code is in a user message handler. Thus, user
message handlers need not be reentrant. However, the message handler should not enable
interrupts (via a call to cMOS_signal ().) If it does, the results are unpredictable. Also,
note that if the user code anticipates a series of interrupting messages, the arrival of the first
message can be used to invoke the message handler and the remaining messages can be
received via polling within the handler, thus saving the overhead of an interrupt for all but
the first message. Message interrupts are disabled by a call to cMOS_signal () with func
set to CM_SIG_IGN. The mask argument is ignored. (Note that all user tag interrupts.are
disabled by this call.)

200 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix F

NI Accessor Examples

Here are some examples of macros that C programmers can use to access the
registers and fields of the NI. In most cases, these macros take as arguments the
register and field constants defined previously in this manual.

F.1 Reading and Writing Registers

The simplest NI register operations involve reading and writing the value of a
register, typically with one of three types of values: unsigned, float, and double.
The macros below provide a simple register reading/writing interface.

#define ni_register (type,reg) *((type *) (reg))
#define ni_read _reg(regq) ni_register (unsigned, reg)
#define ni_read reg_f£f(reg) ni_register (float, reg)

#define ni_read_reg_d(reg) ni_register (double, reg)

#define ni_set_register (type,reg,value)
ni_register (type, reg) = ((type) (value))

#define ni_write_reg(reg)

ni_set_register (unsigned, reg, value)
#define ni_write_reg £ (reg)

ni_set_register (float, reg, value)
#define ni_write_reg_d(reg)

ni_set_register (double, reg, value)

In these examples the reg argument is the address constant of the appropriate
register, and the value argument is the word, float, or double to be written.

NI Version 2.2 (CM-5E), June 1994 201
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

F.2 Reading and Writing Subfields

Often, you’ll want to read or write the value of a register subfield. Here’s a set
of macros that efficiently extract a field from a register. (Note that the field argu-
ment in these examples is the name of the field constant without the _® or _L
suffixes — these are added automatically by the macros themselves.)

/* mask for values that will fit into the given field */
#define ni_mask field_values (field_length) \
(~(~0 << field_length))

/* mask that extracts a field from the register */
#define ni_mask _field (position, length) \
(ni_mask field values (length) << position)

/* right-shift register value, mask out the field */
#define ni_get_field(register_val, pos, len) \
((register_val >> pos) & ni_mask field values(len))

#define ni_read field(register, pos, len) \
ni_get_field(ni_read reg(register), pos, len)

And here’s a set of macros that efficiently modify the value of a register field:

/* mask that is ANDed with register to change field */
#define ni_new_value_mask(pos, len, new_value) \
~((new_value " ni_mask field_values(len)) << pos)

/* Logical AND register with mask that changes field */
#define ni_set field(reg_val, pos, len, new_value) \
(reg_val & ni_new_value_mask(pos, len, new_value))

#define ni_write_field(reg, pos, len, new_value) \
ni_write_reg(register, \
ni_set_field(ni_read reg(reg), pos, len, new_value))

You may also want to simply set or clear an arbitrary set of register bits:

#define ni_set_bits_in register (reg, bitmask) \
ni_write_reg(reg, ni_read reg(reg) | (bitmask))

#define ni_clear_bits_in register (reg, bitmask)\
ni_write reg(reg, ni_read_reg(reg) & ~(bitmask))

202 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

=

Appendix F. NI Accessor Examples

F.3 Constructing Send-First Addresses

The only other major set of programming tools that you might need are macros
that construct a send_£1irst address for a given interface. For example:

#define ni_send first_a(interface,auxiliary data) \
((unsigned *) (NI_BASE + \
(interface << SF_FIFO_OFFSET | \
auxiliary_data << AUXILIARY_START P)))

#define ni_send_first(interface,auxiliary_data,value) \
ni_write _reg(ni_send first_a(interface,auxiliary_data), \
value)

Data Network Send-First Macros

Here’s a set of macros that constructs the send_£irst addresses for the three
Data Network interfaces:

#define ni_xdr_auxiliary_data (mode, tag, length) \
(mode << NI_DR_SEND_AUXILIARY_ ADDRESS _MODE_P | \

tag << NI_DR_SEND_AUXILIARY_TAG_P | \

length << NI_DR_SEND_AUXILIARY LENGTH_P)

#define ni_dr_send_first(mode, tag, length, value) \
ni_send_ first(DATA_ROUTER_FIFO, \
ni_xdr_auxiliary data(mode, tag,length), \
value)

#define ni_ldr_send first(mode, tag, length, value) \
ni_send first(LEFT_DR_FIFO, \
ni_xdr_auxiliary_data (mode, tag, length), \
value)

#define ni_rdr_send_first(mode, tag, length, value) \
ni_send first (RIGHT_DR_FIFO, \
ni_xdr_auxiliary_data (mode, tag, length), \
value)

NI Version 2.2 (CM-5SE), June 1994 203
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

Broadcast Interface Send-First Macros

Here’s a set of macros that constructs the send_£irst addresses for the two
broadcast interfaces:

#define ni_xbc_auxiliary_data(length) \
(length << NI_BC_SEND AUXILIARY LENGTH_P)

#define ni_bc_send_first(length, value) \
ni_send_first (USER_BC_FIFO, \

ni_xbc_auxiliary_data(length), \
value)

#define ni_sbc_send_first(length, value) \
ni_send first (SUPERVISOR_BC_FIFO, \

ni_xbc_auxiliary_data(length), \
value)

Combine Interface Send-First Macros

Finally, here’s a set of macros that constructs the send f£irst addresses for the
combine interface:

#define ni_com_auxiliary_data(pattern,combiner,length) \
(pattern << NI_COM SEND AUXILIARY PATTERN P | \
combiner << NI_COM_ SEND_AUXILIARY COMBINER P | \
length << NI_COM SEND AUXILIARY LENGTH P)

#define ni_bc_send_first(pattern,combiner, length,value)\
ni_send first (COMBINE FIFO, \

ni_com_auxiliary_data(pattern,combiner,\

length) \
value)

204 NI Version 2.2 (CM-5E), June 1994

Copyright © 1994 Thinking Machines Corporation

Appendix G

Sample NI Programs

This appendix contains a series of NI programs that test all the programming examples
shown in the chapters of this manual. For each program, only the PM and node code files
are given. The interface file for each program is identical to that given for the sample pro-
gram in Chapter 7, and these test programs #include the same utils.h file as is used
in Chapter 7. ‘

As of Version 7.1.3 of the CM system software, CMOST, there are on-line copies of the
sample programs presented here. Depending on where your system administrator has
stored the CM software, these files may be located under the pathname /usr/cm/src/
ni-examples. Check with your system administrator for help in locating these files.

Important: You should view the examples presented here as merely a cookbook of pos-
sible ideas, not a hard-and-fast rulebook on network protocol. These examples are written
for clarity, not efficiency, and your own individual application should be your guide as to
how to rearrange the code fragments presented here, and how best to trim them for speed.

G.1 Data Network Test

This program presents examples of a number of different kinds of Data Network
operations, including

» sending/receiving messages limited by the length of the network queunes
= sending and receiving unlimited-length messages
® using interrupt-driven message retrieval

* sending and receiving by the LDR and RDR simultaneously

NI Version 2.2 (CM-5E), June 1994 205
Copyright © 1994 Thinking Machines Corporation

L

NI Programmer s Handbook

206

Filename: LDR_test.c

/* LDR test program - PM program */
#include <cm/cmna.h>
#include *utils.h®

#define LONG_FACTOR 5

void main () {
int input, result, high node;
printf (*\nLDR test program, by William R. Swanson, \n");
printf (*Thinking Machines Corporation -- 2/3/92.\n\n");

/* Enable broadcast sending */

CMNA_participate_in (NI_BC_SEND_ENABLE) ;

/* Abstain from broadcast reception and combine sending */
save and_set_abstain_flags(1,1,0,0);

/* Start node programs running */

node_main() ;

/* Get a value from the user and send it to the nodes. */
printf ("This CM-5 partition has %d nodes.\n",

CMNA partition_size);
printf ("Please type an integer tec send to the nodes: %);
scanf ("%d", &input);
PM_send_to_NODE (0, input);
printf ("Sent value %d to node 0...\n",input);
/* Wait for the nodes to finish juggling numbers */
PM_NODE_synch() ;

/* Get value from high node */

high node = CMNA_partition_size -~ 1;

result = PM get from NODE (high node);

printf (*Short send:\n");

printf ("Received value %d (should be %d) from node %d.\n",
result, input+MAX BROADCAST MSG_WORDS-1,high node) ;

result = PM get_ from NODE (high node) ;

printf ("Long send:\n");

printf ("Received value %d (should be %d) from node %d.\n",
result, input+ (MAX BROADCAST_MSG_WORDS*

LONG_FACTOR) -1, high node) ;

result = PM get_from NODE (high node);

printf ("Interrupt-driven send:\n");

printf (*Received value %d (should be %d) from node %d.\n",
result, input+MAX BROADCAST_ MSG WORDS-1,high node);

result = PM_get_from_ NODE(0) ;

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendzx G. Sample NI Programs
A B A T R S S T B e B AT R R B D S S
printf (*Dual-network send:\n")
printf (*Received value %d (should be %d) from nocde %d.\n",
result, MAX BROADCAST MSG_WORDS, O0);
restore_abstain_flags();
}
Filename: LDR_test.node.c
/* LDR test program - node program */
#define NI_ROUTER DONE_P NI_ROUTER DONE_COMPLETE_P
#include <cm/cmna.h>
#include <cmsys/cm_signal.h>
#include "utils.h"
#define LONG_FACTOR 5
/* Send/Receive functions limited by length restriction */
int LDR_send (dest_address, message, length, tag)
unsigned dest_address, tag;
int *message;
int length;
{
int i;
CMNA_ldr_send first(tag, length, dest_address) ;
while (length--) CMNA_ldr_ send word(*message++) ;
return (SEND_OK(CMNA_ldr_status())); }
int tag_limit=0;
int LDR_receive (message, length)
int *message;
int length;
{
int i, tag = 999;
/* Skip messages currently assigned as interrupts */
while (tag>tag_limit) {
if (RECEIVE_OK(CMNA_ldr_status()))
tag = RECEIVE_TAG (CMNA_ldr_status());
}
while (length--)
*message++ = CMNA_ldr_receive_word();
return (tag);
}
NI Version 2.2 (CM-5E), June 1994 207

Copyright © 1994 Thinking Machines Corporation

NI Programmer’s Handbook

/* Send/Receive function with no length restriction */
LDR_send receive_msg(dest_address, message, length, tag, dest)

unsigned dest_address, tag;
int *message, *dest;
int length;

int packet_size=MAX ROUTER_MSG_WORDS-1;

int send_size, receive_size;

int offset, source_offset=0, dest_offset;
int words_to_send=length, words_received=0;
int count, rec_tag, status;

while ((words_received < length) || (words_to_send)) {

*/

208

/* First try to receive a packet */
status=CMNA_ldr_status() ;
if (words_received<length &&
RECEIVE_OK(status) &&
RECEIVE_TAG (status) <= tag_ limit) {
dest_offset = CMNA_ldr_receive_word() ;
receive_size = RECEIVE_LENGTH_LEFT (CMNA_ldr_status{));
for (count=0; count<receive_size; count++)
dest [dest_offset++] = CMNA_ldr_ receive_word();
words_received += receive_size;

}

/* Now try sending a packet */
if (words_to_send) {
send _size = ((words_to_send < packet_size) ?
words_to_send : packet_size);
do {
CMNA l1dr_send first(tag, send size + 1, dest_address);
/* Send offset to indicate part of message being sent

CMNA _1dr_send word(source_offset);
offset=source_offset;
for (count=0; count<send size; count++)
CMNA_ldr_ send word (message[offset++]);
} while (!SEND_OK(CMNA_ ldr_status()));
source_offset=offset;
words_to_send -= send_size;

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix G. Sample NI Programs

/* Message-receiving handler for interrupt-driven LDR test */
int interrupt_done=0;

int interrupt_expect_length;

int interrupt_receive [MAX BROADCAST_ MSG_WORDS] ;

void LDR_receive_handler ()
{
int temp=tag_ limit;
tag limit=3;
LDR_receive (interrupt_receive, interrupt_expect length) ;
tag_limit=temp;
interrupt_done=1;

}

/* Send/Receive functions using LDR and RDR in tandem */
void LDR_RDR_send (dest_address, message, length, tag)
unsigned dest_address, tag;
int *message, length;

int i;
CMNA_ldr_send first(tag, length, dest_address);
CMNA _rdr_send first(tag, length, dest_address);
for (i=0; i<length; i++) {
CMNA_1ldr_send word(message[i]l);
CMNA_rdr_send word (message[i]);

}

int LDR_RDR_receive (message, length)
int *message, length;
{
int i, ldr_value, rdr_value, length received_ok=0;
while (!RECEIVE_OK(CMNA_ldr_status()) ||
IRECEIVE_OK(CMNA_xdr_status())) {}
for (i=0; i<length; i++) {
ldr_value=CMNA_ldr_receive_word () ;
rdr_value=CMNA_rdr_receive_word();
if (ldr_value==rdr_value) {
message [1]=1dr_value;
length _received_ok++;
}
}
return(length_received_ok);

NI Version 2.2 (CM-5E), June 1994 209
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

/* Combine "network-done" Function */
void network done_synch()
{
CMNA_com_send_first (ASSERT_ROUTER_DONE, SCAN _ROUTER_DONE,1,0) ;
while (!DR_ROUTER_DONE (CMNA dr_status())) {};
}

/* Tool to ensure there’s nothing in the receive queues */
/* Not used here, but you may find it handy */
void LDR_empty_network() {
int status, length, i;
while (status=CMNA_ldr_status(), RECEIVE_OK(status))
if (RECEIVE_TAG (status) <= tag_limit) {
length = RECEIVE_LENGTH (status);
for (i=0; i<length; i++)
(void) CMNA_ldr_receive_word();
}
}

void CMPE_node main () {

int value=0, i, length=MAX BROADCAST MSG_WORDS;

int long length=length*LONG_FACTOR;

int next_node, mirror_node;

int received_ok;

int send[MAX_BROADCAST_MSG_WORDS*LONG_FACTOR],
receive [MAX_BROADCAST_MSG_WORDS],
long_receive [MAX BROADCAST_ MSG_WORDS*LONG_FACTOR],
dual_receive [MAX BROADCAST MSG_WORDS] ;

/* signal interrupts for non-zero tag values */
CMOS_signal (SIGMSG , LDR receive_handler , 14);
CMNA _participate_ in(NI_BC_SEND_ENABLE) ;
save_and_set_abstain_flags(0,0,0,0);

/* All nodes get the value sent by the PM... */
All_NODES_get_from_ PM(&value) ;

for(i=0; i<long_length; i++) {
send[i] =value+i;
long_receive[i}=-999;

}

for(i=0; i<length; i++) {
receive([i]=-999;
interrupt_receive[i]=-999;
dual_receive[i]=-999;

}

210 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix G. Sample NI Programs

/* Calculate some useful addresses */
next_node = (CMNA_self_address + 1) % CMNA partition_size;
mirror_node = (CMNA partition_size-1) - CMNA self_ address;

/* Do an ordinary, length-limited send */
LDR_send (next_node, send, length, 0);
network_done_synch() ;

LDR_receive (receive, length);
network_done_synch() ;

/* Do an unlimited-length send */
LDR_send_receive msg(mirror_node, send,

long_length, 0, long_receive);
network done_synch();

/* Do an interrupt-driven send with a tag of 3*/
interrupt_expect_length=length;

LDR_send (next_node, send, length,3);

while (!interrupt_done) {}

network_done_synch() ;

/* Send via both LDR and RDR, and check results */
LDR_RDR_send (mirror_node, send, length, 0);
network_done_synch() ;

received_ok=LDR_RDR receive (dual_receive, length);

/* Signal to PM that answer is ready */
PM_NODE_synch () ;

/* Send check values back to PM */
NODE_send_to_PM(receive [length-1]);
NODE_send_to_PM(long_receive[long_length-1]);
NODE_send_to_PM(interrupt_receive[length-1]);
NODE_send_to_PM(received_ok);

restore_abstain_flags(};

NI Version 2.2 (CM-5E), June 1994 211
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

G.2 Data Network Doubleword Messages Test

212

This program demonstrates the use of doubleword read and write operations for
Data Network transmissions:

Filename: dbl_test.c
/* Double-word ops test program - PM program */

#include <cm/cmna.h>
#include "utils.h"®

#define LONG_FACTOR 5

void main () {
int input, result, high node;

printf (*"\nDouble-word test program, by W. R. Swanson, \n");

printf ("Thinking Machines Corporation -- 2/3/92.\n\n");

/* Enable broadcast sending */
CMNA participate_in (NI_BC_SEND_ENABLE) ;

/* Abstain from broadcast reception and combine sending */

save_and_set_abstain_ flags(1,1,0,0);
/* Start node programs running */
node_main() ;

/* Get a value from the user and send it to the nodes.

printf ("This CM-5 partition has %d nodes.\n",
CMNA_partition size);

printf ("Please type an integer to send to the nodes: ");

scanf ("$d", &input);

PM_send_to_NODE(0, input);

printf ("Sent value %d to node 0...\n",input);

/* Wait for the nodes to finish juggling numbers */

PM_NODE_synch () ;

/* Get value from high node */

high node = CMNA partition_size - 1;

result = PM _get_ from NODE (high node) ;

printf ("Long send using double-word ops:\n");

printf ("Received value %$d (should be %d) from node %d.\n",

result, input+ (MAX BROADCAST MSG_WORDS*
LONG_FACTOR) -1, high node) ;
restore_abstain_flags();

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix G. Sample NI Programs

Filename: dbl_test.node.c

/* Double-word ops test program - PM program */
#include <cm/cmna.h>

#include <cmsys/cm_signal.h>

#include "utils.h®

#define LONG_FACTOR 5

int tag_limit = 3;

/* Send/Receive function using double-words */
LDR_send receive_msg_double (dest_address, message,
length, tag, dest)
unsigned dest_address, tag;
int *message, *dest;
int length;

int packet_size;

double =*dbl;

int send_size, send_size2, receive_size, receive_size2;
int offset, source_offset=0, dest_offset;

int words_to_send=length, words_received=0;

int count, rec_tag, status;

if ((int)message & 3)
CMPN_panic("Error: Message array not double-word aligned!");

if ((int)dest & 3)
CMPN_panic("Error: Dest array not double-word aligned!");

packet_size = (MAX ROUTER_MSG_WORDS-1) & ~1;
while ((words_received < length) || (words_to_send}) {

/* First try to receive a packet */
status=CMNA_ldr_status();
if (words_received<length &&
RECEIVE_OK(status) &&
RECEIVE_TAG (status) <= tag_limit) {
dest_offset = CMNA_ldr_receive_word() ;
receive_size = RECEIVE_LENGTH_LEFT(CMNA ldr_status());
printf ("received offset %d, size %d.\n",
dest_offset, receive_size);

for (count=0; count<(receive_size>>1); count++) {
dbl = (double *) (&dest [dest_offset++]);
dest_offset++;

NI Version 2.2 (CM-5E), June 1994 213
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

*dbl = CMNA_ldr_receive_double() ;
dbl++;
}
if (receive_size & 1) /* If word left over */
dest [dest_offset++] = CMNA ldr_receive_ word();
words_received += receive_size;

}

/* Now try sending a packet */
if (words_to_send) {
send_size = ((words_to_send < packet_size) ?
words_to_send : packet_size);
send _size2 = send size >> 1;
do {
CMNA_1ldr_send first(tag, send size + 1, dest_address);
CMNA_1ldr_send_word(source_offset);
coffset=source_offset;
/* Send as many doubles as possible */
for (count=0; count<send_size2; count++) {
dbl = (double *) (amessagel[offset++]);
offset++;
CMNA_ldr_send_double (*dbl++) ;
3
if (send_size & 1) /* If a word is left over */
CMNA_1dr_send_word (message [offset++]) ;
} while (!SEND_OK(CMNA ldr_status()));
printf (“sent offset %d, size %d.\n",
source_offset, send size);
source offset=offset;
words_to_send -= send_size;

}
}

/* Combine "network-done" Function */

void network done_synch()

{

CMNA_com_send first (ASSERT_ROUTER_DONE, SCAN_ROUTER_DONE, 1,0) ;
while (!DR_ROUTER_DONE (CMNA_ dr_status())) {};

}

void CMPE_node_main () {
int value=0, i;
int length=MAX_BROADCAST MSG_WORDS*LONG_FACTOR;
int mirror_node;

214 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix G. Sample NI Programs

/* These variables MUST be double-word aligned! */
double temp_dalign_send;

int send [MAX BROADCAST_MSG_WORDS*LONG_FACTOR] ;
double temp_dalign_rec;

int receive [MAX BROADCAST MSG_WORDS*LONG_FACTOR] ;

CMNA_participate_in(NI_BC_SEND_ENABLE) ;
save_and_set_abstain flags(0,0,0,0);

/* All nodes get the value sent by the PM... */
All_NODES_get_from PM(&value);

for(i=0; i<length; i++) {
send[i]=value+i;
receive[i]=-999;

mirror_node = (CMNA partition_size-1) - CMNA_ self_address;

/* Do an unlimited-length send using double-word ops */
LDR_send_receive_msg_double (mirror_node, send,
length, 0, receive);
network done_synch() ;

/* Signal to PM that answer is ready */
PM_NODE_synch() ;

/* Send check value back to PM */
NODE_send_to_PM(receive [length-1]);

restore_abstain_flags():

G.3 Broadcast Interface Test

This program presents a simple test of broadcasting:
Filename: BC_test.c

/* Broadcast examples program - PM program */
#include <cm/cmna.h>
#include "utils.h"

NI Version 2.2 (CM-5E), June 1994 215
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

void main () {
int input, result, high node;
printf ("\nBroadcast test program, by W. R. Swanson,\n");
printf ("Thinking Machines Corporation -- 2/1/92.\n\n");

/* Enable broadcast sending */

CMNA participate in(NI_BC_SEND_ENABLE) ;

/* Abstain from broadcast reception and combine sending */
save_and _set_abstain flags(1,1,0,0);

/* Start node programs running */

node_main() ;

/* Get a value from the user and send it to the nodes. */

printf ("This CM~5 partition has %d nodes.\n",
CMNA_partition_size);

printf ("Please type an integer to send to the nodes: "“);

scanf ("%d", &input);

PM_send to_NODE(0, input);
printf (*Sent value %d to node 0...\n",input);

/* Wait for the nodes to finish juggling numbers =*/
PM NODE_synch () ;

/* Get value from high node */

high node = CMNA partition_size - 1;

result = PM_get_from NODE (high_node) ;

printf ("Received value %d (should be %d) from node %d.\n",
result, input+MAX BROADCAST_MSG_WORDS-1,high node) ;

restore_abstain_flags():

}
Filename: BC_test.node.c

/* Broadcast examples program - node program */
#include <cm/cmna.h>
#include *"utils.h®

int BC_send (message, length)
int *message, length;
{
int i;
CMNA _bc_send first(length--, *message++);
for (i=0; i<length; i++) CMNA bc_send_word(*message++) ;
return (SEND_OK(CMNA_ bc_status()));

216 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

b

Appendix G.

e g
QREVERSBRAE N0y

Sample NI Programs

S N TP R Lo Lt e 3 A
A A R PR s D Rt e VS w e TEE (T

int BC_receive (message, length)

}

int *message, length;

int 1i;

for (i=0; i<length; 1i++) {
while (!RECEIVE_OK(CMNA bc_status())) {}
message[i] = CMNA _bc_receive_word();

}
return (length) ;

void CMPE _node_main () {

int value=0, i, length=MAX BROADCAST MSG_WORDS;
int send[MAX BROADCAST MSG_WORDS],

receive [MAX BROADCAST MSG_WORDS] ;
int status, rec_length;

CMNA participate_in (NI_BC_SEND_ENABLE) ;
save_and set_ abstain flags(0,0,0,0);

/* Node 0 gets the value sent by the PM... */
NODE_get_from_ PM(&value) ;

for(i=0; i<length; i++) {
send{i] =value+i;
receive[i1]=-999;

}

if (CMNA_self_address==0) {

status=0;

while(!status) status = BC_send(send, length);
}

rec_length = BC_receive(receive);

/* Signal to PM that answer is ready */
PM_NODE_synch () ;

/* Send value from high-order node back to PM */
NODE_send_to_PM(receive[length-11);

restore_abstain_flags() ;

}

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

217

NI Programmer s Handbook

G.4 Combine Interface Test

218

This program presents examples of a number of different kinds of combine oper-
ations, including

® scanning messages, with and without segments
* reduction messages

* network-done messages
Filename: cOM_test.c

/* Combine examples program - PM program */
#include <ecm/cmna.h>
#include "utils.h"

void main () {
int input, result,. segment_size, high node, i, expected;
printf (*\nCombine test program, by W. R. Swanson, \n");
printf ("Thinking Machines Corporation -- 2/1/92.\n\n");

/* Enable broadcast sending */
CMNA participate_in (NI_BC_SEND_ENABLE) ;

/* Abstain from broadcast reception and combine sending */
/* Abstain from combine reception, too, for a while... */
save_and_set_abstain_flags(1,1,1,0);

/* Start node programs running */
node_main() ;

/* Get a value from the user and send it to the nodes. */
printf ("This CM-5 partition has %d nodes.\n",
CMNA partition_size);
printf (*Please type a positive integer: “);
scanf ("$d", &input);

high node = CMNA partition_size-1;
PM_send_to_NODE (high node, input);:
printf ("Sent value %d to node %d...\n", input, high node);

/* Wait for the nodes to finish juggling numbers */
PM_NODE_synch() ;

/* Turn combine reception back on */
CMNA_write_rec_abstain_flag(com_control_reg, 0);

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix G. Sample NI Programs

R N S R M R

/* Get check values */

result = PM _get_from NODE(O0) ;

printf ("Received value %d (should be %d) from node %d.\n",
result, (input+MAX BROADCAST MSG_WORDS-1), O0);

result = PM_get_from_ NODE (high_node) ;

printf ("Received value %d (should be %d) from node %d.\n",
result, (input*high node), high node);

segment_size = PM_get_ from NODE(0) ;

result = PM get_from NODE(OQ) ;

printf ("Received value %d (should be %d) from node %d.\nv",
result, (input+MAX BROADCAST MSG_WORDS-1)

* (segment_size-1), 0);

result = PM_get_ from NODE(0);

printf ("Network done for node 0 got %d (should be %d).\n",
result, high node) ;

result = PM _get_ from NODE({(0);

printf ("Scanning counted %d nodes (should be %d).\n",
result, CMNA partition_size);

/* Make sure all results are in */
PM_NODE_synch () ;

restore_abstain_flags() ;

}
Filename: COM_test.node.c

/* Combine examples program - node program */
#define NI_ROUTER_DONE_P NI_ROUTER DONE_COMPLETE_ P
#include <cm/cmna.h>
#include "utils.h"
int COM_send(combiner, pattern, message, length)
int *message, combiner, pattern, length;
{
int i, start, step;
/* For max scans, send high-order word(s) first */
if (combiner==MAX SCAN) { start=length-1; step=-1; }
else { start=0; step=1; }
CMNA com_send first(combiner, pattern, length,
message start]);
for (i=1; i<length; i++)
CMNA_com_send word(message | (start+=step)]);
return (SEND_OK (CMNA_com_status()));

NI Version 2.2 (CM-5E), June 1994 219
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

int COM_receive(combiner, message)
int *message;
{
int i, length, start, step;
while (!RECEIVE_OK (CMNA com_status())) {}
length=RECEIVE_LENGTH (CMNA_com_status()) ;
/* For max scans, send high-order word(s) first */
if (combiner==MAX SCAN) { start=length-1; step=-1; }
else { start=0; step=1; }
for (i=0; i<length; i++) {
message [start] = CMNA com_receive word({();
start+=step;
}
return (length) ;

int COM_scan(combiner, pattern, message, length, result)
int *message, *result, combiner, pattern, length;

{
int status=0, rec_length;
while (!status) status = .

COM_send (combiner, pattern, message, length);
rec_length = COM_receive(combiner, result);
return(rec_length);

}

void CMPE node_main () {

int value=0, i, length=MAX BROADCAST MSG_WORDS;

int send[MAX BROADCAST_MSG_WORDS],
result [MAX_BROADCAST MSG_WORDS],
seg_result [MAX BROADCAST MSG_WORDS] ;

int rec_length, segment_size, high node;

int one, node_count;

int message, network done_msg, next processor;

CMNA participate_in(NI_BC_SEND_ ENABLE) ;
save_and_set_abstain_flags(0,0,0,0);

/* Make sure segmenting is turned off to begin with */
CMNA_set_segment_start(0);

high node = CMNA partition_size - 1;

/* High node gets the value sent by the PM... */
NODE_get_ from PM(&value) ;

220 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix G. Sample NI Programs

/* Fill send array based on supplied value */

for(i=0; i<length; i++) {
send(i] = ((CMNA_self address==high node) ? value+i : 0);
resulti] =-999;
seg_result[i]=-999;

}

/* Do a max scan to distribute send values to all nodes */
rec_length = COM_scan(MAX SCAN, SCAN_BACKWARD, send,
length, send);

/* Scan overwrites high node -- put back original value */
if (CMNA_self address==high node)
for (i=0; i<length; i++) send[i] = value+i;

/* Do an add scan to make different values */
rec_length = COM_scan (ADD_SCAN, SCAN_FORWARD, send,
length, result);

/* Do a backwards segmented reduction */
segment_size=(CMNA partition_size<5 ?

CMNA partition_size : 5);
CMNA_set_segment_start (((CMNA_self address % segment_size)

== segment_size-1));
rec_length = COM_scan(MAX SCAN, SCAN_BACKWARD, result,
length, seg_result);

CMNA_set_segment_start (0);

/* Try network-done feature */
message=CMNA_self address;
network done msg=0;
next_processor = (CMNA self address+1)

% CMNA_partition_size;
CMNA_ldr_send first(0,1,next_processor) ;
CMNA_1ldr_send_word (message) ;

COM_send (ASSERT_ROUTER_DONE, SCAN_ROUTER_DONE,
&network done_msg, 1);

while (!DR_ROUTER_DONE (CMNA dr_status())) {};
while (!RECEIVE OK(CMNA ldr_status())) {};

message=CMNA_ldr_ receive_word() ;

NI Version 2.2 (CM-5E), June 1994 221
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

/* Use reduction to do a processor "roll-call" */

one=1;

node_count=-999;

rec_length = COM_scan(ADD_SCAN, SCAN_REDUCE,
&one, 1, &node_count);

/* Signal to PM that answers are ready */
PM_NODE_synch () ;

/* Send check values back to PM */
NODE_send_ to_PM(send[length-1]);
NODE_send_to_PM(result[0]);

NODE_send to_PM(segment_size) ;

NODE _send_to_PM(seg_result[length-1]);
NODE_send_to_PM(message) ;
NODE_send_to_PM(node_count) ;

/* Make sure all results have been received */
PM_NODE_synch () ;

restore_abstain_flags();

}

G.5 Global Network Test

222

This program presents a quick example of asynchronous and synchronous global
interface operations:

Filename: GLOBAL_test.c

/* Global network test program - node program */
#include <cm/cmna.h>
#include "“utils.h®

void main () {
int value;
printf ("\nGlobal test program, by William R. Swanson, \n");
printf ("Thinking Machines Corporation -- 2/6/92.\n\n");

/* Enable broadcast sending */
CMNA_participate_in (NI_BC_SEND_ENABLE) ;

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appemﬁx(?SbmpheN?fhwpunw

R — rss e o g e s e
S SIS RT AL

/* Abstain from broadcast reception and combine sending */
save_and_set_abstain flags(1,1,0,0);

printf ("This CM-5 partition has %d nodes.\n",
CMNA partition_size);

/* Start node programs running */
printf ("Starting node programs...\n")
node_main() ;

/* Test asynchronous global network */
CMNA_or_global_async_bit(0);

PM_NODE_synch () ;

value = CMNA_global async_read();
printf ("Received async bit %d (should be 0).\n", value);

restore_abstain flags();

}
Filename: GLOBAL_test.node.c

/* Global network test program - node program */
#include <cm/cmna.h>
#include '"utils.h"

void CMPE node _main () {
int value;
CMNA participate_in(NI_BC_SEND_ENABLE) ;
save_and set_abstain_flags(0,0,0,0);

CMNA or_global_async_bit(0);

/* Signal to PM that answer is ready */
PM_NODE_synch () ;

value = CMNA_global_async_read() ;

if (value)
printf ("Error: node got non-zeroc global value.');

restore_abstain_flags () ;

}

NI Version 2.2 (CM-5E), June 1994 223
Copyright © 1994 Thinking Machines Corporation

Appendix H
CMNA Header Files

To access the NI constants described in this document, you must #include the
header file cm/cmna . h:

#include <cm/cmna.h>

This file #includes many other header files that provide access to NI constants,
register macros, and accessor functions. These constants, macros, and functions
are collectively referred to as CMNA (CM Network Accessors), and can serve as
a basis for your own NI accessor code.

Note: The functions and macros in CMNA are designed to be very generic in
operation. As such, they are much less efficient than the special-purpose macros
and functions you’ll probably write on your own. Nevertheless, you can use the
operations defined in CMNA as a jumping-off point for your own code, to help
you understand what needs to be done to get your code to run correctly.

H.1 What is CMNA?

There are two main parts to CMNA:
®* The NI Interface — Constants and macros used to manipulate NI registers.

= CnC (“C-and-C”) — C functions that perform NI operations such as
reading and writing messages of arbitrary length.

The CMNA header files define the NI interface explicitly, in terms of register
accessor macros and constants. The header files also provide C prototypes for the
CnC functions, which are part of the CMOST operating system code.

NI Version 2.2 (CM-5E), June 1994 225
Copyright © 1994 Thinking Machines Corporation .

NI Programmer’s Handbook

H.2 CMNA Header Files

The following header files are part of CMNA:

/usr/include/
cm/cmna.h — Main CMNA header file.
cmsys/cmna.h — CMNA user header file.
cmsys/cmna_sup.h — CMNA supervisor header file.
cmsys/ni_interface.h — Main NI interface header file.
cmsys/ni_macros.h — NI macro definitions.
cmsys/nl_constants.h — NI register/flag constant definitions.
cmsys/ni_defines.h — Low-level NI constant definitions.

The following diagram shows the relationship among the header files that make
up CMNA:

cm/cmna.h

\FI supervisor area

cmna_sup.h

cmsys/cmna.h —

T~

NI user area

ni_interface.h
ni_constants.h ni_macros.h
ni_deﬁnes.h

Figure 21. Relationship between CMNA and NI header files.

226 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

H.2.1 The Main CMNA Header File: cm/cmna.h

This single file #includes all the header files that are needed to define CMNA.
However, it contains virtually no definitions of its own. It simply #includes
either of the two header files cmsys/cmna.h or cmsys/cmna_sup.h, accord-
ing to which NI register area (user or supervisor) the #includeing code needs.

Implementation Note: At present, cmsys/cmna_sup.h is only #included
for diagnostic code (that is, code that defines the symbol CMDIAG).

H.2.2 The User Header File: cmsys/cmna.h

This file #includes the NI constant and macro files described below, and also
defines a number of useful C mask constants and C macros that are used in
CMNA. However, the constants and macros defined here are only sufficient for
the needs of CMNA, and are not by any means a complete set. (See the descrip-
tion of the ni_constants.h, and ni_defines files below.)

H.2.3 The Supervisor Header File: cmsys/cmna_sup.h

This file modifies a few key constant definitions so that any absolute memory
address constants defined in the other header files will refer to the NI supervisor
area, rather than the NI user area. It then #includes cmsys/cmna.h, so it has
much the same effect as that header file.

Note: The cmsys/cmna_sup . h file is only of use to programmers with legal
access to the NI supervisor area. Including this file does not in itself grant access
to the NI’s supervisor area; it simply redefines many CMNA constants to have
address values that are only legal for supervisor code.

NI Version 2.2 (CM-5E), June 1994 227
Copyright © 1994 Thinking Machines Corporation

228

NI Programmer s Handbook

E R J O o T v e e

H.2.4 The NI Interface Header File: ni_interface.h

This file defines the NI accessor interface. It #includes the file
ni_constants.h, and defines a number of basic NI register macros that are
used by CMNA. It then #includes ni_macros.h to define the remainder of the
CMNA macros.

This file also defines a number of NI register constants that are suitable for use
in C code. (That is, constants that have been cast as (unsigned *) values. See
the description of ni_constants.h and ni_defines.h below.)

H.2.5 The NI Macros Header File: ni_macros.h

This file defines a number of C macros that perform sterotypical NI operations
such as sending and receiving messages via a specific network interface.

H.2.6 The NI Constants Header Files:

ni_constants.h, ni_defines.h

These files define a number of register constants and masks that are used by
CMNA. In particular, ni_constants.c includes definitions of constants speci-
fying the absolute memory address for each of the NI's registers. The file
ni_defines.h defines hundreds of constants that give the size and offset of the
register fields of the NI. These two sets of constants provide a complete interface
for NI operations written in assembly code. Appendix D provides a complete list
of these constants, grouped by register and category.

Note For C Programmers: The register address constants are unsigned pointer
values. To use them in C code, you must first cast them to type (unsigned *).
For example:

unsigned *ni_dr_status = ((unsigned *) NI_DR_STATUS) ;

If you don’t perform this casting step, the C compiler by default treats the
constants as signed integers, possibly causing your code to fail. Many of these
constants are recast in just this fashion in the header file ni_interface.c, so
you may be able to just use those constants without having to do any recasting
yourself.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix H. CMNA Header Files

H.3 CMNA Functions

Below are listed the basic functions provided by the CMNA library aside from
those that directly access the NI chip (which are described elsewhere in this
manual).

Important: The functions defined here are designed for usability, not perfor-
mance. In actual production applications, you will want to write your own
routines to obtain: the highest communications performance possible. Use the
routines described below as examples of how you might write an NI accessor
function, not as hard and fast examples of how such a function should be written.

H.3.1 CMNA Version

CMNA_version ()
Returns: char *

H.3.2 Activity Functions

CMNA_abstain_from(activity)

CMNA participate_in(activity)
CMNA_sup_ abstailn_ from(activity)
CMNA_sup participate_in(activity)
int activity;

Return: int

/* valid activity to participate in or abstain from
participating in: */

#define NI_REDUCE RECEIVE (1)
#define NI_BC_RECEIVE (2)
#define NI_COMBINE (4)
#define NI_SYNC_GLOBAL (8)
#define NI_SBC RECEIVE (16)
#define NI_BC_SEND_ENABLE (32)
NI Version 2.2 (CM-5E), June 1994 229

Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

H.3.3 DR Interface Functions

CMNA_dr_msg_to_receive ()
Returns: int

CMNA_ dr_send_fifo_amount (dest_proc, source_base,
word_length, tag)

unsigned int dest_proc;

void *source_base;

int word_length;

unsigned int tag;

Returns: int

CMNA_dr_send_ fifo_amount_physical (dest_proc, source_base,
word_length, tag)

void *source_base;

int word_length;

unsigned dest_proc;

unsigned tag;

Returns: int

CMNA_dr_send msg(dest_proc,source_base,word length, tag)
unsigned int dest_proc;

void *source_base;

int word_length;

unsigned int tag;

CMNA_dr_ send msg physical (dest_proc, source_base,
word_length, tag)

void *source_base;

int word_length;

unsigned dest_proc;

unsigned tag;

CMNA_dr_status ()
Returns: unsigned

H.3.4 LDR Interface Functions

CMNA_1ldr_ receive (base)
void *base;
Returns: int

230 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix H. CMNA Header Files

CMNA_1dr_receive_msg(base,word_length)
void *base;
int word_length;

CMNA_ldr_send fifo_amount (dest_proc, source_base,
word_length, tag)

unsigned int dest_proc;

void *source_base;

int word_length;

unsigned int tag;

Returns: int

CMNA_1ldr_ send fifo_amount_physical (dest_proc, source_ base,
word length, tag)

void *source_base;

int word_length;

unsigned dest_proc;

unsigned tag;

Returns: int

CMNA_ldr_send msg(dest_proc, source_base,word_length, tag)
unsigned int dest_proc;

void *source base;

int word length;

unsigned int tag;

CMNA_1ldr_ send msg_ physical (dest_proc, source_base,
word_length, tag)

void *source_base;

int word_ length;

unsigned dest_proc;

unsigned tag;

H.3.5 RDR Interface Functions

CMNA_rdr_ receilve (base)
void *base;
Returns: int

CMNA._rdr_receive_msg(base,word_length)
void *base;
int word_length;

NI Version 2.2 (CM-5E), June 1994 ‘ 231
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

CMN2A_rdr_send fifo_amount (dest_proc, source_base,
word_length, tag)

unsigned int dest_proc;

void *source_base;

int word_length;

unsigned int tag;

Returns: int

CMNA_rdr_send fifo_ amount physical(dest_proc,source_base,
word_length, tag)

void *source_base;

int word_length;

unsigned dest_proc;

unsigned tag;

Returns: int

CMNA_rdr_send msg(dest_proc, source_base,word_length, tag)
unsigned int dest_proc;

void *source_base;

int word_length;

unsigned int tag;

CMNA_xrdr_send msg_physical (dest_proc, source_base,
word_length, tag)

void *source_base;

int word_length;

unsigned dest_proc;

unsigned tag;

H.3.6 BC interface Functions

CMNA_bc_read double ()
Returns: double

CMNA_bc_read float()
Returns: float

CMNA_bc_read_ int ()
Returns: int

CMNA_bc_read uint ()
Returns: unsigned

232 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix H. CMNA Header Files

CMNA bc_receilve (msg, length)
void *msg;
unsigned int length;

CMNA_bc_receive participation()
Returns: int

CMNA_bc_send_ and receive_msg(msg,result, length)
void *msg;

void *result;

int length;

CMNA bc_send fifo_amount (msg, length)
void *msg;
int length;

CMNA_bc_send msg (msg, length)
void *msg; '

int length;

CMNA_bc_walt for_ receive_ok()
Returns: int

CMNA_bc_write_double(data)
double data;

CMNA_bc_write_float(data)
float data;

CMNA_bc_write int(data)
int data;

CMNA_bc_wrilte_uilnt (data)
unsigned int data;

H.3.7 SBC Interface Functions

CMNA_sbc_double (data)
double data;

CMNA_sbc_float(data)
double data;

NI Version 2.2 (CM-5E), June 1994 233
Copyright © 1994 Thinking Machines Corporation

. S
b RECELS O o)

NI Programmer s Handbook

K

CMNA_sbc_int (data)
int data;

CMNA_sbec_recelve (msg, length)
void *msg;
unsigned length;

CMN2_sbc_send (msg, length)
void *msg;
int length;

CMNA_sbc_send msg(msg, length)
void *msg;

int length;

Returns: int

CMNA_sbc_uint (data)
unsigned int data;

CMNA sbc_walt for_ recelve_ok ()
Returns: int

CMNA_sup_ dr_send packet_to_scalar
(source_base,word length, tag)

void *source_base;

int word_length;

unsigned tag;

Returns: int

CMN2A_sup_ ldr send packet_ to_scalar
(source_base,word_length, tag)

void *source_base;

int word_length;

unsigned tag;

Returns: int

CMNA_ sup_ rdr send packet to_scalar
(source_base,word_length, tag)

void *source_base;

int word_length;

unsigned tag;

Returns: int

234 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix H. CMNA Header Files

H.3.8 COM Interface Functions

CMNA_com(combiner,pattern,data, length,result)
int combiner;

int pattern;

void *data;

int length;

void *result;

CMNA_com_participation ()
Returns: int

CMNA com_recelve (result)
unsigned int *result;

CMNA_com_send (combiner,pattern,data,word_length)
int combiner;

int pattern;

void *data;

int word_length;

CMNA_reduce_rec _participation ()
Returns: int

H.3.9 Global Interface Functions

CMNA_global_async (value)
unsigned int wvalue;
Returns: int

CMNA_global_sync(value)
unsigned int value;
Returns: int

CMNA_global_sync_read()
Returns: int

CMNA_global_sync_read_when_ ready ()
Returns: int

CMNA_global_sync_participation()
Returns: int

NI Version 2.2 (CM-5E), June 1994 235
Copyright © 1994 Thinking Machines Corporation

Appendix I
NI Chip Version 2.2 Changes

1.1

This appeﬁdix presents a summary of the additions and changes made to the NI
chip as of the most recent chip version (2.2), and indicates where they are
described in the main body of this manual.

Long Data Network Messages

The Data Network now has the capability to send long messages. These mes-
sages, sent by a special register interface, have a length in data bytes that is much
longer than the limit imposed on Data Network messages in Version 1.0. (Cur-
rently, the long message length limit is 18 words of data.)

Several new Data Network registers are introduced to support this feature:

ni_dr/ldr/rxdr_send first_long
ni_dr/ldr/xdr_status_long
nl_longest_dr_message

The long message register interface is described in detail in Chapter 3. Section
3.4.2 in particular describes how to send long messages.

NI Version 2.2 (CM-5E), June 1994 237
Copyright © 1994 Thinking Machines Corporation

238

1.2

1.3

1.4

NI Programmer s Handbook

New Data Network Status Interface

Registers have been added to allow more convenient access to the status informa-
tion of the Data Network’s message FIFOs, and to allow “popping” of messages
from the Data Network receive FIFOs at the same time:

nil_dr/ldr/rdr_status_all
ni_ldr/rdr_status_pop

These registers are described in Section 3.5.

New Data Network Tag Interrupt Interface

The mechanism for detecting and signaling interrupts based on the tag values of
Data Network messages has been changed to allow more precise control over the
selection of user and supervisor tag values. The new mechanism is described in
detail in Section 3.5.4.

Non-Compatible Change to Broadcast Interface

The ni_rec_length_left field in the ni_bec status and ni_sbc_status
registers has been expanded from 4 bits to 7 bits in length to handle the change
in the maximum broadcast message length. This means that software written for
earlier versions of the NI chip may not execute properly; if only the first four bits
of this field are extracted, the software cannot determine whether the value thus
obtained is correct.

The basic fix for this problem is to have your code extract 7 bits rather than 4
for this field. If your code uses the predefined NI constants, you should substitute
the new length constant NI_BC_REC_LENGTH_LEFT_ LONG_L for all references to
the rec_length_left ficld.

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Appendix I. NI Chip Version 2.2 Changes

.5 New Interrupts

A number of new interrupts have been added as of Version 2.1:

rdone complete (Orange) — Completion of network-done operation
message too long (Yellow) — Data Network message length error
dperr (Green) — Error signaled by CM-5 vector units
sfifo empty (Green) — Data Network send fifo empty

ldr rec tag (Green) — LDR supervisor message tag interrupt
rdr rec tag , (Green) — RDR supervisor message tag interrupt

1dr user rec tag (Green) — LDR supervisor message tag interrupt
rdr user rec tag (Green) — RDR supervisor message tag interrupt

These interrupts are described in Chapter 5, and in Appendix B.

1.6 New Data Network Interrupt Enable Flags

The following flags have been added to the Data Network private registers to
allow enabling and disabling of the corresponding interrupts:

nl_sfifo_goes_empty_ile
nl_rdone_complete_ie

These flags are described in Section 3.8.

.7 New Bus Error Conditions

The following bus error conditions now exist, in connection with the long mes-
sage feature of the Data Network:

= writing a message to any of the Data Network’s send_first registers
with a length value that is greater than either five words or the value of the
register ni_longest_dr_message, whichever is less

® writing a message to any of the Data Network’s send_£irst_long reg-
isters with a length value that is greater than the value of the register
nl_longest_dr_message

NI Version 2.2 (CM-5E), June 1994 239
Copyright © 1994 Thinking Machines Corporation

NI Programmer s Handbook

et IR T A b Sl LD Lok BNV T gy e o TR T R M e Nt MR AN e v
Rk L o L R R R RO M AP SR EPEOAN

1t I A e g 0 § :
o e e R LRI T RAGRRENGS LR e B L R o TN s e TN EE T e L D

.8 Disabling Bus Errors

The flag ni_disable_bus_error in the hodgepodge register, when set,
causes the NI to signal bus errors as a yellow interrupt, bad_memory_access.
(See Section 5.1.1.)

1.9 Manually Triggering Interrupts

Interrupts can be triggered artificially by writing to the new registers
ni_interrupt_set and ni_interrupt_set_green (See Section 5.3).

.10 Gilobal Interface Context-Switching

A supervisor method for context-switching and then restoring the state of the
synchronous global interface is described in Section 4.3.2.

.11 New Hodgepodge Register Fields

The following fields have been added to the “hodgepodge” register to support
various new NI features:

ni_disable_bus_error (See Section 5.1.1.)
ni_ldr_rec_tag_ie (See Section 3.5.4.)
ni_rdr_rec_tag_ile »

ni_ldr user_rec_tag_ie ”
ni_rdr_user_rec_tag_ie

ni_msg_ too_long ie (See Section 3.2.2.)

”

240 NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Index

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation 241

Programming Tools Index

This index lists the register names and fields, programming constants, functions, and macros referred
to within this document. Bold page numbers indicate a defining reference or important description.

A

ADD_SCAN
combine combiner constant, 75, 152
combiner constant, 77, 186
ASSERT ROUTER_DONE
combine combiner constant, 75, 152
combiner constant, 79, 186
AUXILIARY_START B send-first field offset
constant, 21, 149

bad memory access
bus error, 97,178
Yellow interrupt, 96, 98, 100, 170
bad relative address, Yellow interrupt,
41, 96, 100, 172
bc interrupt green, Green interrupt,
97,101, 104, 173
be interrupt orange, Orange interrupt,
96, 100, 104, 169
bc interrupt red, Red interrupt, 96,
100, 104, 168
bc interrupt yellow, Yellow interrupt,
96, 100, 104, 170
bc or com collision, Yellow interrupt,
. 73, 96, 100, 104, 171
bec rec ok, Green interrupt, 30, 174
be_control_reg, constant, 69, 185

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

C

CMNA_bc_receive_type (), macro, 68, 184
CMNA_bc_send_£irst (), macro, 67, 184
CMNA_bc_send_first_double (), macro,
67,184
CMNA_bc_send_type (), macro, 67, 184
CMNA_bc_status (), macro, 68, 184
CMNA_com_receive_type (), macro, 76,
186
CMNA_com_send first (), macro, 74, 186
CMNA_com_send f£irst double (), macro,
74, 186
CMNA_com_send_type (), macro, 74, 186
CMNA_com_status (), macro, 76, 187
CMNA_dinterface_receive_type (), macro,
44,182
CMNA_dinterface_send_f£irst (), macro,
42,182
CMNA_dinterface_send_£first_double,
macro, 42, 182
CMNA_dinterface_send_£irst_double_lon
g, macro, 43
CMNA_dinterface_send_£irst_long (),
macro, 43
CMNA_dinterface_send_type, macro, 42, 182
CMNA_dinterface_status (), macro, 46, 183
CMNA_dr_send_status (), macro, 46, 183

243

CMNA_global_async_read(), macro, 92,
189

CMNA_global_sync_complete (), macro,
90, 188

CMNA_global_sync_rec (), macro, 90, 188

CMNA_interface_receive_type, macro, 23

CMNA_interface_send_g£irst (), macro, 22

CMNA_interface_send_f£irst_double,
macro, 22

CMNA_interface_send packet_to
_scalar (), system function, 122

CMNA_interface_send_type(), macro, 23

CMNA_interface_status (), macro, 26

CMNA_ldr_status (), macro, 46, 183 |

CMNA_or_global_async_bit (), macro,
92, 189

CMNA_or_global_sync_bit (), macro, 90,
188

CMNA_participate_in()

system call, 141
system function, 70, 124

CMNA_partition_size, variable, 40, 181

CMNA_rdr_status (), macro, 46, 183

CMNA_read abstain_flag(), macro, 28,
181

CMN2_segment_start (), macro, 78, 187

CMNA_self_address, variable, 40, 181

CMNA_set_ segment start (), macro, 78,
187

CMNA_write_abstain flag(), macro, 28,
181

cMOS_signal (), system call, 51, 199

cmu error, Red interrupt, 96, 99, 167

cn checksum error, Red interrupt, 96,
99, 166

cn hard error, Red interrupt, 96, 99, 167

com abstain changed, Yellow interrupt,
82, 96, 100, 170

com rec empty, Green interrupt, 83, 97,
101, 175

com rec ok, Green interrupt, 30, 97, 101,
174

com_control_reg, constant, 82, 188

NI Programmer’s Handbook

COMBINE_FIFO, interface number constant,
22, 150
COMBINE_OVERFLOW (), macro, 79, 187

D

DATA_ROUTER_FIFO, interface number
constant, 22, 150

dp error, Green interrupt, 176

dperr, Green interrupt, 97, 101

dr checksum error, Red interrupt, 96,
99, 166

dr count negative, Yellow interrupt, 52,
96, 100, 171

dr rec all fall down, Green interrupt,
55,97, 101, 174

dr rec ok, Green interrupt, 30, 97, 101,
174

dr rec tag, Green interrupt, 49, 97, 101,
174

DR_RECEIVE_STATE (), macro, 53, 183

DR_ROUTER_DONE () , macro, 54, 80, 183

DR_SEND_STATE (), macro, 53, 183

G

global rec, Green interrupt, 93, 97, 101,
175

I
internal fault, Red interrupt, 96, 99,

166

L

ldr rec ok, Green interrupt, 30, 97, 101,
174

ldr rec tag, Green interrupt, 97

lar tag, Green interrupt, 177

ldr user rec ok, Green interrupt, 101
ldr user rec tag, Green interrupt, 97

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Programming Tools Index

ldr user tag, Green interrupt, 177
LEFT_DR_FIFo, interface number constant,

22,150

M

MAX_ BROADCAST MSG_WORDS, constant, 66,
67, 149, 185

MAX_ COMBINE_MSG_WORDS, constant, 73,
149, 187

MAX_ROUTER_MSG_WORDS, constant, 41, 43,
149, 184

MAX_SBC_MSG_WORDS, constant, 66, 67, 149
MAX_SCAN
combine combiner constant, 75, 152
combiner constant, 77, 186
me error, Red interrupt, 96, 99, 167
message too long, Yellow interrupt, 96,

100,172

N

ni_all_ fall down_enable, flag, 54, 55,
154

ni_all_f£all down_ie, flag, 54, 55, 154
ni_async_global, register, 89, 92, 146,
160, 189
ni_async_sup_global, register, 89, 93,
146, 160
ni_bad_address, register, 114, 146, 164
ni_bad_address_low, field, 114, 164
ni_bad_address_type, ficld, 114, 164
NI_BASE, constant, 12, 21, 149
ni_bc_..., register. See ni_binterface_...
ni_bc_control, register, 148, 158, 185
ni_be_private, register, 148, 158
ni_bec_recv, register, 148, 184
ni_be_send, register, 148, 184
NI_BC_SEND_AUXTILIARY LENGTH_B ficld
offset, 67, 151
ni_bc_send_first, register, 148, 184
ni_bc_status, register, 148, 157, 185
ni_binterface_control, register, 64, 69
ni_binterface_private, register, 64, 69
ni_pinterface_recv, register, 64, 67

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

ni_binterface_send, register, 64, 67
ni_binterface_send_ first, register, 64, 67
ni_binterface_status, register, 64, 68
ni_cause_bad_memory_access, flag, 161
ni_cause_bad_relative_address, flag,
161
ni_cause_bc_interrupt_green, flag,
161
ni_cause_bc_interrupt_orange, ﬂag,
161
ni_cause_bc_interrupt_red, flag, 161
ni_cause_bc_interrupt_yellow, flag,
161
ni_cause_bc_or_com collision, flag,
161
ni_cause_bc_rec_ok, flag, 161
ni_cause_cmu_error, flag, 161
ni_cause_cn_checksum_error, flag, 161
ni_cause_cn_hard error, flag, 161
ni_cause_com_abstain_changed, flag,
161
ni_cause_com_rec_empty, flag, 161
ni_cause_com_rec_ok, flag, 161
ni_cause_dperr, flag, 161
ni_cause_dr_checksum_error, flag, 161
ni_cause_dr_count_negative, flag, 161
ni_cause_dr_rec_all_fall_down, flag,
161
ni_cause_dr_rec_ok, flag, 161
ni_cause_dr_rec_tag, flag, 161
ni_cause_global_rec, flag, 161
ni_cause_internal_gfault, flag, 161
ni_cause_ldr_rec_ok, flag, 161
ni_cause_ldr_rec_tag, flag, 161
ni_cause_ldr_user_rec_tag, flag, 161
ni_cause_mc_error, flag, 161
ni_cause_message_too_long, flag, 161
ni_cause_rdone_complete, flag, 161
ni_cause_rdr_rec_ok, flag, 161
ni_cause_rdr_rec_tag, flag, 161
ni_cause_rdr_user_rec_tag, flag, 161
ni_cause_sbc_rec_ok, flag, 161
ni_cause_scan_overflow, flag, 161
ni_cause_sfifo_empty, flag, 161

245

NI Programmer’s Handbook

ni_cause_supervisor_global_rec, flag,
161
ni_cause_sync_global_rec, flag, 161
ni_cause_timer_interrupt, flag, 161
ni_chunk_size, register, 110, 146
ni_chunk_table_address, register, 112,
146
ni_chunk_ table. data, register, 112, 146
ni_clear_bad_memory_access, flag, 162
ni_clear_bad_relative_address, flag,
162
ni_clear_bc_interrupt green, flag,
162
ni_clear_bc_interrupt_orange, flag,
162
ni_clear_bc_interrupt_red, flag, 162
ni_clear_bc_interrupt_yellow, flag,
162
ni_clear_bc_or_com_collision, flag,
162
ni_clear_bc_rec_ok, flag, 162
ni_clear_cmu_error, flag, 162
ni_clear_cn_checksum error, flag, 162
ni_clear_cn_hard_error, flag, 162
ni_clear_com_abstain_changed, flag,
162
ni_clear_com_rec_empty, flag, 162
ni_clear_com_rec_ok, flag, 162
ni_clear_dperzr, flag, 162
ni_clear_dr_checksum_error, flag, 162
ni_clear_dr_count_negative, flag, 162
ni_clear_dr_rec_all_fall_down, flag,
162
ni_clear_dr_rec_ok, flag, 162
ni_clear_dr_rec_tag, flag, 162
ni_clear_global_rec, flag, 162
ni_clear_internal_gfault, flag, 162
ni_clear_ldr_rec_ok, flag, 162
ni_clear_ldr_rec_tag, flag, 162
ni_clear_ldr_user_rec_tag, flag, 162
ni_clear_mc_error, flag, 162
ni_clear_message_too_long, flag, 162
ni_clear_rdone_ complete, flag, 162
ni_clear_rdr_rec_ok, flag, 162
ni_clear_rdr_rec_tag, flag, 162

ni_clear_rdr_user_rec_tag, flag, 162
ni_clear_sbc_rec_ok, flag, 162
ni_clear_ scan_overflow, flag, 162
ni_clear_sfifo_empty, flag, 162
ni_clear_supervisor_global_rec, flag,
162
ni_clear_sync_global_rec, flag, 162
ni_clear_timer_interrupt, flag, 162
ni_cn_stop_send, flag, 107, 116, 163
ni_rec_abstain, flag
of a network, 27, 28
of broadcast interface, 69
of combine interface, 81
ni_com_control, register, 72, 81, 148, 160,
188
ni_com flush_send, register, 113, 146
ni_com_private, register, 72, 83, 148, 159
ni_com_rec_empty_l1e, flag, 83
in ni_com_private register, 159
ni_com_recv, register, 72, 76, 148, 186
ni_com_scan_overflow, flag, 76, 78
inni_com_status register, 159
of combine interface, 187
ni_com_scan_overflow_ie, flag 79, 83
in ni_com_private register, 159
ni_com_send, register, 72, 73, 83, 148, 186
NI_COM_SEND_AUXILIARY_ COMBINER_B
field offset, 74, 151
NI_COM_SEND AUXILIARY_ LENGTH_B field
offset, 74, 151
NI_COM_SEND_AUXILIARY_PATTERN_E,
field offset, 74, 151
ni_com_send combiner, field, 83, 84
in ni_com_private register, 159
ni_com_send f£irst, register, 72, 73, 148,
186
ni_com_send_length, field, 83, 84
in ni_com_private register, 159
ni_com_send pattern, field, 83, 84
in ni_com_private register, 159
ni_com_send start, flag, 83, 84
in ni_com_private register, 159
ni_com_status, register, 72, 76, 78, 148,
159, 187
ni_configuration, register, 115, 146

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

e o
ATNGEERE SR

Programmmg Tools Index

ni_configuration_complete, flag, 107,
115, 163

ni_count_mask, register, 38, 51, 80, 146

ni_dinterface_private, register, 36, 54

ni_dinterface_rec_tag, field, 183

ni_dinterface_recv, register, 36, 44, 182

ni_dinterface_send, register, 36, 42, 182

ni_dinterface_send_g£irst, register, 36, 42,

182
ni_dinterface_send_first_long, register,
36,43
ni_dinterface_status, register, 36, 45, 80
ni_dinterface_status (), register, 183
ni_dinterface_status_all, register, 36, 46
ni_dinterface_status_long, register, 36
ni_dinterface_status_pop, register, 36, 47
ni_disable_ bus_error, flag, 98, 107, 163
ni_dr_.... See ni_dinterface_...
ni_dr_message_count, register, 38, 51,
54, 80, 146
ni_dr_private, register, 147, 154
ni_dr_rec_all_fall_down, flag, 54, 55
in ni_dr_private register, 154
inni_ldr_private register, 156
inni_rdr_private register, 157
ni_dr_rec_state, field, 45, 53, 153, 154
ni_dr_rec_tag, field, 45
inni_dr_status register, 153
inni_ldr_status register, 155
inni_ldr_status_long register, 155
in ni_rdr_status register, 156
in ni_xrdr_status_long register, 156
inni_dr_status_long register, 154
ni_dr_send, register, 147

NI_DR_SEND_AUXILIARY_ ADDRESS_MODE_

p, offset constant, 42, 150
NI_DR_SEND_AUXILIARY_ LENGTH_ B offset
constant, 42, 150
NI_DR_SEND_AUXILIARY_ TAG_B offset
constant, 42, 150
ni_dr_send_first, register, 147
ni_dr_send first_long, register, 147
ni_dr_send_ok, flag, in
ni_dr_status_all/pop register,
46, 154

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

ni_dr_send space, field, in
ni_dr_status_all/pop register,
46, 154
ni_dr send_state, field, 45, 53, 153, 154
ni_dr_status, register, 147, 153
ni_dr_ status_all, register, 147
ni_dr_status_all/pop, register, 154
ni_dr_status_long, register, 147, 154
ni_flush_complete, flag, 107, 113, 163
ni_global_rec, flag, 92, 160, 189
ni_global_rec_ie, flag, 92, 93, 107, 163
ni_global_send, flag, 92, 160, 189
ni_hodgepodge, register, 38, 49, 98, 107,
146, 163
and asynchronous global interface, 89
and supervisor asynch global interface,
89
and synchronous global interface, 89
asynch global rec interrupt enable flag,
92,93
broadcast interrupt flags, 104
configuration flag, 115
flush complete flag, 113
NI timer interrupt enable flag, 113
send stop flag, 116
supervisor rec interrupt enable flag, 93
synch global rec interrupt enable flag, 89,
91
ni_interface_control, register, 17, 25, 27
ni_interface_private, register, 17, 30
ni_interface_purpose, register naming
format, 10
ni_interface_recv, register, 17, 23
ni_interface_send, register, 17, 19
ni_interface_send_first, register, 17, 19,
149
ni_interface_send_first_long, register,
43,152
ni_interface_status, register, 17
ni_interrupt_cause, register, 102, 146,
161
ni_interrupt_cause_green, register,
102, 146, 161
ni_interrupt_clear, register, 102, 146,
162

247

ni_interrupt_clear_green, register,
102, 146, 162
ni_interrupt_level, register, 103, 146,
163
ni_interrupt_level_green, field, 103,
163
ni_interrupt_level_orange, field, 103,
163
ni_interrupt_level_redq, field, 103, 163
ni_interrupt_level_yellow, field, 103,
163
ni_interrupt_now, register, 113, 146
ni_interrupt_rec_enable, flag, 104,
107, 163
ni_interrupt_send, register, 104, 146
ni_interrupt_send ok, flag, 104, 107,
163
ni_interrupt_set, register, 146, 162
ni_interrupt_set_green, register, 146,
162
ni_ldr_.... See ni_dinterface._...
ni_ldr_private, register, 147, 156
ni_ldr_rec_all_fall_down, flag
inni_dr_status_all/pop register, 46,
154
inni_ldr_status_all/pop register,
155
inni_rdr_status_all/pop register,
157
ni_ldr_rec_length, field
inni_dr_status_all/pop register, 154
inni_ldr_status_all/pop register,
155
in ni_rdr_status_all/pop register,
157
ni_1dr_rec_length_long, field, in
ni_dr_status_all/pop register,
46
ni_1dr_rec_ok, flag
inni_dr_status_all/pop register, 46,
154
inni_ldr_status_all/pop register,
155
inni_rdr_status_all/pop register,
157

248

NI Programmer’s Handbook

ni_ldr_rec_tag, field
inni_dr_status_all/pop register, 46,
154
inni_1dr_status_all/pop register,
155
inni_rdr_status_all/pop register,
157
ni_1dr_rec_tag_ie, flag, 49, 107, 163
ni_ldr_recv, register, 147
ni_ldr_send, register, 147
ni_1dr_send first, register, 147
ni_1dr_send first_long, register, 147
ni_ldr_send ok, flag, in
ni_ldr_status_all/pop register,
155
ni_ldr_send_space, field, in
ni_ldr_status_all/pop register,
155
ni_ldr_status, register, 147, 155
ni_ldr_status_all, register, 147
ni_ldr_status_all/pop, register, 155
ni_ldr_status_long, register, 147, 155
ni_ldr_status_pop, register, 147
ni_ldr_user_rec_tag_ie, flag, 49, 107,
163
ni_lock, flag
in ni_bc_private register, 158
inni_com private register, 159
in ni_dr_private register, 154
inni_ldr_private register, 156
in ni_rdr_private register, 157
in ni_sbc_private register, 158
of a network, 30, 31
of broadcast interface, 69
of combine interface, 83
of Data Networks, 54
ni_longest_dr_message, register, 38, 39,
146
ni_message_too_long_ie, flag, 38, 107
ni_msg_too_long_ie, flag, 163
ni_partition_base, register, 108, 110,
146
ni_partition_size, register, 108, 109,
146
ni_physical_self, register, 108, 146

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Programming Tools Index

ni_xdone_complete_ie, flag, 54, 57, 154
ni_xdr_.... See ni_dinterface_...
ni_rdr_private, register, 147, 157
ni_rdr_rec_all_ fall_down, flag
inni_dr_status_all/pop register, 46,
154
inni_ldr_status_all/pop register,
155 .
inni_rdr_status_all/pop register,
157
ni_rdr_rec_length, field
inni_dr_status_all/pop register, 154
inni_ldr_status_all/pop register,
155
inni_rdr_status_all/pop register,
157
ni_rdr_rec_length_long, field, in
ni_dr_status_all/pop register,
46
ni_rdr_rec_ok, flag
inni_dr_status_all/pop register, 46,
154
inni_ldr_status_all/pop register,
155
inni_rdr_status_all/pop register,
157
ni_xdr_rec_tag, field
inni_dr_status_all/pop register, 46,
154
inni_ldr_status_all/pop register,
155
inni_rdr_status_all/pop register,
157
ni_rdr_rec_tag_le, flag, 49, 107, 163
ni_rdr_recv, register, 147
ni_rdr_send, register, 147
ni_rdr_send_£irst, register, 147
ni_rdr_send_first_long, register, 147
ni_rdr_send_ok, flag, in
ni_rdr_status_all/pop register,
157
ni_rdr_send_space, field, in
ni_rdr_status_all/pop register,
157
ni_rdr_status, register, 147, 156

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

ni_rdr_status_all, register, 147
ni_xrdr_status_all/pop, register, 157
ni_rdr_status_long, register, 147, 156
ni_rdr_status_pop, register, 147
ni_rdr_user_rec_tag_ie, flag, 49, 107,
163
nl_rec_abstain, flag
in ni_bec_control register, 158
inni_com_control register, 160
in ni_sbe_control register, 159
of broadcast interface, 185
of combine interface, 188
ni_rec_full, flag
in ni_bc_private register, 158
in ni_com_private register, 159
inni_dr private register, 154
in ni_1dr_private register, 156
in ni_rdr_private register, 157
in ni_sbec_private register, 158
of a network, 30, 32
of broadcast interface, 69
of combine interface, 83
of Data Networks, 54
ni_rec_interrupt_mask, register, 38, 49,
146
ni_rec_length, field
in ni_com_status register, 159
in ni_dr_status register, 153
in ni_dr_status_longregister, 154
in ni_ldr_status register, 155
inni_ldr_status_long register, 155
in ni_rdr_status register, 156
in ni_xrdr_status_long register, 156
of a network, 25, 26
of a network interface, 181
of combine interface, 76, 187
of Data Networks, 45, 183
ni_rec_length_ left
field
in ni_bc_status register, 157, 238
inni_com_status register, 159
. in ni_dr_status register, 153
inni_dr_status_long register, 154
inni_ldr_status register, 155
inni_ldr_status_long register, 155

249

e

inni_rdr_status register, 156
inni_rdr_status_long register, 156
in ni_sbc_status register, 158
in ni_sbc_status register, 238
of a network, 25, 26
of broadcast interface, 68, 68, 185
of combine interface, 76, 187
of Data Networks, 45, 183
flag, of a network interface, 181
ni_rec_ok, flag
in ni_bc_status register, 157
inni_com_status register, 159
in ni_dr_status register, 153
inni_dr_status_long register, 154
inni_ldr_status register, 155
inni_ldr_status_long register, 155
in ni_rdr_status register, 156
inni_rdr_status_long register, 156
inni_sbc_status register, 158
of a network, 25, 26
of a network interface, 181
of broadcast interface, 68, 185
of combine interface, 76, 187
of Data Networks, 45, 183
ni_rec_ok_ie, flag
inni_be_private register, 158
inni_dr_private register, 154
inni_ldr_ private register, 156
inni_rdr_ private register, 157
in ni_sbe_private register, 158
in ni_com_private register, 159
of a network, 30, 30
of broadcast interface, 69
of combine interface, 83
of Data Networks, 54
ni_rec_state, field, of Data Networks,
183
ni_rec_stop, flag
inni_bc_private register, 158
in ni_com_private register, 159
inni_dr_private register, 154
in ni_sbc_private register, 158
of a network, 30, 31
of combine interface, 83
of Data Networks, 54

250

NI Programmer’s Handbook

ni_rec_tag, field, of Data Networks, 183
ni_reduce_rec_abstain, flag, 81, 160,
188
of combine interface, 27, 28
ni_router_done_complete, flag, 45, 46,
54,76, 80, 153, 154
inni_ldr_status_all/pop register,
155
inni_rdr_status_all/pop register,
157
of Data Networks, 183
ni_sbc_..., register. See ni_binterface_...
ni_sbe_control, register, 148, 159
ni_sbc_private, register, 148, 158
ni_sbc_recv, register, 148
ni_sbc_send, register, 148
ni_sbc_send first, register, 148
ni_sbe_status, register, 148, 158
ni_scan_start, register, 72, 78, 146, 187
ni_send empty, flag
in ni_bc_status register, 157
in ni_com_status register, 159
in ni_sbec_status register, 158
of a network, 25
of a network interface, 181
of broadcast interface, 68, 185
of combine interface, 76, 187
ni_send enable, flag
inni_bec_private register, 158
inni_sbc_private register, 158
of broadcast interface, 69, 69
ni_send ok, flag
for Data Networks, 45
in ni_bec_status register, 157
inni_com_status register, 159
inni_dr_ status register, 153
inni_dr_status_long register, 154
inni_ldr_status register, 155
in ni_ldr_status_long register, 155
in ni_rdr_status register, 156
inni_rdr_status_long register, 156
in ni_sbc_status register, 158
of a network, 25, 25
of a network interface, 181
of broadcast interface, 68, 185

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Programming Tools Index

L B e B B Rl

of combine interface, 76, 187
of Data Networks, 183
ni_send_space, field
inni_bc_status register, 157
inni_com_status register, 159
in ni_dr_status register, 153
inni_dr_status_long register, 154
inni_ldr_status register, 155
inni_ldr_status_long register, 155
inni_xdr_status register, 156
inni_rdr_status_long register, 156
inni_sbc_status register, 158
of a network, 25, 26
of a network interface, 181
of broadcast interface, 68, 185
of combine interface, 76, 187
of Data Networks, 45, 183
ni_send state, field, of Data Networks,
183
ni_send_stop, flag, of broadcast interface,
30, 32, 69
ni_serial_number, register, 116, 146
ni_set_bad_memory_access, flag, 162
ni_set_bad_relative_address, flag,
162
nl_set_bc_interrupt_green, flag, 162
ni_set_bec_interrupt_orange, flag, 162
ni_set_bc_interrupt_red, flag, 162
ni_set_bc_interrupt_vellow, flag, 162
ni_set_bc_or_com_collision, flag, 162
ni_set_bec_rec_ok, flag, 162
ni_set_cmu_error, flag, 162
ni_set_cn_checksum_error, flag, 162
nl_set_cn_hard_error, flag, 162
ni_set_com_abstain_changed, flag, 162
ni_set_com_rec_empty, flag, 162
ni_set_com_rec_ok, flag, 162
ni_set_dperr, flag, 162
ni_set_dr_checksum_error, flag, 162
ni_set_dr_count_negative, flag, 162
ni_set_dr_ rec_all_fall down, flag,
162
ni_set_dr_rec_ok, flag, 162
ni_set_dr_rec_tag, flag, 162
ni_set_global_rxec, flag, 162

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

ni_set_internal_fault, flag, 162
ni_set_ldr_rec ok flag, 162
ni_set_ldr_rec_tag, flag, 162
ni_set_ldr_user_rec_tag, flag, 162
ni_set_mc_error, flag, 162
ni_set_message_too_long, flag, 162
ni_set_rdone_complete, flag, 162
ni_set_rdr_rec_ok flag, 162
ni_set_rdr_rec_tag, flag, 162
ni_set_rdr_user_rec_tag, flag, 162
ni_set_sbc_rec_ok flag, 162
ni_set_scan_overflow, flag, 162
ni_set_sfifo_empty, flag, 162
ni_set_supervisor_global_rec, flag,
162
ni_set_sync_global_rec, flag, 162
ni_set_timer_interrupt, flag, 162
ni_sfifo_goes_empty_ie, flag, 54, 57,
154
ni_supervisor_global_rec, flag, 93, 160
ni_supervisor_global_rec_ie, flag, 93,

107, 163

ni_supervisor_global_send, flag, 93,
160

ni_sync_global, register, 89, 89, 146, 160,
188

ni_sync_global_abstain, register, 89,
90, 146, 188

ni_sync_global_complete, flag, 89, 90,
160, 188

ni_sync_global_rec, flag, 89, 90, 160,
188

ni_sync_global_rec_ie, flag, 89,91,
107, 163

ni_sync_global_send, register, 89, 90,
146, 188

ni_time, register, 113, 146

ni_timer_ie, flag, 107, 113, 163

ni_user_rec_interrupt_mask, register,
38, 49, 146

ni_user_tag_mask, register, 38, 48, 146

251

NI Programmer’s Handbook

(o]

OR_SCAN
combine combiner constant, 75, 152
combiner constant, 77, 186

P
PHYSICAL, flag value constant, 43, 150

rdone complete, Orange interrupt, 96,
100

rdr rec ok, Green interrupt, 30, 97, 101,
174

rdr rec tag, Green interrupt, 97

rdr tag, Green interrupt, 177

rdr user rec ok, Green interrupt, 101

rdr user rec tag, Green interrupt, 97

rdr user tag, Green interrupt, 177

RECEIVE _LENGTH (), macro, 27, 181

RECEIVE_LENGTH_LEFT (), macro, 27, 181

RECEIVE_OK (), macro, 27, 181

RECEIVE_TAG (), macro, 48, 183

RELATIVE, flag value constant, 43, 150

RIGHT DR_FIFO, interface number
constant, 22, 150

router done complete, Orange
interrupt, 57, 169

S

sbc rec ok, Green interrupt, 30, 97, 101,
174
scan overflow, Green interrupt, 79, 97,
101, 176
SCAN_BACKWARD
combine pattern constant, 75, 151
pattern constant, 77, 186
SCAN_FORWARD
combine pattern constant, 75, 151
pattern constant, 77, 186
SCAN_REDUCE
combine pattern constant, 75, 152

252

pattern constant, 77, 186
SCAN_ROUTER_DONE
combine pattern constant, 75, 152
pattern constant, 79, 186
send fifo empty, Green interrupt, 57,
177
SEND_EMPTY (), macro, 27, 181
SEND_OK (), macro, 27, 181
SEND_SPACE (), macro, 27, 181
SF_FIFO_OFFSET send-first field offset
constant, 21, 149
sfifo empty, Green interrupt, 97, 101
sp-pe~-stubs, preprocessor, 127
supervisor global rec, Green
interrupt, 93, 97, 101, 175
SUPERVISOR_BC_FIFO, interface number
constant, 22, 150
sync global rec, Green interrupt, 91, 97,
101,175
sync_global_abstain_reg, constant, 90,
188

T

timer interrupt, Orange interrupt, 96,
100, 114, 168

U

UADD_SCAN
combine combiner constant, 75, 152
combiner constant, 77, 186
USER_BC_FIFO, interface number constant,
22,150

\'J
VU error, Green interrupt, 176

X

XOR_SCAN
combine combiner constant, 75, 152
combiner constant, 77, 186

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

Concepts Index

This index lists the essential concepts referred to within this document. Bold page numbers indicate a

defining reference or important description.

A

absolute address, in chunk table
translations, 110
abstain flag, 27
effect of, 28
function to set values of, 123
in control registers, 9
of broadcast interface, 69
of combine interface, 28, 81
for reduction operations, 28
of global interface, 90
using efficiently, 138
using safely, 29
abstaining
from a network interface, 27
from a synchronous global message, 90
from broadcast interface, 69
from combine interface, 81
addition (signed), combine operation, 75
addition (unsigned), combine operation, 75
addition scan overflow, 78
address (node) registers, 108
address translation, and NI chunk table,
108
" addresses
calculating send_¢£1irst, 21
calculating send_#£irst_long, 43
of registers, 145

programming constants, 11

NI Version 2.2 (CM-SE), June 1994
Copyright © 1994 Thinking Machines Corporation

addressing
of nodes, 39, 119, 139
of partition manager, 119
of registers, programming constants, 11
physical. See physical addressing
relative. See relative addressing
alignment of doubleword data, 140
“All Fall Down interrupt enable” flag, 54,
55
“All Fall Down message” flag, 54, 55
All Fall Down Mode, 55
address word format, 56
detecting, 55
resending, 56
triggering, 55
“All Fall Down mode enable” flag, 54, 55
alternate status register, of Data Networks,
36, 46
asynch global receive interrupt, 93
“asynch global receive interrupt enable”
flag, of asynchronous global
interface, 92, 93, 107
asynch supervisor global receive interrupt,
93 :
“asynch supervisor global receive” flag, of
supervisor asynch global interface,
93

253

" “asynch supervisor global send” flag, of
supervisor asynch global interface,

93

“asynch supervisor global” register, of
supervisor asynch global interface,
89, 93

“asynch supervisor receive interrupt
enable”, of supervisor asynch global
interface, 93, 107

“asynch global receive” flag, of
asynchronous global interface, 92

“asynch global send” flag, of asynchronous
global interface, 92

“asynch global” register, of asynchronous
global interface, 89, 92

asynchronous interface, of global interface,
88, 89

auxiliary information, 20

for broadcast messages, 67

for combine messages, 74

for Data Network messages, 41, 42
of a network message, 18

backward scan, combine pattern, 75
“bad address low” field, 114
“bad address type” field, 114
“bad address” register, 114
base address, of NI memory region, 8
programming constant, 12, 21
broadcast enabling, 69
CMOST operation for, 141
broadcast interface, 3, 63, 64
abstaining from, 69
auxiliary information, 67
broadcast interrupt interface, 104
conflicts with combine interface, 140
enabling, 69
CMOST operation for, 141
message format, 66
message ordering, 66
messages, 65
receiving, 67
registers, 64

254

NI Programmer’s Handbook

sending, 66
supervisor broadcast interface, 64
user broadcast interface, 64
“broadcast interrupt receive enable” flag,
104, 107
“broadcast interrupt send ok” flag, 104, 107
“broadcast interrupt send” register, 104
broadcast interrupts. See interrupts,
broadcast
broadcast messages, user and supervisor, 64
“Bus Error disable” flag, 107
Bus Errors, 97, 178
and bad address register, 114
on abstain flag change during global
message, 90
on bad memory access, 97, 178
on broadcast interrupt error, 104 .
on broadcasting with sending disabled,
69
on combine flush error, 113
on configuration error, 115
on excessively long messages, 19
on improper message format, 19
on network-done message error, 80
on reading from empty rec FIFO, 26
on reading/writing undefined addresses,
7
on sending with abstain flag set, 28, 90
on user access to supervisor features, 7
on user sending message with supervisor
tag, 48
on user sending physical mode message,
43

c

casting register constants, for C coding, 11
chunk address, 109
chunk position, 110
“chunk size” register, 110
chunk sizes, 110
chunk table, 40, 108
modifying, 112
size of chunks, 110
“chunk table address” register, 112

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Concepts Index

“chunk table data” register, 112
clearing combine send FIFO, 83
cm_signal.h, header file, 51
CM-5,2

networks, 2

operating system, 5

partition manager, 4

partitions, 4

processing nodes, 3

programs, 5§
CMMD, software interface, 1
CMNA

(CM Network Accessors), 225

header files, 226
cmna.h, header file, 11, 13, 125, 225
code

for nodes, 5

forPM, 5
“combine add-scan overflow” flag, 76, 78
combine flush, 112
“combine flush complete” flag, 107, 113
“combine flush” register, 113
combine interface, 3, 63, 71

abstaining from, 81

auxiliary information, 74

conflicts with broadcast interface, 140

flushing, 112

message format, 73

message ordering, 73

messages, 73

network-done messages, 79

parallel prefix. See scanning

pipelining, 73

receiving, 76

reduction messages, 77

registers, 72

scan overflow, 78

scanning, 77

sending, 73

status register, 76

word order in scans, 77, 140
combine messages, word order in, 140
combine patterns

addition (signed), 75

addition (unsigned), 75

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

backward scan, 75
exclusive OR, 75
forward scan, 75
inclusive OR, 75
maximum, 75
network-done, 75
reduction, 75
combiner field, combine interface, legal
values, 75
“combiner value” supervisor field, of
combine interface, 83, 84
combiner values, for combine messages, 77
communications networks. See CM-5
networks; networks
compiling NI programs. See programs
configuration, partition, 115
“configuration complete” register, 107, 115
“configuration” register, 115
conflicts, between broadcast and combine
interfaces, 140
Connection Machine CM-5 Technical
Summary, xix
constants
NI base address, 12, 21
programming, 11
register, address, 11
register field, position and length, 12
Control Network, 2, 3, 63
See also broadcast interface; combine
interface; global interface
disabling, 116
“Control Network disable” flag, 107, 116
control register, register type, 9
“control” register
of a network interface, 17, 27
of broadcast interface, 64, 69
of combine interface, 72, 81
“count mask” register, 38, 51, 80
“current” message, in receive FIFO, 25

D

Data Network (DR), 2, 2, 35
addressing. See addressing

255

NI Programmer’s Handbook

All Fall Down mode, 55
address word format, 56
detecting, 55
resending, 56
triggering, 55
auxiliary information, 41, 42
chunk table, 108
interactions between interfaces, 36
length field, 42
message format, 41
message mode bit, 42
message modes, physical and relative, 40
message ordering, 39
message tags, 48
messages, 38
auxiliary information, 42
length field, 42
mode bit, 42
tag field, 42
receiving, 44
registers, 36
send FIFO, registers, 42
sending, 42, 43
tag value of messages, 42
Data Network interfaces
Data Network (DR), 36
left interface (LDR), 2, 36
registers, 36
See also Data Network
right interface (RDR), 36
detecting arrival of messages, 24
Diagnostic Network, 3
disabling the Control Network, 116
discarded messages, 20
and send_ok flag, 25
using efficiently, 138
doubleword data, alignment, 140
doubleword operations, for reading/writing
registers, 19
doubleword operators, 22, 136
“DR length limit” register, 38, 39
“DR network done” flag, 45, 46, 54, 76
“DR receive state” field, 45, 53
“DR send state” field, 45, 45, 46, 53

256

examples, on-line, 134
exclusive OR, combine operation, 75
executing NI programs. See programs

F

fields, register
See also register fields
position and length constants, 12
fields and flags, status. See status register,
fields and flags
“flush complete” flag, 107, 113
“flush” register, of combine interface, 113
flushing, the combine interface, 112
format of messages, 18, 19
for asynchronous global interface, 92
for broadcast interface, 66
for combine interface, 73
for Data Network, 41
for supervisor asynch global interface, 93
for synchronous global interface, 90
forward scan, combine pattern, 75

G

generic network interface, 17
using effectively, 32
getting value of status register, 26
See also status registers
“global abstain” register, of synchronous
global interface, 89, 90
global interface, 3, 63, 88
asynchronous interface, 91
supervisor asynch interface, 93
“global receive” register, of synchronous
global interface, 89, 89
“global send” register, of synchronous
global interface, 89, 90
Green broadcast interrupt, 104
Green interrupt, 97, 101, 173
Green broadcast interrupt, 97, 101, 104,
173
on add scan overflow, 79, 97, 101, 176

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Concepts Index

on All Fall Down message receipt, 55, 97,
101,174

on DP (vector unit) error, 176

on empty combine receive FIFO, 83, 97,

of combine interface, 72

of Data Networks, 36

of global interface, 89

of supervisor asynch global interface, 93

101, 175 of synchronous global interface, 89
on empty Data Network send FIFO, 57, interface code file. See programs
97,101,177 “interrupt cause” register, 102
on interrupting DR message tag, 49, 97, “interrupt clear” register, 102
101,174 “interrupt level” register, 103
on LDR/RDR tag, 177 “interrupt now” register, 113
on LDR/RDR user tag, 177 interrupts, 13, 95, 165
on message receipt, 30, 91, 93, 97, 101, and tag fields, 48
174,175 broadcast, 104
on vector unit error, 97, 101, 176 Bus Errors, 178
“Green interrupt clear” register, 102 on bad memory access, 178
“Green interrupt level” field, 103 Bus Errors, 97

H

header files
cm_signal.h, 51
cmma.h, 11, 225
“hodgepodge” register, 38, 49, 107
and asynchronous global interface, 89
and supervisor asynch global interface,
89
and synchronous global interface, 89
broadcast interrupt flags, 104
configuration flag, 115
flush complete flag, 113
global receive interrupt enable flag, 92,
93
NI timer interrupt enable flag, 113
send stop flag, 116
supervisor receive interrupt enable flag,
93
sync global receive interrupt enable flag,
89,91

inclusive OR, combine operation, 75
interface, register
of asynchronous global interface, 91
of broadcast interface, 64

NI Version 2.2 (CM-3E), June 1994
Copyright © 1994 Thinking Machines Corporation

and bad address register, 114
on abstain flag change during global
message, 90
on bad memory access, 97
on broadcast interrupt error, 104
on broadcasting with sending disabled,
69
on combine flush error, 113
on configuration error, 115
on excessively long messages, 19
on improper message format, 19
on network-done message error, 80
on reading from empty receive FIFO,
26
on reading/writing undefined
addresses, 7
on sending with abstain flag set, 28, 90
on user access of supervisor features,
7
on user sending message with
supervisor tag, 48
on user sending physical mode
message, 43
cause and clear registers, 102
classes, 13, 95
detecting and clearing, 102
Green, 97, 101, 173
on add scan overflow, 79

257

NI Programmer’s Handbook

on All Fall Down message receipt, 55
on broadcast interrupt, 104
on empty receive FIFO, 83
on interrupting DR message tag, 49
on message receipt, 30, 91, 93
interrupt levels, 103
Orange, 96, 100, 168
on broadcast interrupt, 104
on NI timer interrupt, 114
pathways, 98
recovery, 98, 105
Red, 95, 99, 166
off-chip faults, 99
on broadcast interrupt, 104
on-chip faults, 99
using to retrieve Data Network
messages, 48
Yeliow, 96, 100, 169
on bad relative address, 41
on broadcast interrupt, 104
on broadcast/combine collision, 73
on broadcast/combine conflict, 104
on Bus Error signaled as interrupt, 98
on combine/abstain flag error, 82
on negative message count, 52
IOR, combine operation, 75

L

“LDR supervisor tag interrupt enable” flag,
49, 107
“LDR user tag interrupt enable” flag, 49,
107
left Data Network interface (LDR), 2, 35
length limit
of network interface FIFOs, 19
on broadcast interface messages, 66
length of message
remaining words, 26
total (as received), 26
“lock” flag
of a network interface, 30, 31
of broadcast interface, 69
of combine interface, 83
of Data Network interfaces, 54

258

mapping, relative to physical addresses, 111
maximum, combine operation, 75
memory maps
network interface registers, 18
node virtual memory, 9
of broadcast interface registers, 65
of combine interface registers, 72
of Data Network registers, 37
of global interface registers, 88
memory subsystem, of nodes, 3
“message count” register, 38, 51, 54, 80
message counting, 51
in network-done operations, 80
message format
asynchronous global interface, 92
broadcast interface, 66
combine interface, 73
Data Network, 41
supervisor asynch global interface, 93
synchronous global interface, 90
message ordering, broadcast interface, 66
message tags, 48
user/supervisor, 48
“Message too long interrupt enable” flag,
38, 107
messages
broadcast interface, 65
combine interface, 73
word order, 140
Data Network, 38
detecting arrival of, 24
discarded, 20
and send_ok flag, 25
format, 18
for asynchronous global interface, 92
for broadcast interface, 66
for combine interface, 73
for Data Network, 41
for supervisor asynch global interface,
93
for synchronous global interface, 90
from nodes to PM, 121
from PM to nodes, 120

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Concepts Index

global interface, 88
length field, for Data Network, 42
mode bit, for Data Network, 42
modes, (for Data Network), 40
network, 18
receipt order, for Data Network, 39
receiving, 23
microprocessor, of processing node, 3
“middle” Data Network interface, 2
“middle” Data Network interface
restrictions, 140

“network done” flag
See also “DR network done” flag
of Data Network, (network-done
operation), 80
Network Interface (NI), 2, 6
base address, 8
constant, 12, 21
chip, 2, 6
interrupts, 13, 95, 165
memory region, occupied by registers, 7
memory regions, physical and virtual, 8
operation times, 135
performance hints, 135
register names, 10
register types, 9
registers, 6
Reset, 14, 117
serial number, 116
supervisor area, 7
timer, 113
user area, 7
network interfaces, interactions between,
140
network-done interrupt enable flag, 54
network-done
combine interface operation, 71, 79
combine operation, 75
message format, 79
network-done messages, (via combine
interface), 79

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

networks, 2
common features, 17
conflicts between. See broadcast
network, conflicts; combine
network, conflicts
interface, registers, 17
interface numbering, 21
interfaces, generic, 17
messages, 18
NI. See Network Interface (NI)
NI programs. See programs
NI Reset, 117
“NI timer enable” flag, 107, 113
node, program, §
node program. See programs
nodes. See processing nodes

o

off-chip faults, (Red interrupts), 99
on-line code examples, 134
on-chip faults, (Red interrupts), 99
operating system. See CME]S operating
system
operation times, of NI, 135
OR, combine operation, 75
See also XOR, combine operation
Orange broadcast interrupt, 104
Orange interrupt, 96, 100, 168
network-done complete, 57, 169
NI timer interrupt, 96, 100, 114, 168
Orange broadcast interrupt, 96, 100, 104,
169
router-done complete. See Orange
interrupt, network@ldone complete
“Orange interrupt level” field, 103
order of words, in scan messages, 77
overflow, in addition scans, 78

P

parallel prefix, combine interface
operation. See scanning

259

NI Programmer’s Handbook

partition
See also partitions
size of, variable, 40
“partition base address” register, 108, 110
partition configuration, 115
“partition configuration” register, 115
partition manager (PM), 4
address of, 40, 119
code, §
exchanging data with nodes, 119
program. See programs
“partition size” register, 109
partitioning, by system administrator, 4
partitions, 4
configuration, 115
defined by the NI chunk table, 108
relative addressing within, (for Data
Network), 40
size, 4
pattern field, combine interface, legal
values, 75
pattern values, for combine messages, 77
performance hints, 135
physical addressing
See also addressing
translation from relative addressing, 109
physical base address, of NI memory
region, 8
“physical self address™ register, 108
pipelining combine operations, 73
PM program. See programs
“private” register, 30
of a network interface, 17, 24, 30
of broadcast interface, 64, 69
of combine interface, 72, 83
of Data Network interface, 36, 54
processing node program. See programs
processing nodes, 2, 3
address registers, 108
address translation, 108
addresses of, 39
registers, 108
addressing. See addressing
exchanging data with PM, 119
internal structure, 3

260

programming models, user and OS, 5
programs
compiling and executing, 132
interface code file, 127
NL§, 12
node code file, 126
PM and node, 4
PM code file, 125
structure of, 125
protocol
See also messages, format
for sending messages, 19

Q

FIFO register
of a network interface. See receive FIFO
register; send FIFO registers
register type, 9

R

“RDR supervisor tag interrupt enable”
register, 49, 107
“RDR user tag interrupt enable” flag, 49,
107
reading a message, 23 :
reading registers, using doubleword
operators, 136
reading status registers, 26
“receive abstain” flag
for broadcast interface, 69
of a network, 27, 28
of combine interface, 81
of global interface, 90
“receive FIFO empty interrupt enable”
flag, of combine interface, 83
“receive FIFO full” flag
of a network, 30, 32
of broadcast interface, 69
of combine interface, 83
of Data Networks, 54
“receive ok interrupt enable” flag
of a network, 30, 30
of broadcast interface, 69

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Concepts Index

U N R A £,
R R SR L R

of combine interface, 83
of Data Networks, 54
“receive interrupt mask” register, 38, 49
“receive length left” field
of a network, 25, 26
of broadcast interface, 68, 68
of combine interface, 76
of Data Networks, 45
“receive length” field
of a network, 25, 26
of combine interface, 76
of Data Networks, 45, 46
“receive ok” flag
of a network, 24, 25, 26
of broadcast interface, 68
of combine interface, 76
of Data Networks, 45, 46
receive FIFO
network register for, 23
of a network, 9, 18, 23
receive FIFO register, of a network, 23
“receive state” field, of Data Network, 45,
53
“receive stop” flag, of a network, 31
“receive” register
of a network, 17, 23
of broadcast interface, 64, 67
of combine interface, 72, 76
of Data Networks, 36, 44
receiving
a broadcast interface message, 67
a combine interface message, 76
a Data Network message, 44
a global interface message, 92
a network message, 18, 23
a network-done message, 80
a reduction-scan message, 77
a scan message, 77
a synchronous global message, 90
an asynch supervisor global message, 93
an asynchronous global message, 92
Red broadcast interrupt, 104
Red interrupt, 95, 99, 166
off-chip faults, 99
on cache/MMU error, 96, 99, 167

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

O LN 0 N e L0 ST S U 4 S L SN L SIS S S0 N R AP R NN s AN
e L B L o L I B B L s e T R SR ity

on Control Network checksum failure,
96, 99, 166
on Control Network hardware failure,
96, 99, 167
on Data Network checksum failure, 96,
99, 166
on memory controller error, 96, 99, 167
on NI chip fault, 96, 99, 166
on-chip faults, 99
Red broadcast interrupt, 96, 100, 104,
168
“Red interrupt level” field, 103
reduction
combine interface operation, 71, 77
See also scanning
combine pattern, 75
“reduction abstain” flag, of combine
interface, 28, 81
reduction messages, (via combine
interface), 77
register constants, 11
casting, for C coding, 11
register fields
names, 10
programming constants, 11
register interface
of asynchronous global interface, 91
of broadcast interface, 64
of combine interface, 72
of Data Networks, 36
of global interface, 89
of supervisor asynch global interface, 93
of synchronous global interface, 89
register naming format,
ni_interface_purpose, 10
register types, 9
register
address constants, 11
doubleword operators, 136
names, 10
NL 6
status, 25
relative addressing
See also addressing
translation to physical addressing, 109

261

NI Programmer’s Handbook

Reset, NI, 14, 117
right Data Network interface (RDR), 2, 35
RISC microprocessor, of processing node,
3
router, 35
See also Data Network
router done complete
Orange broadcast interrupt, 96
Orange interrupt, 100
“router done” flag. See “DR network done”
flag
router-done. See network done
running NI programs. See programs

S

scan overflow, in addition scans, 78
“scan overflow interrupt enable” flag, of
combine interface, 79, 83
“scan start” register, of combine interface,
72,78
scanning
addition scan overfiow, 78
combine interface operation, 71, 77
scanning with segments, 78
segmented scanning, 78
select address, for chunk table addressing,
109
“self address”, of a processing node, 40
“send combiner value” supervisor field, of
combine interface, 83, 84
“send empty” flag
of a network, 25, 26
of broadcast interface, 68
of combine interface, 76
send FIFO empty interrupt enable flag, 54
“send FIFO enable” flag, of broadcast
interface, 69, 69
“send length” supervisor field, of combine
interface, 83, 84
“send ok” flag
and discarded messages, 25
of a network, 28§, 25
of broadcast interface, 68
of combine interface, 76

262

of Data Networks, 45, 46
“send pattern” supervisor field, of combine
interface, 83, 84
send FIFO
network registers for, 19
of a network, 9, 18, 19
“send space” field
of a network, 25, 26
of broadcast interface, 68
of combine interface, 76
of Data Networks, 45, 46
“send start” supervisor field, of combine
interface, 83, 84
“send state” field, of Data Network, 45, 53
“send stop” flag, of broadcast interface, 30,
32
“send” register
of a network, 17, 19
of broadcast interface, 64, 67, 67
of combine interface, 72, 73
using to clear the send FIFO, 83
of Data Networks, 36, 42
send_first addresses
calculating, 21
constants, 21
send_first_long addresses, calculating,
43
“send-first long” register, of Data
Networks, 36, 43
“send-first” register
of a network, 17, 19
of broadcast interface, 64, 67, 67
of combine interface, 72, 73
of Data Networks, 36, 42
sending
a broadcast interface message, 66
a combine interface message, 73
a Data Network message, 42, 43
message modes, 40
a global interface message, 92
a network message, 18, 19
a network-done message, 79
a reduction-scan message, 77
a scan message, 77

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

Concepts Index

a synchronous global message, 90
an asynch supervisor global message, 93
an asynchronous global message, 92
sending messages from nodes to PM, 121
sending messages from PM to nodes, 120
serial number (of NI), register, 116
simulating arrival of a message, 24, 142
status pop register, of Data Networks, 36,
47
status register for long messages, of Data
Networks, 36, 45
status register, alternate, of Data Networks,
36, 46
status register
fields and flags, 25
of a network interface, 17, 25
of broadcast interface, 64, 68
of combine interface, 72, 76
of Data Networks, 36, 45, 80
register type, 9
status registers
accessor macro, 26
reading, 26
“stop send” flag, 107, 116
“stop” flag
of a network, 30
of broadcast interface, 69
of combine interface, 83
of Data Networks, 54
supervisor area, of NI memory region, 7
supervisor asynchronous global interface,
of global interface, 88, 89
“supervisor asynchronous global” register,
of supervisor asynch global
interface, 89, 93
supervisor broadcast interface, 64
See also broadcast interface
supervisor message tags, 48
supervisor operations, 7
clearing combine send FIFO, 83
clearing interface send FIFQ, 31
grabbing control of receive and status
registers, 31
reserving Data Network message tags, 48
simulating arrival of a message, 24, 142

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation

triggering All Fall Down mode in DR, 55

“synch global receive interrupt enable”
flag, of synchronous global
interface, 89, 91, 107

“synchronous global completion” flag, of
synchronous global interface, 89, 90

synchronous global receive interrupt, 91

“synchronous global receive” flag, of
synchronous global interface, 89, 90

synchronous interface, of global interface,
88, 89

T

tag fields
and interrupts, 48
and message counting, 51
of Data Network messages, 48
tag value, of Data Network message, 42
timer, NI. See Network Interface timer
timer (NI), register, 113
“timer enable” flag, 113
timing, of NI operations, 135
total length of message, 26

u

user area, of NI memory region, 7
user broadcast interface, 64
See also broadcast network
user message tags, 48
user programming model, 5
“user receive interrupt mask” register, 38,
49
“user tag mask” register, 38, 48

v

value, of a message, (single- or
doubleword), 19

virtual base address, of NI memory regions,
8

VU Programmer’s Handbook, xix

263

NI Programmer’s Handbook

w bad memory (Bus Error) interrupt, 96,
writing a message, 22 100
writing a value to recieve register, to Data Network message too long, 39, 96,
simulate arrival of message, 24 100, 17?'
writing registers, using doubleword on bad relative add.ress, 41, }00
operators, 136 on broadcast/combine conflict, 73, 96,
100, 104, 171
on combine abstain flag error, 82, 96,
X 100, 170
XOR, combine operation, 75 on illegal relative address, 96, 172
on negative DR message count, 52, 96,
Y 100, 171
. Yellow broadcast interrupt, 96, 100, 104,
Yellow broadcast interrupt, 104 170
Yellow interrupt, 96, 100, 169

g “Yellow interrupt level” field, 103
Bad memory (Bus Error) interrupt, 170

NI Version 2.2 (CM-5E), June 1994
264 Copyright © 1994 Thinking Machines Corporation

NI Memory Map

NI Version 2.2 (CM-5E), June 1994
Copyright © 1994 Thinking Machines Corporation 265

Node Virtual Memory Map NI Virtual Memory Area Interface Registers
{with or without VUs installed) (user or supervisor) h
. ex
hex address hex offset Sample Register Set: gffset
(physical) ' #| ni x status long 22
RESERVED nil rdr send first long 0x19000° b 0x60
0xF880 0000 T T (elative) - o Hmooow.m D*{ ni_x status_all 0x5022
e X
OS Kernel 0xF800 0000 g%s : 22 D*| ni_x status_pop | .22
local stack « ni_ldr_send first_long | 011000 22 ni_x send 0x30
(rolative) 0x10000 ni_x recv
global stack |} | ;. 5000 0000 (physical) 22 == 0x20
VU 0333“ mwum ni_dr_send first_long | 0¥9000 22 T * ni_x_control 0x10
0xC000 0000 (relative) 0x8000 ~° &| ni_x private 0%08
vu Immn and ni_rdr send first 0x7000 . ni_x_status 00
ni_1dr send first
Stack ﬂmm_nam 0x4000 0000 u... — a...m iret 0x6000 T Control Network only
nmocm_ FQNU « ni_com send tlrs 0x5000 D Data Network only
0x2010 0000 ni_sbc_send first 0%4000
supervisor area ni_bc_send first %3000 = hex offset
I] 0X2008 0000 AT r 0xEQ0
NI space ik hdok 0x2000 1dr oHOoo
user area 0x2000 0000 ni_dr_send first 0x1000 OxA00
_localheap INTERFACE 0x800
user variables REGISTERS] 0%600
userprogram | 000 2000 GLOBAL/SYSTEM N\
REGISTERS
0x0000 0000

(1)

user/supervisor bit interface (1) addressing mode rwm ” ww

NI base mannomm« index @ RDR = 11
(LRJDR| —— x[o]o _iio_o_i length | tag |o0]o]o]
31 20 19 17 13 12 11 7 6 32 0

ni_interface_send_first Addressing Patterns = ;. o,

user/supervisor bit interface (2) addressing mode W‘Mm m me

NI base mmanmmm« index \ SBC = 100
(LRIDR| ——- x]olo]o]o|n[n|n[x]| tag length |0[0]o0
(s|jc | -—— x| ofofofo|n]n[n]ofofofo]o] 1ength [o]o]o

COM | ——— x| ool o] o] 1] 0] 1 paceern| cominer | 1ength | o] o]

31 20 19 18 15 14 12°11 10 9 76 32 1]

oxooocll/////

ni_interface_send_first_long Addressing Patterns

Thinking Machines Corporation
Confidentlal and Proprietary

M ©2994

Global & System Registers

* ni_interrupt set_green
* b» »unmnncunlmm«
e e e

ST

$'

ki

"

ni_usexr_rec_interrupt mask

ni Hoummmn mn Bmmmmmo

l!‘ﬂ!.ll.

" RN

* E_. vmm mmmhmmm
ni_scan start
ni_interrupt_now
* uwI»mMMWnnbnthwmﬂlmummu
* ni_interrupt clear
ni_sync_global send
* ni_hodgepodge
] ni mmﬁrn sup_global
* ni _async_g global
ni aos mwcmw gsend
ni_sync_global_; wvmnwww
* ni_sync_global
bwlMMn»mmﬂﬁ:BVmH
ni_interrupt_send
ni_configuration

ni_time

nl_user_tag mask
ni_rec_ interrupt mask
uwtoocbnlsmmﬂ
ni ﬂ..wlnmhammmmmaw llﬂnoau«
ni_chunk size
ni_chunk_table_data
u»lhwcbwlnmvwmlmmmwmmm
Jplbmw...mmnwo—ﬂm»um
ni_partition base
nil_physical_self
T ni nuwmnﬂcbnlu.m<mw
*1 ni | ni_interrupt_cause_green

0x0E8
0x0E0
0x0D8
0x0D0
0x0C8
0x0C0
0x0B8
0x0BO
0x0AB
0x0AQ0
0x098
0x090
0x088
0x080
0x078

0x070
0x068

0x060
0x058
0x050
0x048
0x040
0x038
0x030
0x028
0x020
0x018
0x010
0x008

ni »nnoun:bﬂ cause

* Indicates register with subfields
(See listings on reverse side)

22 |ndicates new feature in 2.2

0x000

Version:
2.2

i

>

a1 e321dwod suopi Tu

} zz6}
I eze8l

aY Ajdwe se0b o313s TU
313§ puas wod 1u
uzajjed puas wod Tu
I8UTqUOS PuUds Wod Tu
yabust puas wod Iu
o[qeus umop [Te¥ [I® TU
aT umop [T®F 11® Iu

a1 A3dwe 08X wWoo Tu
umop [rej [1¥ oe1 1p TUu
ST MOTJISA0 UEDE WOd TU
e[qeus puas Tu

1103 021 TU

dojs puas Tu

do3s oa1 fu

3007 Tu

aY jo o021 Tu

T ey e e g ey DN -
OranamTTInOND NBN

W02 928/s Had Ha

:az1S :So0d :aweN piaid
ejeafad eoegzaaquy ju -191sibay

(A4

tUOTSI9A _.. —.M 930 1dwod suop 193N0I JU
i 12 umop” [Tey T{e 208X 1py/ip1/ipi Tu
m 3 *T4 umop [re3 1€ 081 1pi/IpT/IPT TU
= W. m —.N aoeds puas 1p1/IpI/Ip TU
[g 91 buoy yabuay o8I 1pl/ipi1/iIpI TU
W.m <] 11 Buoy yabusy oo 1p1/Ipy/IpT TU
vO.. W. % 14 yA Be3 oax 1p1/1p1/Ipr U
w m = P [Bey oai 1p1/1p1/IPY TU
m ° @ 8 r 3o pues” 1p1/IpT/Ip TU
] m i } 3o oaox Ip1/Ipi/IpI TU
“ ...m i 0 30 08I 1p1/Ipy/IpT TU
=t
28 921§ :s0d :awep piaid
XE 0 1€
£5 . .
£0 wc_ 1] o _ £] x soeds _>~xwx.,\.mu_
3o o981 # fej oax buoy uay ooz adv o8z |UOp 133N01
3O puss

,ITe snjeas apa/ipr/1p Fu :ioisibay

dA3 ped
—. ve pe1 [eaa1 adnizsjutr tu N—. QN ® ulwmmﬁuvmlﬁmniqz
- — — Mol ssaippe peq 1ud
114 0
P @—. abuero [sasf 1dniislul Yu
1 8 MOTTaA [oadY adnizaqut Tu 9215 :1so0d HQENZ pIoi4
} 0 uea1b 1ensl 3dnizajur Tu — —
sseippe peq fu :19)sibay
9ZIS :S0d ‘9WEN pIsl4
H@b@ﬁlﬁﬁﬂHHQUﬂ.ﬂlﬁﬁ nuwuw_mﬂm b zzbt oY buoy oo Bsu Tu
- — — L zz€1 o1 Hey o8I 18sn 1pI TU
—. F Umul_”mnoﬁm 1081aT0dns Tu —. ze NP o1 Bey oei 1esn 1py Tu
i 0 puas [eqo[b 1osyazedns Tu L zz Ll oY Bey oe1 1pr TU
ez isod ‘oWieN potd b 220l AR
—_ — — - 10115 snq o[qesIp TU
Teqo1b dns oudse ju "‘_mam_mam " ez M puss—do3s us"Tu
1] oa1 Teqorf TU } L ST Iowi3 T
_ - : 1 9 a1 091 y1eqolb ouds Tu
F ° puas 1eqoib TuU
1 [ayqeus oo 3dnixajur TU
921§ :S0d SlUeN piaid L v 93a7dwod uotjeInBIIUCD TU
TeqoT6 oudse tu :i3isiBoy | € A Ewmau%wsuﬁuﬁ
R . 1 rd @3a7duos ysniy Tu
1 1 o3a7dwon 1eqoTb DUAS Tu [1 oT DoI Teqo(b 108TAIadNS” TU
L 0 a1 [eqofh ouds tu i 0 a7 o1 Teqoib TU
9ZIS :SOd SWwiejN pietd 92ZIg :SO0d BUWEN pisld
TeqoTh ouds ju :id)siBay abpodabpoy tu :id)s1Hay
zz 6l Aydwa o3t13s s8/0/0 TU
zz 8l o um.@avlm\v\utwc ze 91 2307dwos suopi §/0/0 TU
zedl mmulooulumm:luﬁnlm\uxulmc zz Sk Buoy ool ebessaw 8/0/0 Tu
2z 9l e Uwu M.ww:luvﬁlm\o\olﬂ: i ss900€ Azowsw peq §/0/0 TU
zz Sl aulbwu!HUulm\u\u)Mn €l SS531ppY SATIR[X peq §/5/0 U
zebl _ wdu qu Mvﬂlm\c\olﬂc r4} aAT3RBaU quUNOD 1P §/5/0 TU
143 umop [1ed :mlowuluvlm\o\ulac ik pabueyo utelsqe wod §/0/5 Tu
4} mmw. omw pclm\o\uiﬂﬁ 118 UOTSTT0d Wod 10 oq s§/0/0 1U
31 xolowuluvulm\u\olﬂc 6 moyrek adnizegut oq s/0/5 1U
113 Ao ;u.mu Mﬁﬁlm\o\ulﬂn 8 sbueio adnixejur oq s/0/0 Tu
6 o 0a1 Ip s/0/0 qu l adnriejuy zawry s8/0/0 U
8 oa1 Teqoib 10s1al0dns s/0/0 TU 9 T
L ~ uwulHMQoamHm\U\uHﬂs g 10115 paey uo s/0/0 TU
9 281 Hmnw,mm Mr:awlm\U\UI«: v 10113 wNSHDAYD Us §/0/5 TU
S A3dus uwulEoulm\u\olM: £ pa1 adnixejut o s/0/0 TU
14 A0 091 Wed TS /0 /07 Tu Z 10118 nuWO §/0/0 TU
£ A0 Mmu Mﬂmlm\v\oluc [10119 OW S§/D/0 YU
4 A0 281 2q s/0/5 1u 0 J[ney Teursjut s/5/5 Tu
i #OTF18A0 URDS §/0/0 TU
0 usa1b 3dnirejur oq §/0/0 TU +S0d ‘9weN pjal4
's0d ‘awieN pisid ysew 3dnizejuy o8z z9sn U
use1b 3e8/1eveTo/esned 3dnizeluyl ju j88/1varo/esnes 3dnizezuy ju
(sBey i ‘suomsod)q ewres) “thuwmmwm (sBiy jj8 ‘suomsod yq ewss) "whcum_mﬂm
\x i i uye3sqe 091 aonpai Ju
\w \, . . . L 0 ute3lsqe 031 ju

Woo od/s Hauw/f Ha

0215 :sog
Tox3uos eoezzajuy ju :43)sibay

‘owieN pjeid

4

-z 90PFISIUT DE 10F SITq L 4
P e e e e \>_ Z T4 ¢ €2 a3e38 08I 1p TU
R, \) 4 (574 F4 | ¥4 a3e3s puss” Ip TU
e e e e D i 22 i 0¢ MOTJI8A0 UBDS WOD U
e \x . vy 81 y 41 Bey oex 1p Tu
e s \» g el 74 il yabueT oeI Tu
RN \D .. [8 zexb Vi 3391 yabuey oo1 Tu
e o 8 yA L 9 Aydwa puss” Tu
FO —. N P Q 2307dwos euop 183n01 TU
e A \> [9 i [3o puas” Tu
e - \w [§ [8 b N0 o8I TU
. \D. [0 4 0 eooeds” puas” Tu
WOO 0d/s HQW/1 HQ dzs sod azs sod :owieN piaid

 BuoT snaeas snjeas

o ce 1€
aoeds puos — _ —uuma ue o1 | yabusy oo1 | Bey oex [Fao wwunmwmm wwwwm _ M

\ * ’ £3due pues

jo 091 O puss ouop jIomjsu

24BUOT }snje3s eoezrequy ju -id)sibay

