
The
Connection Machine
System

C* Programming Guide
I. . .. : ::::

May 1993

Thinking Machines Corporation
Cambridge, Massachusetts

First Printing, May 1993

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation Thinking Machines reserves the right to make changes to any
product described herein.

Although the information in this document has been reviewed and is believed to be reliable, Thinking Machines
Corporation assumes no liability for errors in this document. Thinking Machines does not assume any liability
arising from the application or use of any information or product described herein.

Connection Machine® is a registered trademark of Thinking Machines Corporation.
CM, CM-2, CM-200, and CM-5 are trademarks of Thinking Machines Corporation.
C*®is a registered trademark of Thinking Machines Corporation.
Thinking Machines® is a registered trademark of Thinking Machines Corporation.
UNIX is a registered trademark of UNIX System Laboratories, Inc.

Copyright © 1990-1993 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1264
(617) 234-1000

(4

..

Contents
.............. ___.__

About This Manual .. xiii

Customer Support .. xvi

Part I Getting Started

Chapter 1 What Is C*? .. 3

1.1

1.2

1.3
]

C* and C

C* Implementations......................

Program Development Facilities

3

4

5

Chapter 2 Using C*

2.1 Step 1: Declaring Shapes and Parallel Variables

2.1.1 Shapes............................
2.1.2 Parallel Variables.

2.1.3 Scalar Variables

2.2 Step 2: Selecting a Shape

2.3 Step 3: Assigning Values to Parallel Variables

. 7

................... 8

................... 8

................... 9
................... 10

................... 10

................... 11

2.4 Step 4: Performing Computations Using Parallel Variables

2.5 Step 5: Choosing an Individual Element of a Parallel Variable

2.6 Step 6: Performing a Reduction Assignment of a Parallel Variable

2.7 Compiling and Executing the Program

2.7.1 Compiling. ...

2.7.2 Executing. ..

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

12

13

13

15

15

15

111

f~g)iv Cg ogrmmingGuid

Part II Programming in C*

Chapter 3 Using Shapes and Parallel Variables ... 19

3.1 What Is a Shape?

3.2 Choosing a Shape

3.3 Declaring a Shape

3.3.1 Declaring More Than One Shape .

3.3.2 The Scope of a Shape

3.4 Obtaining Information about a Shape

3.5 More about Shapes

3.6 What Is a Parallel Variable?

3.6.1 Parallel and Scalar Variables

3.7 Declaring a Parallel Variable

......................... 19

......................... 21

......................... 21

......................... 22

......................... 23

......................... 23

......................... 24

......................... 24

......................... 24

......................... 25
3.7.1 Declaring More Than One Parallel Variable 26

A Shortcut for Declaring More Than One Parallel Variable ..
3.7.2 Positions and Elements

3.7.3 The Scope of Parallel Variables .

3.8 Declaring a Parallel Structure

3.9 Declaring a Parallel Array.

3.10 Initializing Parallel Variables

3.10.1 Initializing Parallel Structures and Parallel Arrays

3.11 Obtaining Information about Parallel Variables
3.11.1 The positionsof, rankof, and dimof Intrinsic Functions

3.11.2 The shapeof Intrinsic Function

3.12 Choosing an Individual Element of a Parallel Variable
3.12.1 Precedence. ...

Chapter 4 Choosing a Shape ...

4.1 The with Statement ...

4.1.1 Default Shape ...

4.1.2 Using a Shape-Valued Expression

4.2 Nesting with Statements ...

4.3 Initializing a Variable at Block Scope

4.4 Parallel Variables Not of the Current Shape

26
27

28

28

30

31

32

32

32

33

34

35

37

37

39

39

39

41

41

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

err

iv C *Programming Guide

ONEInt V

Chapter 5 Using C* Operators and Data Types 43

5.1 Standard C Operators .. 43

5.1.1 With Scalar Operands 43

5.1.2 With a Scalar Operand and a Parallel Operand 44

Assignment with a Parallel LHS and a Scalar RHS 44

Assignment with a Scalar LHS and a Parallel RHS 45

5.1.3 With Two Parallel Operands 47

5.1.4 Unary Operators for Parallel Variables 48

5.1.5 The Conditional Expression 49

5.2 NewC* Operators .. 50

5.2.1 The <? and >? Operators 50

5.2.2 The %% Operator 51

5.3 Reduction Operators 52

5.3.1 Unary Reduction .. 53

5.3.2 Parallel-to-Parallel Reduction Assignment 54

5.3.3 List of Reduction Operators 54

5.3.4 The -- Reduction Operator 55

5.3.5 The *- and /- Reduction Operators (CM-5 C* Only) 55

5.3.6 Minimum and Maximum Reduction Operators 56

5.3.7 Bitwise Reduction Operators 56

Bitwise OR .. 56

Bitwise AND 57

Bitwise Exclusive OR 57

5.3.8 Reduction Assignment Operators with a Parallel LHS 57

5.3.9 Precedence of Reduction Operators 58

5.4 The bool Data Type .. 58

5.4.1 The boolsizeof Operator 59

With a Parallel Variable or Data Type 59

With a Scalar Variable or Data Type 59

5.5 Parallel Unions ... 60

5.5.1 Limitations. 60

5.6 Parallel Enumeration Type (CM-5 C* Only) 61

Chapter 6 Setting the Context ... 63

6.1 The where Statement 63

6.1.1 The else Clause 65

6.1.2 The where Statement and positionsof 66

6.1.3 The where Statement and Parallel-to-Scalar Assignment 67

6.2 The where Statement and Scalar Code 67

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Contents v

vi C" Programming Guide

6.3 Nesting where and with Statements 68

6.3.1 Nesting where Statements 68

6.3.2 Nesting with Statements 69

6.3.3 The break, goto, continue, and return Statements 70

6.4 The everywhere Statement 70

6.5 When There Are No Active Positions 71

6.5.1 When There Is a Reduction Assignment Operator 73

Unary Reduction Operators 73

Binary Reduction Assignment Operators 73

6.5.2 Preventing Code from Executing 74

6.6 Looping through All Positions 75

6.7 Context and the I , &&, and ?r Operators 77

6.7.1 11 and&& ... 77... 77

6.7.2 The ? Operator 79

Chapter 7 Pointers .. 81

7.1 Scalar-to-Scalar Pointers ... 81

7.2 Scalar Pointers to Shapes ... 82

7.3 Scalar Pointers to Parallel Variables 82

7.3.1 Alternative Declaration Syntax Not Allowed 84

7.3.2 Arrays ... 85
7.3.3 PointerArithmetic / 85

7.3.4 Parallel Indexes into Parallel Arrays 86

Adding a Parallel Variable to a Pointer to a
Parallel Variable 88

Limitations .. 89

Chapter 8 Functions ... 91

8.1 Using Parallel Variables with Functions i............. 91

8.1.1 Passing a Parallel Variable as an Argument 91

If the Parallel Variable Is Not of the Current Shape 92

8.1.2 Returning a Parallel Variable 93
In a Nested Context 93

8.2 Passing by Value and Passing by Reference 94

8.3 Using Shapes with Functions 96

8.3.1 Passing a Shape as an Argument 96

8.3.2 Returning a Shape 96

May 1993
Copyright @ 1990-1993 Thinking Machines Corporation

Conentsvi

8.4 When You Don't Know What the Shape Will Be

8.4.1 The current Predeclared Shape Name

8.4.2 The void Predeclared Shape Name

Using shapeof with the void Shape

Using void when Returning a Pointer

8.5 Overloading Functions ...

97

97

98

99

99

100

Chapter 9 More on Shapes and Parallel Variables 103

9.1 Partially Specifying a Shape 103

9.1.1 Partially Specifying an Array of Shapes 104

Arrays and Pointers 105

9.1.2 Limitations ... 105

9.2 Creating Copies of Shapes .. 106

9.2.1 Assigning a Local Shape to a Global Shape 107

9.3 Dynamically Allocating a Shape 108

9.4 Deallocating a Shape .. 109

9.5 Dynamically Allocating a Parallel Variable 110

9.6 Casting with Shapes and Parallel Variables 112

9.6.1 Scalar-to-Parallel Casts 112

9.6.2 Parallel-to-Parallel Casts 112

Casts to a Different Type 112

Casts to a Different Shape 113

9.6.3 With a Shape-Valued Expression 113

9.6.4 Parallel-to-Scalar Casts 114

9.7 Declaring a Parallel Variable with a Shape-Valued Expression

9.8 The physical Shape ...

114

115

Chapter 10

10.1

Communication

Using a Parallel Left Index for a Parallel Variable

10.1.1 A Get Operation

10.1.2 A Send Operation

10.1.3 Use of the Index Variable

10.1.4 If the Shape Has More Than One Dimension

10.1.5 When There Are Potential Collisions

For a Get Operation

For a Send Operation

10.1.6 When There Are Inactive Positions

For a Get Operation

........ 117

........ 118

........ 119

........ 120

........ 121
........ 122
........ 123
........ 123
........ 124
........ 126
........ 126

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Contents vii

viii C* Programming Guide
'P'~~ __8--- -----

For a Send Operation 127

Send and Get Operations in Function Calls 129
10.1.7 Mapping a Parallel Variable to Another Shape 130

10.1.8 Limitation of Using Parallel Variables with a
Parallel Left Index 132

10.1.9 What Can Be Left-Indexed 132

10.1.10 An Example: Adding Diagonals in a Matrix 133

10.2 Using the pcoord Function 135

10.2.1 An Example .. 138

10.3 The pcoord Function and Grid Communication 139

10.3.1 Grid Communication without Wrapping 140

10.3.2 Grid Communication with Wrapping 141

Part C* Communication Functions

Chapter 11 Introduction to the C* Communication Library 145

11.1 Two Kinds of Communication .. 146

11.1.1 Grid Communication .. 146
11.1.2 General Communication 147

11.2 Communication and Computation ..

Chapter

147

r 12 Grid Communication.

12.1 Aspects of Grid Communication

12.1.1 Axis ...

12.1.2 Direction...
12.1.3 Distance..
12.1.4 Border Behavior

12.1.5 Behavior of Inactive Positions

12.2 The fromgrid dim Function..................................

12.2.1 With Arithmetic Types

Examples ..
When Positions Are Inactive

12.2.2 With Parallel Data of Any Length

12.3 The from_grid Function
12.3.1 With Arithmetic Types

12.3.2 With Parallel Data of Any Length

.. 149

.. 149

.. 150

.. 150

.. 151

.. 151

. 151

.. 152

.. 152

.. 153

.. 156

.. 157

.. 158

.. 159

.............. 160

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

(4

C.i,

Co:.:: e.. ' -.. x.S:; ...' S .'.,' '.gs; ..
12.4 The to_grid and to_grid_dim Functions

12.4.1 With Arithmetic Types

When Positions Are Inactive

Examples ..
12.4.2 With Parallel Data of Any Length

12.5 The from torus and from torus dim Functions
12.5.1 With Arithmetic Types

12.5.2 With Parallel Data of Any Length

12.6 The to torus and to torus dim Functions
12.6.1 VWith Arithmetic Types

Examples ..
12.6.2 With Parallel Data of Any Length

Chapter 1,3 Communication with Computation 175

13.1 What Kinds of Computation?

13.2 Choosing Elements ..

13.2.1 The Scan Class ..

The Scan Subclass

13.2.2 The Scan Set ..

Inclusive and Exclusive Operations

13.2.3 Segment Bits and Start Bits

If smode Is CMC segment_bit

If smode Is CMC start_bit

Inactive Positions

The Direction of the Operation

Data from Another Scan Set

13;.3 The scan Function ..

13.3.1 Examples ...

13.4 The reduce and copy_reduce Functions

13.4.1 The reduce Function

An Example

13.4.2 The copy_reduce Function

An Example

13.5 The spread and copy_spread Functions
13.5.1 The spread Function

An Example

13.5.2 The copy_spread Function ..

An Example

13.6 The enumerate Function

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

.................. 194

.................. 194
.................. 195
.................. 195
.................. 196

............ 197

161

161

163

163

165

165

166

168

169

169

170

173

175

176

176

179

179

181

182

182

182

183

184

186

186

188

190

190

191

192

193

Contents ix

.........

Ag Pm

13.6.1 Examples

13.7 The rank Function

13.7.1 Examples.

13.8 The multispread Function

13.8.1 The copy_multispread Function

13.9 The global Function

Chapter 14 General Communication

14.1 The make send address Function................
14.1.1 Obtaining a Single Send Address

An Example

14.1.2 Obtaining Multiple Send Addresses

When Positions Are Inactive

An Example

14.2 Getting Parallel Data: The get Function

14.2.1 Getting Parallel Variables

Collisions in Get Operations

14.2.2 Getting Parallel Data of Any Length

14.3 Sending Parallel Data: The send Function

14.3.1 Sending Parallel Variables

Inactive Positions

An Example

14.3.2 Sending Parallel Data of Any Length

14.3.3 Sorting Elements by Their Ranks

14.4 Communicating between Scalar and Parallel Variables
14.4.1 From a Parallel Variable to a Scalar Variable

197

199

200

202

205

206

209

................ 209

................ 210

................ 211

................ 211

................ 212

................ 212

................ 213
................ 214

................ 215

................ 216

................ 218

................ 218

................ 220

................ 220

................ 221

................ 223

................ 226

................ 226
The read from position Function.........
The read from pvar Function

14.4.2 From a Scalar Variable to a Parallel Variable

The write to position Function

The write.to.pvar Function

14.5 The make_multi coord and copy multispread Functions

14.5.1 An Example

......... 226
.......... 227
.......... 229

......... 229
.......... 231
.......... 232
.......... 235

(1
May 1993

Copyright © 1990-1993 Thinking Machines Corporation

C* Prpgramming Guidex

Coaments xi

Appendixes

Appendi x A CM-200 C* Performance Hints

A.1 Declarations ...

A.1.l Use Scalar Data Types

A.1.2 Use the Smallest Data Type Possible

A.1.3 Declare float constants as floats

A.2 Functions ..

A.2.1 Prototype Functions

A.2.2 Use current instead of a Shape Name

A.2.3 Use everywhere when All Positions Are Active.

A.2.4 Pass Parallel Variables by Reference

... 239

... 239

... 239
... 239
... 239

... 240
... 240
... 240
... 240

... 241

A.3 Operators. ..

A.3.1 Avoid Parallel a&, I , and ?: Operators Where

Contextualization Is Not Necessary

A.3.2 Avoid Promotion to ints by Assigning

to a Smaller Data Type

A.4 Communication
A.4.1 Use Grid Communication Functions instead of

General Communication Functions

A.4.2 Use Send Operations instead of Get Operations.

A.4.3 The allocatedetailed_shape Function ...

A.5 Parallel Right Indexing

A.6 Paris...

............ 241

............ 241

............ 241

............ 242

... 242

... 243

... 243

... 246

... 246

Appendix B

B.1

Using allocate_detailed_shape for the CM-5

The Default Layout

B.l.1 Physical Grids
B.1.2 Garbage Positions

B.1.3 Subgrids

B.1.4 Axis Sequence

............ 247

............ 248

............ 248

............ 248

............ 249

............ 251
B.1.5 Subgrid Sequence

B.1.6 Putting It All Together

B.2 Layout without Vector Units

B.3 Controlling Subgrid Layout: Using Serial Axes and Weighting Axes
B.3.1 Serial Axes ..

B.3.2 Weighting Axes

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

252

252

253

254

255

257

Contents xi

.........

MM C* Programming-1Gide

B.4 Performance Issues

B.4.1 Effect of Subgrid Length and Physical Grid .

B.4.2 Effect of Serial Axes

B.4.3 Effect of Garbage Positions.

B.5 Determining a Shape's Layout

B.6 Using allocate detailed hape
B.6.1 In More Detail

B.6.2 Example

............... 257
............... 258
............... 259
............... 259

............... 260

............... 261

............... 263

............... 267

Appendix C

C.1

C.2

Memory Layout on the CM-5

Memory Layout of Parallel Variables

Pointers to Parallel Variables

C.3 Manipulating Pointers to Parallel Variables .

C.4 Shape Aliasing

C.4.1 Examples...................

Appendix D CM-5 C* Table Lookup Utility
D.1 An Example

Appendix E Glossary

281

282

......... 285

Inde; ..

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

C.

271

271

273

274

275

276

(4.

291

C* Programming Guidexii

About This Manual
NEIN

Objectives of This Manual

This manual is intended to help you learn how to program in the C* data parallel
programming language.

Intended Audience

Readers are assumed to have a working knowledge of C programming and a
general understanding of the components of the Connection Machine system on
which they will be running their programs.

Revision Information

This is a revision of the C* Programming Guide, Version 6.0.2. The major
difference from the previous version is the inclusion of information about the
CM-5 implementation of C*.

Organization of This Manual

Part I Getting Started

These two chapters introduce C* and data parallel programming
on the Connection Machine system and provide a step-by-step
explanation of a simple program.

Part H Programming in C*

These eight chapters describe how to write programs in C*.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Part MI C* Communication Functions

Data parallel programming lets you operate on large
multi-dimensional sets of data at the same time. These four
chapters describe C* library functions that you can use to trans-
fer values among items in the data set and to perform cumulative
operations along any of the dimensions of the data set.

Appendix A CM-200 C* Performance Hints

This appendix suggests ways of increasing the performance of
a CM-200 C* program.

Appendix B Using allocate_detailed_shape for the CM-5

This appendix describes how to use the a llo-
cate_detailed_shape function to explicitly control how a
shape is laid out on the CM-5.

Appendix C Memory Layout on the CM-5

This appendix describes the memory layout of parallel variables
on the CM-5, and explains how to manipulate data via shape
aliasing.

Appendix D CM-5 C* Table Lookup Utility

This appendix describes a utility available in CM-5 C*.

Appendix E Glossary

This is a glossary of technical terms used in the manual.

Associated Documents

If you are going to run your programs on a CM-5 system, see the CM-5 C* User s
Guide for more information.

If you are going to run your programs on a CM-200, CM-2, or CM-2a system, see
the CM-200 C* User s Guide for more information.

For more basic information on C*, see the manual Getting Started in C*.

For information on improving the performance of your CM-5 C* program, see
the CM-5 C* Performance Guide.

May 1993
Copyright Q 1990-1993 Thinking Machines Corporation

xiv C* Programming Guide

Ao=t This Manual xv

Information about related aspects of CM programming is contained in other
volumes of the documentation set for your CM system.

C* is based on the standard version of the C programming language proposed by
the X3Jll committee of the American National Standards Institute; this version
is referred to as Standard C in this manual. The standard is available from:

X3 Secretariat
Computer and Business Equipment Manufacturers Association
311 First Street, N.W.
Suite 500
Washington, DC 20001-2178

Related books about Standard C include:

* Brian W. Kernighan and Dennis M. Ritchie, The C Programming
Language, 2nd edition (Englewood Cliffs, New Jersey: Prentice-Hall,
1988)

· Samuel P. Harbison and Guy L. Steele Jr., C: A Reference Manual, third
edition (Englewood Cliffs, New Jersey: Prentice-Hall, 1991)

Notation Conventions

The table below displays the notation conventions used in this manual:

Convention Meaning

bold typewriter

italics

C* and C language elements, such as keywords,
operators, and function names, when they appear
embedded in text. Also UNIX and CM System
Software commands, command options, and file
names.

Parameter names and placeholders in function and
command formats.

typewriter

% bold typewriter
typewr i ter

Code examples and code fragments.

In interactive examples, user input is shown in
bold typewriter and system output is shown
in regular typewr iter font.

May J 993
Copyright © 1990-1993 Thinking Machines Corporation

About This Manual xv

Customer Support
~ ~~~ o sasa s s e------- ---- -------------------------------- -- ---- ---------- ---------

Thinking Machines Customer Support encourages customers to report errors in
Connection Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help
us identify and correct the problem. A code example that failed to execute, a
session transcript, the record of a backtrace, or other such information can
greatly reduce the time it takes Thinking Machines to respond to the report.

If your site has an applications engineer or a local site coordinator, please contact
that person directly for support. Otherwise, please contact Thinking Machines'
home office customer support staff:

Internet
Electronic Mail:

uucp
Electronic Mail:

U.S. Mail:

Telephone:

customer-supportsthink.com

ames! think! customer-support

Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

(617) 234-4000

May 1993
Copyright 0 1990-1993 Thinldng Machines Corporation xvi

Part I
Getting Started

x..... m

V.

Chapter 1

What Is C*?

C* (pronounced "sea-star") is an extension of the C programming language
designed to help users program massively parallel distributed-memory
computers. In addition, it is a concise and efficient language for programming
many other architectures, including those with shared memory, vector
processors, pipelining, and superscalar execution units. This chapter and Chapter
2 introduce C*.

1.1 C* and C

C* implements the ANSI standard C language (referred to in this guide as
Standard C). Programs written in Standard C compile and run correctly under C*

(except when they use one of the words that are newly reserved in C*). In
addition, C* provides new features to aid in writing programs for massively
parallel computers. These features include:

* A method for describing the size and shape of parallel data and for
creating parallel variables. Shapes and parallel variables are discussed in
Chapters 3, 4, and 9.

* New operators and expressions for parallel data, and new meanings for
standard operators that allow them to work with parallel data. Operators
are discussed in Chapter 5.

* Methods for choosing the parallel variables, and the specific data points
within parallel variables, upon which C* code is to act. These features are
discussed in Chapters 4 and 6.

May.1993 3
Copyright 0 1990-1993 Thinking Machines Corporation

* New kinds of pointers that point to parallel data and to shapes. C* pointers
are discussed in Chapter 7.

· Changes to the way functions work so that, for example, a parallel variable
can be used as an argument. Chapter 8 describes C* functions.

* Methods for communication among parallel variables. See Chapter 10.

· Library functions that also allow communication among parallel
variables. Chapters 11-14 describe these functions.

1.2 C* Implementations

In addition to a general description of how to program in the C* language, this
guide provides specifics about two implementations of C*:

* CM-200 C* - The CM-200 compiler translates a C* program into a serial
C program made up of standard serial C code and calls to Paris, the
CM-200's parallel instruction set. This code is then passed to the C
compiler of the CM-200's front end, which handles it in the normal way
to produce an executable load module. The serial C code is executed on
the front end; the Paris instructions are executed on the CM. Programs
compiled with the CM-200 C* compiler can run on the CM-200, CM-2, and
CM-2a Connection Machine systems.

* CM-S C" - The CM-5 compiler translates a C* program into assembly
code. Serial instructions are executed on the CM-S's partition manager,
parallel instructions are executed on its processing nodes or vector units.
When compiled with the -node option, copies of the program run on
individual nodes; serial instructions are executed on the node, and parallel
instructions are executed on the node's vector units.

There is in addition a Sun-4 implementation of C*. This implementation is based
on the CM-5 compiler, but lets you run your programs on a Sun-4 workstation,
without CM hardware. Unless otherwise specified, all notes in this manual that
apply to the CM-5 implementation also apply to the Sun-4 implementation.

There are some implementation differences between these compilers. The
differences are noted in this guide.

May 1993

Copyright © 1990-1993 Thinking Machines Corporation

C* Programming Guide4

Chapter 1. What Is C*?
Amm IIH

1.3 Program Development Facilities

C* uses its own compiler, run-time libraries, and header files.

C* can use standard UNIX programming tools such as make. In addition, you can
execute, debug, and visualize data for a C* program within Prism, the CM's
programming environment.

The C* compiler and related program development facilities are described more
fully in the C* User Guide for either the CM-200 or the CM-5.

Msy 1993
Copyright C 1990-1993 Thinking Machines Corporation

5

0-

Chapter 2

Using C*

This chapter presents a simple C* program that illustrates some basic features of
the language. At this point we are not going to describe these features in detail;
the purpose is simply to give a feel for what C* is like. After the program has
been presented, we briefly describe how to compile and execute it.

The program sets up three parallel variables, each of which consists of 65,536
individual data points called elements. It then assigns integer constants to each
element of these parallel variables and performs simple arithmetic on them.

#include <stdio.h>

/*

* 1. Declare the shape and the variables

*/

shape [2] [32768]ShapeA;

int:ShapeA pl, p2, p3;

int sum- 0;

main()

{

/*

* 2. Select the shape

*/
with (ShapeA){

/*

* 3. Assign values to the parallel variables

*/
pl - 1;

May 1993 7

Copyright © 1990-1993 Thinking Machines Corporation

C* Programming Guide

p2 - 2;

/*

* 4. Add them

*!

p3 - pl + p2;

/*

* 5. Print the sum in one element of p3

*/

printf ("The sum in one element is %d.\n", []03 [1]p3);

/*

* 6. Calculate and print the sum in all elements of p3

*/

Its output is:

sum +- p3;

printf ("The sum in all elements is %d.\n", sum);

The sum in one element is 3.

The sum in all elements is 196608.

Before we go through the program, notice the file extension, . a, in the
program's name. C* source files must have this .cs extension.

2.1 Step 1: Declaring Shapes and Parallel Variables

2.1.1 Shapes

The initial step in dealing with parallel data in a C* program is to declare its
shape - that is, the way the data is to be organized In Step 1 of add. cs, the
line

shape [2] [32768]ShapeA;

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

8
~ ~~8a~~ ps ~~~n ~~n ~ - -------- ------------------

Chapter...................2.. U......

declares a shape called ShapesA. ShapeA consists of 65,536 positions, as shown
in Figure 1.

Figure 1. The shape ShapeA.

ShapeA has two dimensions; you can also declare shapes with other numbers of
dimensions. The choice of two dimensions here is arbitrary. The appropriate
shape depends on the data with which your program will be dealing.

2.1.2 Parallel Variables

Once you have declared a shape, you can declare parallel variables of that shape.
In add. cs, the line

int:ShapeA pl, p2, p3;

declares three parallel variables: pl, p2, and p3. They are of type int and of
shape shapeA. This declaration means that each parallel variable is laid out
using ShapeA as a template, with memory allocated for one element of the
variable in each of the 65,536 positions specified by ShapeA. Figure 2 shows the
three parallel variables of shape ShapeA.

Mery 1993

Copyright 0 1990-1993 Thinking Machines Corporation

ShapeA

0 1 2 32767

Position

Chiipter Z. Using C * 9

1 C* ProgrammingI--- ------ Guide--

Figure 2. Three parallel variables of shape ShapeA.

With C*, you can perform operations on all elements of a parallel variable at the
same time, on a subset of these elements, or on an individual element.

2.1.3 Scalar Variables

In Step 1, the line

int sum = 0;

is Standard C code that declares and initializes a C variable. These C variables
are called scalar in this guide to distinguish them from C* parallel variables. In
CM-200 C*, memory for Standard C variables is allocated on the front end; in the
CM-5 implementation (when the program is not compiled with the -node
option), it is allocated on the partition manager.

2.2! Step 2: Selecting a Shape

In add. cs, the line

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

32767

Elements

R..

0 1 2

p1

p2

p3

4f

10 C* Programming Guide

aptr2.U.g,31

with (ShapeA) /* Step 2 */

tells C* to use ShapeA in executing the code that follows. In other words, the
with statement specifies that only the 65,536 positions defined by ShapeA are
active. In C* terminology, this makes ShapeA the current shape. With some
exceptions, the code following the with statement can operate only on parallel
variables that are of the current shape, and a program can execute most parallel
code only within the body of a with statement.

2.3 Step 3: Assigning Values to Parallel Variables

Once a shape has been selected to be the current shape, the program can include
statements that perform operations on parallel variables of that shape. Step 3 in
add. cs is a simple example of this:

pl = 1;
p2 = 2;

/* Step 3 */

The first statement assigns the constant 1 to each element of pi; the second
statement assigns 2 to each element of p2. After these two statements have been
executed, pi and p2 are initialized as shown in Figure 3.

pi = 1;
P2 = 2; 0 1 2

01 1 1pi

2
g2

2

2 2

2 2

Figure 3. Initialized parallel variables.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Chapter 2. sing C* 11

32767

1

1- .-

O1 I C P g m i Guide-------------

Note that the statements in Step 3 look like simple C assignment statements, but
the results are different (although probably what you would expect) because pa
and p2 are parallel variables. Instead of one constant being assigned to one scalar
variable, one constant is assigned simultaneously to each element of a parallel
variable.

2.4 Step 4: Performing Computations Using
Parallel Variables

Step 4 in add. ca is a simple addition of parallel variables:

p3 = p + p2;

In this statement, each element of pi is added to the element of p2 that is in the
same position, and the result is placed in the element of p3 that is also in the same
position. Figure 4 shows the result of this statement.

p3 p + p2;
32767

1

... -

2

2

ee ®

ee®
3e

0 1 2

1 1 1

11 1 1

2 2 2

2 2 2

3 3 3

3 3 3

+

p2

p3

Figure 4. Addition of parallel variables.

Like C* assignment statements, C* parallel arithmetic operators look the same
as the standard C arithmetic operators, but work differently because they use
parallel variables.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

pI

ISr

C *Programming Guide12

Ch_'_~ ____apter. -~:----- ----------s
2.5 Step 5: Choosing an Individual Element of a

Parallel Variable

In Step 5 of add. cs we print the sum in one element of p3. Step 5 looks like
a standard C printf statement, except for the variable whose value is to be
printed:

[o] []p3

[01 [1] specifies an individual element of the parallel variable p3. Elements are
numbered starting with 0, and you must include subscripts for each dimension
of the parallel variable. Thus, [0o [11 p3 specifies the element in row 0, column
1 of p3, and the printf statement prints the value contained in this element.

0 1 2 32767

3
p3 XV~ ..

1 3 1 3 1 3 1

Figure 5. Element [01[1] of p3.

Note that this printf statement would be incorrect:

printf ("The sum in one element is %d.\n", p3); /* wrong */

Different elements of p3 could have different values (even though they are all
the same in the sample program), so printf would not know which one to print.

2!.6 Step 6: Performing a Reduction Assignment of a
Parallel Variable

So far, add. cs has demonstrated assignments to parallel variables and addition
of parallel variables. This line in the program:

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Cha;pter 2. Using C * 13

14-- ---Pro ------ G u--------de-

sum +- p3; /* Step 6 */

is an example of a reduction assignment of a parallel variable. In a reduction
assignment, the variable on the right-hand side must be parallel, and the variable
on the left-hand side must be scalar. The +- reduction assignment operator sums
the values in all elements of the parallel variable (in this case, p3) and adds this
sum to the value in the scalar variable (in this case, sum); see Figure 6. (Note that
the value of the scalar variable on the left-hand side is included in the addition;
that is why add. s initializes sum to 0 in Step 1.)

Figure 6. The reduction assignment of parallel variable p3.

The final statement of the program simply prints in standard C fashion the value
contained in sum.

Note the first closing brace, on the line after the final printf statement. This
brace ends the block of statements within the scope of the with statement in
Step 2.

May 1993
Copyright 3 1990-1993 Thinking Machines Corporation

isum + p3;

sum 196608

0 1 2

03 3 3
p3

I 3 3 3

14 C* Programming Guide

32767

3·

.t

T

Chapter 2. Using Cs
15

2.7 Compiling and Executing the Program

2.7.1 Compiling

You compile a C* program using the command cs on a computer on which the
C* compiler is installed. To compile the program add. as, type:

% ca add.cs

Use the -cm2, -cm200, -cm5, or -msJim option to specify the hardware for
which the program is to be compiled (there is also a site-specific default). On the
CM-5, specify the -sparc or -vu option to specify whether you are compiling
to run on the processing nodes or vector units.

As with the C compiler command cc, this command produces an executable load
module, placed by default in the file a. out.

2.7.2 Executing

On a CM, you can execute the resulting load module from a front end or partition
manager as you would any program or UNIX command. For example:

% a.out

For more information on how to compile and execute a C* program, see the C*
User s Guide for the CM-5 or CM-200.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

B~~L~~llg~~l~l~~lsssss------- ll s- ------------

4

Part II
Programming in C*

i _ g g _ _ id: : : : : ::.:>:.s>S::S:::'zX::::f:>:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~·:~;~:;:·2fig~:PI~:~ a~~

(94

f* <

i

Chapter 3

Using Shapes and Parallel Variables

The sample C* program in Chapter 2 began by declaring a shape and several
parallel variables. Shapes and parallel variables are the two most important addi-
tions of C* to Standard C. This chapter introduces these topics; Chapter 9
discusses them in more detail.

3.1 What Is a Shape?

A shape is a template for parallel data, a way of logically configuring data. In C*,

you must define the shape of the data before you can operate on it. A shape is
defined by:

* The number of its dimensions. This is referred to as the shape's rank. For
example, a shape of rank 2 has two dimensions. A shape can have from
1 to 31 dimensions. A dimension is also referred to as an axis.

* The number of positions in each of its dimensions. A position is an area
that can contain individual values of parallel data.

The total number of positions in a shape is the product of the number of positions
in each of its dimensions. Thus, a 2-dimensional shape with 4 positions in axis

0 (the first dimension) and 8 positions in axis 1 (the second dimension) has 32
total positions, organized as shown in Figure 7. (By convention in this guide, axis
O denotes the row number, and axis 1 denotes the column number.)

May 1993 19
Copyright © 1990-1993 Thinking Machines Corporation

-0--- :...

Figure 7. A 4-by-8 shape.

NOTE FOR USERS OF CM-200 C*

The CM-200 implementation of C* imposes these restrictions
on shapes in C*:

* The number of positions in each dimension of a shape
must be a power of two.

* The total number of positions in the shape must be some
multiple of the number of physical processors in the sec-
tion of the CM that the C* program is using.

For example, if the program is running in a CM section with
8192 physical processors, it can have shapes with 8192 posi-
tions, 16384 positions, and so on. You can arrange them 2 by
4096, 4 by 4 by 512, and so on.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Axes
°lR ·

0 1 2 3 4 5 6 7

0

2

3

'.

| B . -

l - . -

E

~~~~IB~~~~~~~~~~L~~~~~~~B~~~~~--------- - -----------

~~~nnnnaannnnnnnearresannn~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ------------------

20 C* Noegramminug Guide

ChapterBl 3. U-gSpeanPrleVai

3.2 Choosing a Shape

The choice of a shape depends on the data that the C* program is going to be
using. The shape typically reflects the natural organization of the data. For
example:

* A database program for the employee records of a large company might
use a -dimensional shape, with the number of positions equaling the
number of employees.

* A graphics program might use a shape representing the 2-dimensional im-
ages that the program is to process. If the images have 256 pixels in the
vertical dimension and 256 pixels in the horizontal dimension, a shape of
rank 2 with 256 positions in each dimension would be appropriate. This
would let each position represent a pixel in an image.

* A program to analyze stress in a solid object might use a 3-dimensional
shape, with each axis representing a dimension of the object, and each po-
sition representing some portion of the volume of the object.

3.3 Declaring a Shape

Here is a declaration of a shape in C*:

shape 16384] employees;

This statement declares a shape called employees. It has one dimension (a rank
of 1) and 16384 positions.

Let's take a closer look at the components of the statement:

* shape is a new keyword that C* adds to Standard C.

* [16384] specifies the number of positions in the shape. If the shape is
declared at file scope, or as an extern or static at block scope, the
value in brackets must be a constant expression. Otherwise, it can be any
expression that can be evaluated to an integer. This follows the ANSI C
standard.

May 1993
Copyright 0 1990-1993 Thiinmng Machines Corporation

Chapter 3. Using Shapes and Parallel ariables 21

22..I ---------- G uid

* employees is the name of the shape. Shape names follow standard C
naming rules. They are in the same name space as variables, functions,
typedef names, and enumeration constants.

Figure 8 shows the shape declared above.

Figure 8. The shape employees.

A 2-dimensional shape adds another number, in brackets, to the right of the first
set of brackets. This number represents the number of positions in the second
dimension. For example:

shape [256] [512] image;

This shape has 256 positions along axis 0 and 512 positions along axis 1. Each
additional dimension is represented by another number in brackets, to the right
of the previous dimensions.

Individual positions within a shape can be identified using bracketed numbers as
coordinates. For example, position [4] of shape employees is the fifth position
in the shape (numbering starts with 0, as in C). Position [47][112] of shape
image is the position at coordinate 47 along axis 0 and 112 along axis 1.

3.3.1 Declaring More Than One Shape

A program can include many shapes. You can use a single shape statement to
declare more than one shape. For example:

shape [16384]employees, [256] [512] image;

May 1993
Copyright 0 1990-1993 hinking Machines Corporation

shape employees

0 1 2 3 16383

I, I I I I ... K

22 C *Programming Guide

Chapter- 3.E Upsi ShapsdPrale aials2

3.3.2 The Scope of a Shape

A shape's scope is the same as that of any identifier in Standard C. For example,
a shape declared within a function or block is local to that function or block. A
shape declared at global scope can be referenced anywhere in the source file after
its declaration.

NOTE: If a block contains a shape declaration, you should not branch into it (for
example, with a switch or goto statement); the behavior is undefined.

3.4 Obtaining Information about a Shape

You can obtain information about a shape by using the C* intrinsic functions
positionsof, rankof, and dimof. (Intrinsic functions are new in C*; they
have function-like syntax, but they must be known to the compiler - for exam-
ple, because they don't follow all Standard C rules for functions.)

* positionsof takes a shape as an argument and returns the total number
of positions in the shape.

* rankof takes a shape as an argument and returns the shape's rank.

* dimof takes two arguments: a shape and an axis number. It returns the
number of positions along that axis.

The simple C* program below displays information about a shape.

#include <stdio.h>

shape [16384]employees, [256] [512] image;

main()

{

printf ("Shape 'employees' has rank %d and %d positions.\n",

rankof (employees), positionsof (employees));

printf ("Shape 'image' has rank %d and %d positions.\n",
rankof(image), positionsof(image));

printf ("Axis 0 has %d positions; axis 1 has %d positions.\n",
dimof(image,0), dimof(image,l));

}

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Chapter 3. Using Shapes and Parallel Vriables 23

2~la4 C*Pogrming Guide

Its output is:

Shape 'employees' has rank 1 and 16384 positions.

Shape 'image' has rank 2 and 131072 positions.

Axis 0 has 256 positions; axis 1 has 512 positions.

These intrinsic functions can be used in other, more interesting contexts, as we

discuss later.

3.5 More about Shapes

So far, we have covered the basics about shapes in C*. Chapter 9 discusses more
advanced aspects of shapes. For example:

* Partially specifying a shape

* Copying shapes

* Dynamically allocating a shape

3.6 What Is a Parallel Variable?

Once a program has declared a shape, it can declare variables of that shape.
These variables are called parallel variables.

3.6.1 Parallel and Scalar Variables

A good way to understand parallel variables is to compare them with standard
C variables. As we mentioned in Chapter 2, Standard C variables are referred to
in this guide as scalar to distinguish them from parallel variables. A scalar vari-
able contains only one "item" - one number, one character, and so on. A
parallel variable contains many items. (Note that Standard C uses the term scalar
in a slightly different way, to refer collectively to arithmetic and pointer types.
We consider a Standard C array or structure, for example, to be scalar because
it contains only one array or structure.)

A scalar variable has the following associated with it:

May 1993
Copyright © 1990-1993 Thinldng Machines Corporation

24 C *Prvgramming Guide

3Chapter 3UghsdPallrie

* a type, along with its modifiers and qualifiers, (for example, char, un-
signed int, long double) that defines how much memory is to be
allocated for the variable and how operators deal with it

* a storage class (for example, auto, static) that defines the manner in
which the memory is to be allocated

Like a scalar variable, a parallel variable has a type and a storage class, but in
addition it has a shape. The shape defines how many elements of a parallel vari-
able exist, and how they are organized. Each element exists in a position in the
shape and contains a single value for the parallel variable. If a shape has 16384
positions, a parallel variable of that shape has 16384 elements, one for each
position.

Each element of a parallel variable can be thought of as a single scalar variable.
But the advantage of a parallel variable is that C* lets a program carry out opera-
tions on all elements (or any subset of elements) of a parallel variable at the same
time. As the sample program in Chapter 2 demonstrated, you can:

* Assign a constant to all elements of a parallel variable at the same time.

* Declare multiple parallel variables of the same shape.

* Perform an arithmetic operation on all elements of a parallel variable at
the same time.

* Do reduction assignments of data in all elements of a parallel variable.

As we explain later in this manual, parallel variables that have different shapes
can interact, but interactions between parallel variables are more efficient if the
parallel variables are of the same shape.

3.7 Declaring a Parallel Variable

Before declaring a parallel variable, you must define the shape that the parallel
variable is to take. For example, assume that this shape has been defined:

shape [16384] employees;

You can then declare parallel variables of this shape. For example:

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Chapter 3. Using Shapes and Parallel Variables 25

26 C'~IB Programming GuideW..

unsigned int employeeid:employees;

Interpret the colon in this syntax to mean "of shape shapename." Thus, this state-
ment declares a parallel variable called employee_id that is of shape
employees. unsigned int specifies the type of the parallel variable em-
ployee_id. Parallel variable names, like shape names, follow Standard C
naming rules.

Figure 9 shows this parallel variable.

Figure 9. A parallel variable of shape employees.

3.7.1 Declaring More Than One Parallel Variable

You can declare more than one parallel variable in the same statement, if they are
of the same type. For example:

unsigned int employee_id:employees, age:employees;

The parallel variables need not be of the same shape. For example:

unsigned int employee_id:employees, fieldl:image;

A Shortcut for Declaring More Than One Parallel Variable

If parallel variables have the same type and same shape, C* provides a more
concise method for declaring them. Put the ":shapename" after the type rather
than after each parallel variable. For example:

unsigned int:employees employeeid, age, salary;

May 1993
Copyright ©) 1990-1993 Thinking Machines Corporation

shape employees

1 2 3 16383

employee -id I_ I I I I b...y

AO1

(b

26 C* Pipgramming Guide

Chpe 3.UigSae n aallVrals2

The parallel variables employee id, age, and salary are all unsigned
ints of shape employees. This syntax is generally used except when parallel
variables of different shapes are being declared.

Figure 10 shows the three parallel variables that this statement creates.

shape employees

employee_id

age

salary

0 1 2 3

Iz"" 'I1 lE

Figure 10. Three parallel variables of shape employees.

3.7.2 Positions and Elements

As we have mentioned, a shape is a template for the creation of parallel variables.
It is important to keep in mind the distinction between positions of a shape and
elements of parallel variables that have been declared to be of that shape. As
shown in Figure 11, elements with the same coordinates can be considered to
occupy the same position in the shape. For example, the third elements of em-
ployee-id, age, and salary are all at position [2] of shape employees.
These elements are referred to as corresponding elements. Corresponding ele-
ments are an important concept in C*.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

16383

..e

int

Cimpter 3. Using Shapes and Parallel ariables 27

8 C*Program------Guide

0 1

employee_d I

age

salary

shape employees

position

16383

corresponding elements

Fgure 11. Corresponding elements.

A*1

3.7.3 The Scope of Parallel Variables

Parallel variables follow the same scoping rules as standard scalar variables (and
shapes). For example, a parallel variable declared within a function or block is
local to that function or block.

NOTE: As with shape declarations, if a block contains a parallel variable declara-
tion, you should not branch into it (for example, with a switch or goto
statement); the behavior is undefined

3.8 Declaring a Parallel Structure

You can declare an entire structure as a parallel variable. For example:

shape [16384] employees;

struct date {
int month;
int day;

May 1993
Copyright 0 1990-1993 Thining Machines Corporation

: I

i

C * Prgramming Guide28

Chapter 3.~ 8~181s- U---g S p Paralle Variables----

int year;

;

struct date:employees birthday;

The final line of code defines a parallel variable called birthday. It is of shape
employees and of type struct date. This parallel structure is shown in
Figure 12.

Figure 12. A parallel structure of shape employees.

Each element of the parallel structure contains a scalar structure, which in turn
will contain the birthday of an employee.

As with non-structured variables, you can declare more than one parallel struc-
ture in a single statement. For example:

struct date:employees birthday, date of hire;

You can declare parallel structures of different shapes. For example:

struct date birthday:employees, date of purch:equipment;

Note the different syntax, with :shapename" coming after each parallel
variable.

You can also use this syntax for declaring a parallel structure:

struct date {
int month;
int day;

May 1993
Copyrght 0 1990-1993 Thinking Machines Corporation

shape employees

0 1 2 3 16383

.)} int
·@ _

month
structure

birthday day

year

Chapter 3. Using Shapes and Parallel ariables 29

3 C* Programming Guide*lapaasll

int year;

}:employees birthday;

Accessing a member of a parallel structure is the same as accessing a member
of a scalar structure. For example, birthday. day specifies all elements of
structure member day in the parallel structure birthday.

Some additional points about structures:

* Only scalar (that is, non-parallel) variables are allowed within parallel or
scalar structures. Pointers to parallel variables are allowed within scalar
structures, however.

* Shapes are not allowed within parallel or scalar structures; a pointer to a
shape is allowed within a scalar structure. (Pointers to shapes are dis-
cussed in Chapter 7.)

* You can include a scalar array within a parallel structure; you cannot in-
clude pointers of any kind.

* C*, like Standard C, allows structures to be nested.

3.9 Declaring a Parallel Array

You can declare an array of parallel variables. For example,

shape [16384] employees;

int:employees ratings[3];

declares an array of three parallel ints of shape employees, as shown in
Figure 13. ratings [01 specifies the first of these parallel variables, rat-
ings [1] the second, and ratings [21 the third.

May 1993
Copyright C 1990-1993 Thinking Machines Corporation

30 C* Programming Guide

Chapte .UIng Shape and PallelViabes 31IIII

shape employees

array
ratings

ratings [01

ratings [11

ratings [21

0 1 2 3 16383

.. })int

see-

Figure 13. A parallel array of shape employees.

Please note the difference between an element of a parallel array and an element
of a parallel variable:

* An element of a parallel array, like ratings [01 in Figure 13, is a parallel
variable. It has values for each position of its shape.

* An element of a parallel variable is scalar, and exists in only one position.
ratings [01 consists of 16384 separate parallel variable elements.

You can also use the alternative syntax for declaring a parallel array. For
example:

int ratings[3] :employees;

We discuss parallel arrays further in Chapter 7, where we explain their relation-
ship to pointers.

3.10 Initializing Parallel Variables

You can initialize a parallel variable when you declare it. The initializer must be
a single scalar value. Each element of the parallel variable is set to that value. For
example,

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Chapter 3. Using Shapes and Parallel ariables 31

32 C*Programming Guide~aaa kaks~a~a.

shape [65536]ShapeA;

int:ShapeA p = 6;

sets each element of parallel variable pi to 6.

If the variable is an automatic, the initializer can be an expression that can be
evaluated at the variable's scope. For example,

main()

int i = 12;

shape [65536]ShapeA;

int:ShapeA pl = (6+i);

sets each element of pi to 18.

If there is no initializer in a parallel variable declaration, and the variable has
static storage duration, each element of the parallel variable is set to 0; this fol-
lows Standard C.

3.10.1 Initializing Parallel Structures and Parallel Arrays

Members of parallel structures and elements of parallel arrays can be initialized
only to scalar constants; this too follows Standard C.

3.11 Obtaining Information about Parallel Variables

Once you have declared a parallel variable in a program, you can obtain informa-
tion about it, just as you can for a shape.

3.11.1 The positionsof, rankof, and dimof Intrinsic Functions

The positionsof, rankof, and dimof intrinsic functions described in Section
3.4 can be applied to parallel variables as well as to shapes. For example, if age
is a parallel variable of shape employees:

May 1993
Copyright 1990-1993 Thinking Machines Corporation

(A)

32 C * Pipgramming Guide

-

Chapter 3. Using Shapes and Parallel Variables 33

* rankof(age) returns the rank of employees.

* positionsof (age) returns the total number of elements of age (and
any other parallel variable of shape employees). Note that the number of
elements of a parallel variable is the same as the number of positions in
the parallel variable's shape.

* dimof (age, 0) returns the number of elements in axis 0 of age (and any
other parallel variable of shape employees).

3.11.2 The shapeof Intrinsic Function

C* includes another intrinsic function that applies only to a parallel variable. The
shapeof intrinsic function takes a parallel variable as an argument and returns
the shape of the parallel variable. For example, if a program contains these
declarations:

shape [16384]employees;
unsigned int:employees age;

shapeof (age) returns the shape employees.

shapeof (age) is a shape-valued expression; it can be used anywhere the shape
name employees is used. For example, once age is declared, a subsequent dec-
laration of a parallel variable:

unsigned int:employees salary;

could also be written:

unsigned int:shapeof(age) salary;

Similarly, a parallel structure like the one shown in Section 3.8 could be declared
as follows:

struct date:shapeof(age) birthday;

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

34 C* Programming GuideB~a~l~lae

3.12 Choosing an Individual Element of a Parallel Variable

As we described earlier, an individual position can be described by its coordi-
nates along the axes of the shape. These coordinates are also used in specifying
an individual element of a parallel variable. As with a shape declaration, the co-
ordinates appear in brackets to the left of the variable name, starting with the
coordinate for axis 0. These coordinates are also referred to as a left index.

Thus, if age is a parallel variable of a 1-dimensional shape named employees,
[01 age specifies the first element of age, and [41 age specifies the fifth ele-

ment of age.

For a 2-dimensional parallel variable called pvar,

* o0 [0 pvar specifies the element in row 0, column 0.

* [11[lpvar specifies the element in row 1, column O.

[o] [1] pvar specifies the element in row O, column 1.

and so on. Recall that axis 0 refers to the rows, and axis 1 refers to the columns.

A left index must be 0 or greater. The behavior of an operation that includes a
negative left index is undefined

You can use a left index with an element of a parallel array. For example,

[77] A1 [4]

specifies the seventy-eighth parallel variable element of Al [4], which is the
fifth array element of the parallel array Al.

You can use scalar variables or expressions in place of numbers in the left index.
For example, if a program contains this declaration,

int j 4;

the expression J] age specifies the fifth instance of age.

It is also possible to use parallel variables or expressions in the left index. We
leave that topic, however, for Chapter 10.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

34 C* Programming Guide

Chapter 3. Using Shapes and Paallel Vables 35

3.12.1 Precedence

The precedence level of left indexes lies between the bottom of the list of postfix
expressions and the top of the list of unary operators.

May 1993
Copyright C) 1990-1993 Thinking Machines Corporation

Chapter 3. Using Shapes and PdraUel ariables 35

(I

Chapter 4

Choosing a Shape
=-- - - - - - - - -- - - -

In Chapter 3 we described how to declare a shape, which is used as a way of
organizing parallel data. You can declare more than one shape in a C* program.
However, a program can (in general) operate on parallel data from only one
shape at a time. That shape is known as the current shape. You designate a shape
to be the current shape by using the with statement, which C* has added to Stan-
dard C.

4.1 The with Statement

Assume a program contains these declarations for a shape and three parallel vari-
ables of that shape:

shape [16384] employees;

unsigned int:employees employee_id, age, salary;

Before operations can be performed on these parallel variables, employees
must become the current shape.

To make employees the current shape, use the with statement as follows:

with (employees)

Any statement (or block of declarations and statements) following with (em-
ployees) can operate on parallel variables of shape employees. For example,

with (employees)
age = 0;

May 1993 37
Copyright 3 1990-1993 Thinking Machines Corporation

38----- C* Programm-g-G

initializes all elements of the parallel variable age to 0. (We discuss parallel as-
signment statements in Chapter 5.) If each element of salary has been
initialized to each employee's current salary, this code:

unsigned int:employees newsalary;
with (employees)

new_salary - salary*2;

stores twice each employee's salary in the elements of nevwsalary. (Once
again, we cover arithmetic with parallel variables in the next chapter.)

You can also include operations on scalar variables inside a with statement. For
example, you can declare a scalar variable called sample_salary and assign
one of the values of salary to it:

with (employees) {

unsigned int sample_salary;

sample_salary [0] salary;

}

Here is what you cant do inside a with statement:

shape [16384]employees, [8192]equipment;

unsigned int employee id:employees,

date ofjpurchase:equipment;

main ()

with (employees)

date ofpurchase 0;

I

/* This is wrong */

The program cannot perform this operation on date_ofpurchase, since this'
parallel variable is not of the current shape. However, this is legal:

shape [16384] employees, [8192] equipment;

unsigned int employee_id:employees,
date_ofpurchase:equipment;

main ()

with (employees)
[6]dateof_purchase - 0;

I

/* This is legal */

(2d)

May 1993

Copyright 0 1990-1993 Thinking Machines Corporation

.&

(

38 C* Programrming Guide

39

In this case, [61 date_of.purchase is scalar, since it refers to a single ele-
ment. Scalar operations are allowed on parallel variables that are not of the
current shape.

See Section 4.4 for a list of the situations in which a program can operate on
parallel variables that are not of the current shape.

4.1.1 Default Shape

Note that the sample program in Chapter 2 included a with statement, even
though only one shape was declared You must include a with statement to per-
form parallel operations on parallel data, even if only one shape has been
declared.

4.1.2 Using a Shape-Valued Expression

You can use a shape-valued expression instead of a shape name to specify the
current shape. For example:

shape [16384]employees;

unsigned int:employees age, salary;

main ()
{

with (shapeof(age))

salary - 200;

}

The current shape is employees, because shapeof (age) returns the shape of
the parallel variable age.

4.2 Nesting with Statements

Consider this with statement:

with (employees)

add salaries();

May 1993

Copyright O 1990-1993 Thinking Machines Corporation

;V

Chapter 4. Choosing a Shape
~~sma~~~~lls~~~s~~ssessssl~~~~~~~ss ~ ~ solit'lowil -- -----------

4- C--Programming-Guide

where add_salaries is a function defined elsewhere in the program. Clearly,
employees remains the current shape while executing the code within
add salaries. But what if add salaries contains its own with statement?
The new with statement then takes effect, and the shape it specifies becomes
current. When the with statement's scope is completed, employees once again
becomes the current shape.

You can therefore nest with statements. The current shape is determined by fol-
lowing the chain of function calls to the innermost with statement Returning to
an outer level resets the current shape to what it was at that outer level. For
example:

shape [16384]ShapeA, [32768]ShapeB;

int:ShapeA pl, p2;

int:ShapeB ql;

main()

{

with (ShapeA) {

pl = 6;

with (ShapeB)

ql = 12;

p2 18;

Once the code in this example leaves the scope of the nested with statement,
ShapeA once again becomes the current shape. The assignment to p2 is therefore
legal.

The break, goto, continue, and return statements also reset the current
shape when they branch to an outer level. For example, this code is legal:

with (ShapeA)

loop:

/* C* code in ShapeA . .. */
with (ShapeB)

/* C* code in ShapeB . */
goto loop;

When the goto statement is executed and the program returns to loop, shapeA
once again becomes the current shape.

May 1993

Copyright ©) 1990-1993 Thinking Machines Corporation

40 C* Programming Guide

Chape .Choig hae4

C* does not define the behavior when a program branches into the body of a
nested with statement, however. For example, this code results in undefined
behavior:

goto loop;

with (ShapeA) {

loop: /* This is wrong */

4.3 Initializing a Variable at Block Scope

Section 3.10 described how to initialize parallel variables; it stated that you can
initialize an automatic variable with an expression that can be evaluated at the
variable's scope. Note that if the expression contains a parallel variable, the par-
allel variable: must therefore be of the current shape. In the code below, p2 is
initialized to the values of pi; p1 must therefore be of the current shape.

shape [16384]ShapeA;

int:ShapeA pl = 6;

main()

{

with (ShapeA) {

int:ShapeA p2 = p;

/* ... * /

4.4 Parallel Variables Not of the Current Shape

As we mentioned above, there are certain situations in which a program can op-

erate on a parallel variable that is not of the current shape. They are as follows:

You c;m declare a parallel variable of a shape that is not the current shape.
You cannot initialize the parallel variable using another parallel variable,
however (because that involves performing an operation on the parallel
variable being declared).

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Chapter 4. Choosing a Shape 41

2C'----------I P m I

* As we discussed in Section 4.1, a parallel variable that is not of the current
shape can be operated on if it is left-indexed by a scalar or scalars, because
it is treated as a scalar variable.

* You can left-index any valid C* expression with a parallel variable of the
current shape, in order to produce an ivalue or rvalue of the current shape.
This topic is discussed in detail in Chapter 10.

* You can apply an intrinsic function like dimof and shapeof to a parallel
variable that is not of the current shape.

* You can use the & operator to take the address of a parallel variable that
is not of the current shape. See Chapter 7.

* You can right-index a parallel array that is not of the current shape with
a scalar expression.

* You can use the "dot" operator to select a field of a parallel structure or
union that is not of the current shape - provided that the field is not an
aggregate type (for example, another structure or union).

You can also perform these operations (except for left-indexing by a parallel
variable) even if there is no current shape - that is, outside the scope of any
with statement.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

C* Programming Guide42

{

r-

Chapter 5

Using C* Operators and Data Types

C* uses all the Standard C operators, plus a few new operators of its own. In

addition, C* provides new meanings for the Standard C operators when they are

used with parallel variables. Sections 5.1-5.3 of this chapter describe C* opera-

tors and how to use them.

C* also provides a new data type, bool, which it adds to the Standard C data

types. Section 5.4 describes bools.

Section 5.5 discusses parallel unions.

Throughout the chapter, variables beginning with s (for example, s1, 2s) are

scalar; variables beginning with p (pl, p2) are parallel

5.1 Standard C Operators

5.1.1 With Scalar Operands

If all the operands in an operation are scalar, C* code performs exactly like Stan-

dard C code. Therefore, code like this:

int s=O0, s2;

s2 = sl << 2;

sl++;
sl + s2;

allocates scalar variables and carries out the specified operations on them, just
as in Standard C.

May 1993 43
Copyright 0 1990-1993 Thinking Machines Corporation

4.....................4' C* gr---ImmnII'II Guide
-

I I III

The more interesting situations occur when a parallel operand is involved in an
operation. The rest of this section considers these situations.

5.1.2 With a Scalar Operand and a Parallel Operand

You can use Standard C binary operators when one of the operands is parallel and
one is scalar.

Assignment with a Parallel LHS and a Scalar RHS

We have already shown examples of a parallel left-hand side (LHS) and a scalar
right-hand side (RHS) with simple assignment statements, where a scalar con-
stant is assigned to a parallel variable. For example:

pl = 6;

In this statement, 6 is assigned to every element of the parallel variable pi. Tech-
nically, the scalar value is first promoted to a parallel value of the shape of the
parallel operand, and this parallel value is what is assigned to the elements on the
left-hand side.

Similarly,

p1 = s;

causes the scalar variable 81 to be promoted to a parallel variable, and its value
is assigned to every element of parallel variable pi. Thus, a scalar-to-parallel
assignment produces a parallel result; see Figure 14.

May 1993
Copyright Q 1990-1993 Thinking Machines Corporation

I

C* Prpgramming Guide44

CapterS.-Using ' C* --Op1erators Tf a...d-;- Dat-a------- --- 4 --

Figure 14. Promotion of a scalar variable to a parallel variable.

Other binary operators work in the same way. For example,

p1 + sl

adds the value of sl to each element of pi.

pl == sl.

tests each element of pi for equality to the value of sI. For each element, it
returns 1 if the values are equal, 0 if they are not equal.

pl << sl.

shifts the value of each element of pi to the left by the number of bits given by
the value of si.

(pl > 2) && (sl == 4)

for each element of p1, returns 1 if pi is greater than 2 and sI equals 4; other-
wise the expression returns 0 for that element. See Chapter 6 for a further
discussion of the && operator when one or both of its operands is parallel.

Assignment with a Scalar LHS and a Parallel RHS

In an assignment statement, promotion occurs only when the scalar variable is
on the right-hand side and the parallel variable is on the left-hand side. A scalar
variable on the left-hand side is not promoted, and this statement generates a
compile-time error:

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

pl - s1;

0 1 2 3 a

p 18 1 8 18 18 ... i

Charpter 5. Using C* Oprators and Data 15pes 45

4 --6 --- ----- -I Gd e. . .
_J --------Ti.......J : .;; . £ _____. iil]Z i ZI ;-- Z ::?--

sl - pi; /* This is wrong */

You can, however, explicitly demote the parallel variable to a scalar variable, by
casting the parallel variable to the type of the scalar variable. For example:

int s;
int:ShapeA pi;

sli (int)pl; /* This works */

(Parallel-to-scalar casts are discussed in more detail in Section 9.6.4.) But what
value does C* assign, when the parallel variable could have thousands of differ-
ent values?

In the case of a simple parallel-to-scalar assignment, with the parallel variable
cast to the type of the scalar, C* simply chooses one value of the parallel variable
and assigns that value to the scalar variable; see Figure 15. The value that is cho-
sen is defined by the implementation.

Figure 15. Selection of a value in a parallel-to-scalar assignment.

What is the point of obtaining the value of an element of a parallel variable, if
the language doesn't specify which value it will be? One use of demoting a paral-
lel variable to a scalar is to cycle through all elements of a parallel variable and
operate on each in turn individually; Chapter 6 has an example of this.

Note that the issues discussed here do not affect a statement like this:

s = [2]pl;

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

sl - (int)pl;

IEZ

... Ipi

46 C *Programming Guide

ChapterS. Using C Oprts an------ Data......................................----- _.p-

This is a scalar operation. In it, an individual element of pi has been selected by
using the left index 21. Since only one element is selected, the value of that
element can be assigned to sl without a problem.

Figure 16. Assignment of a single element of a parallel variable to a scalar variable.

The C compound assignment operators (for example, += and --) have a special
use with a parallel RHS and a scalar LHS; they are discussed in Section 5.3.

5.1.3 With Two Parallel Operands

Standard binary C operators can work with two parallel operands, if both are of
the current shape. For example,

p2 = pl;

assigns the value in each element of pi to the element of p2 that is at the same

position - that is, to the corresponding element of p2; see Figure 17.

May 1993
Copyright) 1990-1993 Thinking Machines Corporation

l 81 []pi;

1 12 3

pi 18 47 12

n

*...

3

. . i i I

Chapter 5. Using C *Gperators and Data 7yrpes 47

I
95 1

48 C*Programming Guide--

V

Figure 17. Assignment of a parallel variable to a parallel variable.

pl * p2

multiplies each element of p1 by the corresponding element of p2.

pl >= p2

returns, for each element of p1, 1 if it is greater than or equal to the correspond-
ing element of p2, and 0 if it is not.

(pl > 2) II (p2 < 4) -

retums, for each element, 1 if pi is greater than 2 or p2 is less than 4, and 0
otherwise. Both operands are evaluated if either is parallel. See Section 6.7, how-
ever, for a further discussion of this operator and the && operator.

5.1.4 Unary Operators for Parallel Variables

Standard C unary operators can be applied to parallel variables. For example,

pl++

increments the value in every element of the parallel variable pl.

!pl

yields the logical negation of each element of pl. If the value of the element is
0, the expression returns 1; if the value of the element is nonzero, the expression
returns 0. (i

May 1993
Copyright 1990-1993 Thinking Machines Corporation

p2 - p;
0 1 2 3 n

p1 18 47 12 95 ...

p2 18 47 1 12 E ...

48 C *Programming Guide

Cap.. Us...ng. C Operator n Dt-...4

5.1.5 The Conditional Expression

The ternary conditional expression ?: operates in slightly different ways de-
pending on the mix of parallel and scalar variables in the expression.

For example, in this statement:

pl = (sl < 5) ? p2 : p3;

the first operand is scalar, and the other two operands are parallel. The interpreta-
tion of this statement is relatively straightforward: if the scalar variable si is less
than 5, the value in each element of the parallel variable p2 is assigned to the
corresponding element of pi; if si is 5 or greater, the value in each element of
p3 is assigned to pi. All the parallel variables must be of the current shape.

In this statement,

pl = (sl < 5) ? p2 : s2;

the first operand and one of the other operands are scalar. In this case, s2 is pro-
moted to a parallel variable of the current shape, and the expression is evaluated
in the same way as the previous example.

What happens if the first operand is parallel? For example:

pl = (p2: < 5) ? p3 : p4;

In this case, each element of p2 is evaluated separately. If the value in p2 is less
than 5 in a particular element, the value of p3 is assigned to pi for the corre-
sponding element. Otherwise, the value of p4 is assigned to pi. Figure 18 gives
an example of this; the arrows in the figure show examples of the data move-
ment, based on the value of p2.

May 1993
Copyright © 1990-1993 Thirking Machines Corporation

Chapter 5. Using C* Operators and Data 75pes 49

0N C------ --- -MM N ONG =
(.

pl (p2 < 5) ? p3 : p4;

0 1 2 3 X

p2 3 4 15 6

K#
2e

25

p3

p4

pI

Figure 18. Use of the conditional operator with parallel variables.

If either or both of the operands (other than the first) were scalar in this example,
they would be promoted to parallel in the current shape, and the expression
would be evaluated in the same way.

Both operands are evaluated if the condition is parallel.

See Section 6.7 for a further discussion of this operator.

5.2 New C* Operators

C* adds several new operators to Standard C.

5.2.1 The <? and >? Operators

The <? and >? operators provide, respectively, the minimum and maximum of
two expressions. These operators are typically expressed as macros in standard
C. For example, the C macro

(((a) < (b)) ? (a) : (b))

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

(i
S

50 C *Programming Guide

CpterS. Uing C*OperarsandDaap

is similar to

a <? b;

in C*, except that C* evaluates the operands only once.

There are also assignment operator versions of <? and > ?. For example,

sl >?= s2;

assigns the value of s2 to si if the value is greater than the value of si; other-
wise s8 is unchanged.

The minimum and maximum operators follow Standard C rules for type conver-
sions and comnpatibility. For example, if one operand is a float and the other
is an int, the int is promoted to a float. The precedence and associativity of
<? and >? is the same as for the binary relational operators in Standard C.

These operators can be used with parallel as well as scalar variables. For
example,

pi <?= p2;

assigns the lesser of pi and p2 to pi, for every pair of corresponding elements
of these parallel variables.

The minimum and maximum operators are discussed further in Section 5.3.

5.2.2 The %% Operator

The new %% operator provides the modulus of its operands. It is patterned after
the Standard C % operator; for example, it has the same precedence and as-
sociativity, accepts and returns the same types, and performs the same
conversions. It also gives the same answer when both of its operands are
positive - the answer is the remainder when the first operand (the numerator)
is divided by the second operand (the denominator). For example, these state-
ments are both true:

(8 % 6) == 2
(8 %% 6) == 2

The difference between the two occurs when one or both of the operands is nega-
tive. In that case, different implementations of % can give different answers. For
example, the sign of the answer can be either positive or negative.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Chapter 5. Using C * Operators and Data Tpes 51

%% performs these steps when one or both of the operands is negative:

1.. It divides the first operand by the second operand. If the result is not an
integer, it converts this result to the next lower integer. For example, the
result of dividing 17 by -4 is -4.25, so %% converts this to -5, because -5
is smaller than -4.

2.. It multiplies the second operand by this result. In the above example, -5
* -4 is 20.

3.. It subtracts that result from the first operand. The answer is the result of
the operation. In our example, 17 minus 20 is -3. Therefore:

(17 % -4) == -3

A consequence of this procedure is that the result always has the same sign as
that of the second operand. For example:

(-17 %% 4) == 3

(17 %% 4) == 1

(-17 %% -4) == -1

The %% operator is discussed further in Section 10.3.2.

5.3 Reduction Operators

Standard C has several compound assignment operators, such as + , that perform
a binary operation and assign the result to the LHS. Many of these operators can
be used with parallel variables in C* to perform reductions - that is, they reduce
the values of all elements of a parallel variable to a single scalar value. C* reduc-
tion operators provide a quick way of performing operations on all elements of
a parallel variable.

The code below presents a parallel-to-scalar reduction assignment.

#include stdio.h>

shape [16:384] employees;
unsigned int:employees salary;

main()

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

52 C* Programming Guide

Chaer. gs C* Opeatos a-aa es 53a--

unsigned int payroll=0;

/* Initialization of salary omitted */

withl (employees)

payroll += salary;

printf ("Total payroll is $%d.\n", payroll);

}

In this code, the +- operator sums the value in each element of salary and adds
this sum to the scalar variable payroll, as shown in Figure 19. Note that the
scalar variable on the left-hand side is included in the operation; that is why pay-
roll must be initialized to 0.

Figure 19. A reduction assignment.

5.3.1 Unary Reduction

As the sample code above shows, binary reduction operators include the left-
hand side as one of their operands, so you must initialize the variable on the
left-hand side appropriately. You can also use any of these operators as a unary
operator with a parallel operand. We can therefore simplify the sample code by
eliminating the scalar variable and revising the printf statement as follows:

printf ("Total weekly payroll is $%d.\n", +=salary);

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

payroll +- salary;

sum ofallsalariel payroll

0 1 2 3 4 5 16383

salary 396 942 516 11642 212 660 ...

Chapter 5. Using C* Opecrators and Data 7Ypes 53

54 C* Programming Guide

5.3.2 Parallel-to-Parallel Reduction Assignment

The left-hand side of a reduction assignment can be an individual element of a
parallel variable, instead of a scalar variable. For example,

shape [16384]employees;

unsigned int:employees salary, payroll=O;

main()

{

/* Initialization of salary omitted */

with (employees)

[O]payroll += salary;

declares payroll to be a parallel variable, and puts the total of the salary val-
ues into element [0] of payroll.

5.3.3 List of Reduction Operators ,

Table 1 lists the C* reduction operators. All can be used for parallel-to-scalar
reduction assignment, parallel-to-parallel reduction assignment, and unary re-
duction.

Table 1. Reduction operators.

Operator Meaning

+ = Sum of values of parallel variable elements
-= Negative of the sum of values
- Product of values (CM-5 C only)
/I Reciprocal of the product of values (CM-5 C* only)
&-= Bitwise AND of values
A= Bitwise XOR of values

I = Bitwise OR of values
<?= Minimum of values
> ? = Maximum of values

May 1993

Copyright © 1990-1993 Thinking Machines Corporation

Chaptes iEgS* Oeratr s ata 5-

Note that simple parallel-to-scalar assignment using a cast is also a form of re-

duction assignment; see Section 5.1.2.

Note also that the C compound operators %-, (<-, and > >- cannot be used as C*
reduction assignment operators.

We have already discussed the +- operator; now let's look at the other reduction
operators.

5.3.4 The -Reduction Operator

When used as a binary reduction operator, -- subtracts the sunm of the parallel
RHS's values from the scalar LHS, and assigns the result to the LHS. Therefore,

s1 -= p;

is equivalent to:

si = (Si - (+-pl));

Initialize the scalar LHS to 0 to obtain the negative of the sum of the parallel
variable's values. Or use -- as a unary reduction operator:

s = (--pl);

5.3.5 The *= and /= Reduction Operators (CM-5 C* Only)

When used as a binary reduction operator, *- multiplies the values of the ele-
ments of the parallel RHS and the value of the scalar LHS and assigns the value to
the LHS. As a unary operator, it returns the product of the active elements of the
parallel variable.

As a binary reduction operator, / divides the value of the scalar LHS by the
product of the parallel RHS's values and assigns this value to the LHS. When /
is used as a unary operator, it returns the reciprocal of the product of the active

parallel values.

These operators are not available in the CM-200 implementation of C*.

May 1993
Copyright e) 1990-1993 Thinking Machines Corporation

Chapter 5. Using C *Gperarors and Data 7ypes 55

56 C* Programming Guide

5.3.6 Minimum and Maximum Reduction Operators

The <?- and > ?7- operators can be used as unary operators to obtain the mini-
mum and maximum values in all elements of a parallel variable. To find out the
lowest and highest salaries in the parallel variable salary, for example, add
these printf statements to the code example shown on page 52:

printf ("The lowest salary is $%d.\n", <?=salary);

printf ("The highest salary is $%d.\n", >?=salary);

Note once again that, when used as binary operators, <?- and >7 - include the
left-hand side as an operator. To assign the lowest value of a parallel variable to
a scalar variable, therefore,

s1 <?= p;

might not work, since si might be the lowest value. Instead, use <?- as a unary
operator, and use - to assign the result to the scalar variable. For example:

sl = <?=pl;

i

5.3.7 Bitwise Reduction Operators

The bitwise reduction aoperators mask all elements of a parallel variable, as de-
scribed in the subsections below.

Bitwise OR

The I - operator performs a bitwise OR of all elements of a parallel variable. For
example, in this statement:

s1 = p;

all elements of pi are first bitwise OR'd; if a particular bit is a 1 in any element,
that bit is a 1 in the result. This result is then bitwise OR'd with sl, and the result
is assigned to s.

Bitwise OR is particularly useful in testing if any elements of a parallel variable
meet a condition. The if statement in C* works in the same way as the if state-
ment in Standard C: If the condition expression evaluates to 0, then the statement
following is not executed; if the condition expression is nonzero, the statement
is executed. In this code,

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

C pr U-----g C*-- OearadD a s5

if (I=(p > 5))
p2 10;

if there are any elements of pi greater than 5, the condition expression is non-
zero, and 10 is assigned to each element of p2. If there are no elements of p1
greater than 5, the bitwise OR evaluates to 0, and the following statement is not
executed.

Bitwise AND

In a bitwise AND, if a particular bit is a 0 in any element of the specified parallel
variable, that bit is a 0 in the result. Bitwise AND provides a way to test whether
all elements of a parallel variable meet a condition. In this code:

if (&=(pl > 5))
p2 10;

each element of p2 is set to 10 only if all elements of pi have values greater
than 5.

Bitwise Exclusive OR

You can view the bitwise exclusive OR operator as operating pair-wise on ele-
ments of a parallel variable. For example, if three parallel bit-fields each contain
a 1, bitwise exclusive OR first operates on two of them: the two 1 bits yield a 0
bit. This 0 bit is then exclusive OR'd with the remaining 1 bit, and the result is
a 1 bit. In general, the result of a bitwise exclusive OR operation is 1 if the corre-
sponding bit is 1 in an odd number of elements; it is 0 if the corresponding bit
is 1 in an even number of elements. Note that in a reduction assignment the scalar
LHS is included in this calculation.

5.3.8 Reduction Assignment Operators with a Parallel LHS

Reduction assignment operators can be used with a parallel LHS when the paral-
lel variable is left-indexed with a parallel subscript. This topic is discussed in
Section 10.1.5.

May 1993
Copyright 1990-1993 Thinking Machines Corporation

Chapter 5. Using C * Operators and Data 7ypes 57

V

58 C* Programming Guide

(p)
5.3.9 Precedence of Reduction Operators

Unary reduction operators have the same precedence as the unary operators in
Standard C.

The precedence and associativity of the binary reduction operators is the same
as for the compound assignment operators in Standard C.

5.4 The bool Data Type

The bool is a new unsigned integral data type in C*. The actual size and align-
ment of a bool are implementation-dependent:

* In the CM-200 implementation, a parallel bool occupies one bit of
memory and is aligned on a bit boundary; a scalar bool occupies one byte
of memory on the front end. This takes advantage of the CM-200's align-
ment of data on bit, rather than byte, boundaries.

* In the CM-5 implementation, a bool occupies one byte of storage, both
on the partition manager and on the nodes, and is aligned on a byte
boundary.

A bool behaves as a single-bit quantity, however, no matter what its actual size
is. Typically, bools are used to test conditions.

When you cast an expression of a larger data type to a bool, or assign a variable
of a larger data type to a bool, the expression has logical (rather than arithmetic)
behavior. That is, if the value of the larger data type is 0, 0 is the result; if the
value is non-zero, 1 is the result. Thus:

int i=O, j4;

printf("%d\n", (bool)i); /* prints "0" */

printf("%d\n", (bool)j); /* prints "1" */

Also note this behavior:

int i, j=1, k=1;

bool:current b;

i = j + k; /* i=2 */

b j + k; /* b=1 */

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

C ha pteS. Using C* Operatoi~s and D ata 75- -eS 59

All elements of b are assigned the value 1 because the value of the expression
(j + k) is non-zero.

A bool, like a char, is promoted to an int when used as an operand of many
operators. Thus, performing operations on bools sometimes can be slower than
performing the same operations on larger data types. The CM-200 implementa-
tion, however, avoids this promotion for operations using these operators: <, >,

<=, >-, -, ! , &, I, , <?, >?, and the assignment versions of the last five. All
these operations are performed at the precision of their operands.

5.4.1 The boolsizeof Operator

To obtain the exact size of a variable or data type in units of bools, use the new
C* operator boolsizoof; boolsizeof has the same precedence and
associativity as sizeof.

With a Parallel Variable or Data Type

When a parallel variable is used as the operand, boolsizeof returns the number
of parallel bools a single element of the variable occupies in CM memory. For
a parallel data type, boolsizeof returns the number of parallel bools that must
be allocated for a single instance of the data type. For example:

boolsizeof(int:ShapeA); /* Size in parallel bools of a

parallel int */

In CM-200 C*, a parallel bool is implemented as a bit; therefore, boolsizeof
returns 32 for this statement.

In CM-5 C*, a bool is implemented as a byte; therefore, boolsizeof returns
4.

With a Scalar Variable or Data Type

When a scalar variable is used as the operand, boolsizeof returns the number
of scalar bools that the variable occupies in memory. Since a scalar bool is
stored as a byte in both CM-200 and CM-5 C*, boolsizeof gives the same
result as the sizeof operator for both implementations when applied to a scalar
operand. For example,

May 1993
Copyright 1990-1993 Thinking Machines Corporation

Chapter 5. Using C *Operators and Data 1Spes 59

boolsizeof(int); /* Size in scalar bools of a scalar int */

returns 4 for both implementations.

5.5 Parallel Unions

You can create parallel unions. Like parallel structures, they can only contain
scalar variables. For example, this code:

union ptype {
int i;

float f;

};

union ptype:ShapeA pl;

defines a parallel variable pi of shape shapeA and of the union type ptype.
This statement initializes pl as an integer:

pl.i - 50;
Each element of pa is an int containing the value 50.

This statement initializes pi as a float containing the value 89.7:

pl.f = 89.7;

Unions can also appear within structures, as in Standard C.

5.5.1 Limitations

In CM-200 C*, you cannot use an initializer to initialize a parallel union or any
object containing a parallel union.

In addition, the following are language restrictions:

* You cannot assign a scalar union to a parallel union.

* You cannot promote a scalar union to be parallel (for example, by a scalar-
to-parallel cast; see Section 9.6).

May 1993

Copyright 0 1990-1993 Thinding Machines Corporation

60 C* Programming Guide

CBaper S.UsingC* pertosadtps6--

You cannot demote a parallel union to be scalar.

These restrictions are not present in CM-5 C*, but taking advantage of this will
make your program nonportable.

5.6 Parallel Enumeration Type (CM-5 C* Only)

CM-5 C* supports parallel enums. For example,

enum color { red, blue, green };

enum color:ShapeA parallel_color;

declares the parallel variable parallel_color to be of the enumeration type
color. You can then assign a value to parallel_color as follows:

parallel color = red;

This assigns the value red to every element of the parallel variable paral-

lelcolor.

May 1993
Copyright © 1990-1993 Thinling Machines Corporation

Chapter 5. Using C *0perators and D~ata 75pes 61

i

IS

Chapter 6

Setting the Context

In Chapter 4, we discussed how to use the with statement to select a current
shape. Once there is a current shape, a program can perform operations on paral-
lel variables that have been declared to be of that shape.

But what if you want an operation to be performed only on certain elements of
a parallel variable? For example, you have a database containing the physical
characteristics of a population, and you want to know the average height of peo-
ple who weigh over 150 pounds.

To do this, specify which positions are active by using a where statement, which
C* has added to Standard C. Code in the body of a where statement operates
only on elements in active positions. Using where to specify active positions is
known as setting the context.

6.1 The where Statement

When a with statement first selects a shape, all positions of that shape are active;

code in the body of the with statement operates on every element of a parallel
variable. A where statement selects a subset of these positions to remain active.
For example, this code:

with (population)
where (weight > 150.0)

/* ... */

selects only those positions of shape population in which the value of parallel
variable weight is greater than 150. (This assumes that the elements of weight

May 1993
Copyright © 1990-1993 Thinking Machines Corporation 63

have previously been initialized to some values.) Parallel code in the body of the
where statement applies only to those positions. Figure 20 shows the effect of
the where statement.

Figure 20. Using where to restrict the context.

In the figure, positions 0, 1, and 4 become inactive in the body of the where
statement; positions 2, 3, 5, and 32767, all of which have weights over 150, re-
main active.

The controlling expression that where evaluates to set the context must operate
on a parallel operand of the current shape. (Other controlling expressions - for
example, the while and if statements - operate only on scalar variables.) Like
other controlling expressions, it evaluates to 0 or nonzero, but it does so sepa-
rately for each parallel variable element that is currently active.

The code below calculates the average height of people weighing over 150
pounds (assuming that the values of height and weight have been initialized):

shape [32768]population;

float:population weight, height;

unsigned int:population count;

float avg_height;

main ()

{

/* Code to initialize height and weight omitted. */

with (population) {

count = 1;

where (weight > 150.0)

avg_height = (+=height / +=count);

May 1993
Copyright) 1990-1993 Thinking Machines Corporation

64

r

C* Programming Guide

where (weight > 150.0) [active

inactive

0 1 2 3 4 5 32767

weight 170 212 4 222 151

~~~·i~~~~~~~~~tl~~~~~~~M&~~~~~~[~~~~~da~~~~~~'~~~~~l~~~~p Z12L~~~~~~~~~~~~~~MB~~~~~~Z2Z n~~~~~~~~~

(

( I
a

-- -- -- - --- -- --- -- - ----- - -- - -- -- -- -- -- -- -- -- -- -- I M M I



Chapter 6. SettIg the Context- 65

NOTE: There is a slightly easier way of obtaining the number of active positions
than the one shown in this code fragment; it involves a scalar-to-parallel cast.
For example,

( int:population) 1

promotes 1 to a parallel variable of shape population. Using the +- operator
on this variable produces the number of active positions. Scalar-to-parallel casts
are discussed in Section 9.6.1.

Like the with statement, a where statement can include scalar as well as parallel
code within its body, and the same restrictions apply to operating on parallel vari-
ables that are not of the current shape. See Section 6.5 for a discussion of what
happens to scalar and parallel code when a where statement causes no positions
to remain active.

The context set by the where statement remains in effect for any procedures
called within its body. Once the body of the where statement has been exited,
however, the context is reset to what it was before the where statement. For ex-
ample, if we add two statements to the code fragment above:

with (population) {

float avg_weight;

count = 1;

where (weight > 150.0)

avg_height = (+=height / +=count);

avg_weight = (+=weight / +=count);

avg weight is assigned the average weight for all positions of shape popula-
tion, not just for the positions where weight is greater than 150.

6.1.1 The else Clause

Like if statements in standard C, where statements can include an else clause.
The else following an if says: Perform the following operations if the if con-
dition is not met. The else following a where says: Perform the following
operations on positions that were made inactive by the where condition. It "turns
on" all of the positions that were "turned off" by the where condition, and turns

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Chapter 6. Setting the Context 65



66 C* Progra m ming Guide

(p; j

off all the positions that the where condition left on. Figure 21 shows the effect
of an else clause on the set of active positions in Figure 20.

Figure 21. The effect of else on the context shown in Figure 20.

The code below calculates separate average heights for those weighing more
than 150 pounds, and for those weighing 150 pounds or less:

shape [32768] population;

float:population weight, height;

unsigned int:population count;

float avg._height_heavy, avg_height_light;

main ()

with (population)

count = 1;

where (weight > 150.0)

avg_height_heavy =

else

avg_height_light =

I

}

(+=height / +=count);

(+=height / +=count);

6.1.2 The where Statement and positionsof

Using where to restrict the context does not affect the value returned by the
positionsof intrinsic function. positionsof returns the total number of po-
sitions in a shape, not the number of active positions. See Section 9.6.1 for a
method of determining the number of active positions.

May 1993
Copyright 1990-1993 Thrincing Machines Corporation

active

inactive

0 1 2 3 4 h 32767

weight i 109 116 r /A .

(. 

66 C* Prpgramming Guide



Capterl 6. Se-t--g-the-Context67

6.1.3 The where Statement and Parallel-to-Scalar Assignment

In Chapter 5 we discussed assigning a parallel variable to a scalar variable: you
must cast the parallel variable to the type of the scalar variable. The operation
then chooses (in an implementation-defined way) one value of the parallel vari-
able and assigns it to the scalar variable. If a where statement restricts the
context, however, the value chosen is from one of the active positions.

6.2 The where Statement and Scalar Code

As we noted above, you can include scalar code within the scope of a where
statement. So, for example, this code is legal:

shape [32768]population;

float:population weight;

float avgheight;

main()

with (population) {

where (weight > 150.0)

avg_height - 0;

}

Recall that an element of a parallel variable is considered to be scalar. That
means you can perform operations on an element even if its position is inactive.
For example, if position 0 becomes inactive when we choose positions where
weight is over 150, we can still do this:

shape [32768]population;

float:population weight;
unsigned int:population count;

main()

{
with (population) {

count - 1;
where (weight > 150.0) {

[O]weight - 225; /* These are all legal. */

[O]weight - [1]weight;

[O]count +- count;

)

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Chapter 6. Setfing the Context 67



8 C*ProramminGuid

I

Note the final statement in this code fragment. In it, the values of the active ele-
ments of count; are summed; this sum does not include the value of 0] count,
hLL&a~l'lu LAcitinn rl LJ Lm. inam t ne AL rlit r f the a' --rA cPa+.amnotL A rLW

ever, the result of the sum can be placed in 0 o] count, because [0] count is
scalar. Thus:

* You can :read from or write to an individual parallel variable element in an
inactive position.

· An element in an inactive position is not included in operations on the
parallel variable as a whole.

6.3 Nesting where and with Statements

6.3.1 Nesting where Statements

You can nest where statements. The effect is to continually shrink the set of ac-
tive positions. For example, we might want to calculate average heights
separately for males and females weighing over 150 pounds in the population
database. Let's add a parallel variable called sex, therefore, and assume that it
has been initialized: 0 for females and 1 for males. The code below would then
produce the desired results.

shape [32768]population;

float:population weight, height;
unsigned int:population count, sex;

float avg_male_height, avg_female_height;

main()

{

with (population) {

count = 1;

where (weight > 150.0)

where (sex)

avg_maleheight = (+=height / +=count);
else

avg_femaleheight = (+=height / +=count);
}

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

68 C* Programming Guide



C a 6.-Se---ng-the Context69

6.3.2 Nesting with Statements

It is also possible to choose another shape within the body of a where statement.
For example::

shape [32768]population, [16384]employees;

int:employees salary;

int payroll;

float:population weight, height;

unsigned int:population count, sex;

float avg_male_height, avg_female_height;

main()

{
with. (population) {

count 1;

where (weight > 150.0) {

where (sex)

avg_male_height - (+=height / +-count);

with (employees)

payroll +- salary;

Since each shape has a different set of positions, the context established by a
where statement for one shape has no effect on the context of expressions in
another shape. Therefore, the statement

payroll += salary;

in the code example above uses the entire set of positions of shape employees.
Of course, we could add another where statement to set the context for the
nested with statement

Once control leaves the body of the nested with statement, the context returns
to whatever it was before the with statement was executed. For example:

with (population) {

count = 1;

where (weight > 150.0)
o..,_, {g r ...%f

avg_male_height = (+-height / +-count);
with (employees)

payroll +- salary;

else

)

May 1993

Copyright 0 1990-1993 Thinking Machines Corporation

Chapter 6. Setring the Contexi 69

0I



(l ,
avg_female_height - (+-height / +-count);

When population becomes the current shape for the second time, the context
is once again the positions where weight is greater than 150 and sex is O.

With nesting, it is therefore possible to switch back and forth between shapes and
maintain separate contexts for each.

6.3.3 The break, goto, continue, and return Statements

Section 4.2 described the behavior of break, goto, continue, and return
statements in nested with statements. They behave similarly for nested where
statements. Specifically:

* Branching to an outer-level where statement resets the context to what it
was at that level.

· The behavior of branching into a nested where statement is not defined.
Don'tdo it. ( g

The behavior of functions that contain nested where statements is discussed in
Section 8.1.2.

6.4 The everywhere Statement

A where statement can never increase the number of active positions for a given
shape; nesting where statements has the effect of creating smaller and smaller
subsets of the original set of active positions. C* does, however, provide an
everywhere statement that allows operations on all positions of the current
shape, no matter what context has been set by previous where statements.

For example, in this code:

shape [32768]population;

float:population weight, height;
unsigned int:population count, sex;

float avg_male_height, avg_female_height, avg_height;

main()

May 1993

Copyright © 1990-1993 Thinking Machines Corporation

70 C *Programming Guide



Chpe 6. Setn h Cnet7

with (population) {

count = 1;

where (weight > 150.0)

where (sex)

avg_male_height = (+=height / +=count);

else

avg_female_height = (+=height / +=count);

everywhere

avg_height = (+=height / +=count);

the scalar variable avg_height is assigned the average height for all positions
of shape population, even though this average is calculated within the body
of a where statement that deactivates some positions of population.

After the everywhere statement, the context returns to what it was before
everywhere was called. In this case, once again only positions where weight
is greater than 150 are active.

) Note that if avg_height had been calculated after the body of the where state-
ment, the everywhere statement would not have been needed, since the context
reverts to what it was before the where statement. In this case, all positions of
shape population become active once again.

As with the where statement, branching from an everywhere statement to an
outer level via a break, goto, continue, or return statement resets the con-
text to what it was at the outer level. The behavior of branching into an
everywhere statement is not defined.

6.5 When There Are No Active Positions

What happens when the controlling expression of the where statement leaves no
positions active? Consider the situation shown in Figure 22.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Chapter 6. Setting the Context 71



72 C*Programmin------gIGuidel

Figure 22. A shape where all weights are less than 150.

If population is initialized entirely with values of 150 and below, the follow-
ing code makes all positions inactive, since no position has weight greater than
150:

with (population)

where (weight > 150.0) {

/* ... */

Code is still executed in this situation, but an operation on a parallel variable of
the current shape has no effect. For example,

weight++;

does not increment any of the values of weight, because no elements of weight
are active.

But note that operations on individual elements do have results, since they are
scalar. For example,

[O]weight = 225;

assigns 225 to element [0] of weight, even though no positions are active.

The result of a parallel-to-scalar assignment using - is undefined when no posi-
tions are active.

The results of reduction assignment operations are discussed below.

May 1993

Copyright © 1990-1993 inking Machines Corporation

z

( i

i

I

I

i
0 1 2 3 4 5 32767

weight 148 109 100 98 |116 122 ...

( I

72 C* Programming Guide



Chap........... l.i tt .. 7

6.5.1 When There Is a Reduction Assignment Operator

Unary Reduction Operators

Consider the following code fragment, where maxinmum is a scalar variable, and
weight is a parallel variable:

where (weight > 150.0)
maximum = (>?=weight);

If there are no active positions, what gets assigned to maximum?

C* provides default values for unary reduction operators when there are no ac-
tive positions. These values are listed in Table 2.

The values in Table 2 are basically identities for the operations. For example, the
result of a + - operation (when no positions are active) added to the result of an-
other +- operation gives the result of the other operation.

Table 2. Values of unary reduction operators when there are
no active positions.

Unary Reduction
Operator

+M

/-

I-

Value

0
0
1

1

-O (all one bits)

0
0
maximum value representable
minimum value representable

Binary Reduction Assignment Operators

Recall that the left-hand side is included in binary reduction assignments. When
there are no active positions, and a binary reduction assignment operator is used,
the LHS remains unchanged.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

)

Chapter 6 Selling the Contevt 73



6.5.2 Preventing Code from Executing

Of course, you might not want scalar code, or code in another shape, to execute
if there are no positions active. To keep the code from executing, use an if state-
ment with a bitwise OR reduction operator to conditionalize the entire where
statement. For example:

if (I-(weight > 150.0))

where (weight > 150.0) {

float avg_height = 0;

/* ... /

In this code fragment, the scalar variable avg_height is declared and initialized
only if there are any positions with weight greater than 150. See Section 5.3.7
for a discussion of using the bitwise OR reduction operator in an if condition.

If the condition in the if statement has side effects, more code is required to
ensure that the condition is evaluated only once. Follow these steps:

1.. Create a temporary parallel variable of the current shape.

2.. In the if condition, assign to this temporary variable the results of the (
parallel expression you would otherwise have evaluated in the where
statement, and perform a bitwise OR reduction of the temporary variable.

3.. Have where evaluate the temporary variable.

For example:

with (population) {

unsigned int:population temporary = 0;

if (=(temporary (++weight > 150.0)))

where (temporary) {

float avg_height = 0;

/* ... */

( I

May 1993

Copyright 0 1990-1993 Thinldng Machines Corporation

C *Programming Guide74



Chapter6.SettigtheContext 75-----

6.6 Looping through All Positions

Some of the C* features we have discussed so far can be used to loop through
all positions of a shape, allowing operations to be performed on each position
separately.

For example, consider a database initialized as shown in Figure 23. Note that
each position has a unique identifier, caseno.

Figure 23. A database.

The code below picks a case of shape population, prints the weight and height
of its corresponding elements, then picks another case, until all cases have been
chosen.

#include <stdio.h>

shape [32768]population;

unsigned int:population case no, weight, height;

unsigned int index;

/* Code to initialize parallel variables omitted. */

main()

{

with (population) 

bool:population active;

active - 1;
while (- active) {

where (active) {

May 1993

Copyright 0 1990-1993 Thinking Machines Corporation

shape population

0 1 2 3 4 5 32767

case no 0 1 2 3 4 5 ...

weight 148|109 100|212 200|122 ...

height 62 58| 60 72 75 68 ... 

)

------

Chapter 6. Setting the Context 75

4



index - (unsigned int)case no;

where (index =e case_no) {

printf ("Height is %d;

weight is %d.\n",

[index]height, [index]weight);

active = 0;

Note these points about the program:

* In this program, a while loop with a bitwise OR reduction controls the
selection of positions.

* The operator chooses a value of case_no and stores it in index (note
the use of the cast to explicitly demote the parallel variable to a scalar vari-
able).

* The inner where expression then selects the position that contains this
value for caseno. (There will be only one, because each value of
case_no is unique.) Since each value of case_no corresponds to the co-
ordinate of its position, we can use that value (now assigned to index) as
a left index for the other parallel variables in order to choose an element
of them for printing.

* At the end of the where statement, active is set to 0 for the active posi-
tion, turning it off for the next iteration of the loop. When all the positions
have been selected, all the positions will have been turned off. At this
point the controlling expression of the while loop evaluates to false, and
the program completes.

NOTE: A more efficient way of doing this is to use the pcoord function, which
is described in Section 10.2.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

C* Programming Guide76



3- - -`i4~ra~s~Yr~,0=i.

6.7 Context and the II, &&, and ?: Operators

6.7.1 II and &&

The I I and && operators perform implicit contextualization when one or both of
their operands are parallel. (Recall that if one operand is parallel and the other
is scalar, the scalar operand is promoted to parallel.)

Consider this statement, in which all variables are parallel:

p3 = (p > 5) && (p2++);

Since at least one of the && operands is parallel, we get the parallel version of
the operator. 'This statement does two things:

* First, in each position, it assigns a 1 to the corresponding element of p3
if both operands evaluate to nonzero ("TRUE"), and assigns a 0 otherwise.

* Second, it increments p2 in each position where p1 is greater than
5 - that is, where the left operand evaluates to TRUE. In positions where
the left operand evaluates to 0, p2 is unchanged.

Figure 24 shows how the statement works with some sample values.

Figure 24. An example of the && operator with parallel operands.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

p3 - (p > 5) && (p2++);

0 1 2 3 4 32767

pi 1 7 1 -2 1 13 1 6 ... L 
Before

p2 1 2 0 4 5 ... L

p3 0O 1 -0 1 1 ...

After
p2 1 3 o 5 6 ... .

Chapter 6 Setting the C~ntext 77



78 C*Pormmnud

Note that the left operand of the && operator in this example effectively sets the
context for the right operand. This is the "implicit contextualization" mentioned
at the beginning of the section. That is, the operation above is equivalent to

where (pl > 5)

p2++;

except that the operation additionally returns the result (O or 1) of the logical
AND in each position.

After the operation, the context returns to what it was before the operator was
called.

The I I operator works similarly when one or both of its operands are paral-
lel - except that the context for the right operand consists of those positions that
evaluate to 0 for the left operand. In addition, the operator returns a 1 if either
operand evaluates to TRUE, and 0 otherwise. For example,

p3 = (pl > 5) 11 (p2++);

gives the results shown in Figure 25.

Figure 25. An example of the I I operator with parallel operands.

Notice the difference in the results between Figure 24 and Figure 25:

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

( ,
p3 (p2 > 5) II (p2++);

0 1 2 3 4 32767

pi 1Befor 7 -2 13 6 ...

Before
p2 1 2 0 4 5 ... Li

p3 1 1 0 1 1 1 .. ..

After
p2 2 2 1 4 5 ... i

78 C *Programming Guide

1



Chaptr 6

* With the I I operator, p2 is incremented only in the positions where p is
not greater than 5.

* With I I, the corresponding element of p3 receives the logical OR of the
operands for each position.

6.7.2 The ?: Operator

The ?: operator provides implicit contextualization of its second and third oper-
ands when its first operand is parallel. For example, when pi is parallel,

(p > 5) ? p2++ : p3++;

is equivalent to:

where (p > 5)
p2++;

else
p3++;

See Section 5.1.5 for an example and for further discussion of this operator.

Appendix A discusses some efficiency considerations for CM-200 C* regarding
C* operators that perform implicit contextualization. See the CM-5 C* Perfor-
mance Guide for similar information for CM-5 C*.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Chapte 6 Setting the Context 79



l

( i

( -A
a



Chapter 7

Pointers

C* has three kinds of pointers:

* the Standard C pointer

· a scalar pointer to a shape

* a scalar pointer to a parallel variable

As in C, C* pointers are fast and powerful.

7.1 Scalar-to-Scalar Pointers

C* supports the Standard C pointer. For example,

int *ptr;

declares ptr to be a scalar pointer to an int. If s1 is a scalar variable,

ptr &.sl;

puts the address of s1 in ptr, and

s2 *ptr;

puts the value of ai into s2.

)

May 1993
Copyright Q 1990-1993 Thinking Machines Corporation 81

~~~9~~~~~8 8~~~~~~018~~~~~~~8~~~~~8 8 8~~-----


w-

82 C* Programming Guide

7.2 Scalar Pointers to Shapes

C* introduces a new kind of scalar pointer that points to a shape. For example,

shape *ptr;

declares the scalar variable ptr to be a pointer to a shape, and

ptr = &ShapeA;

makes ptr point to ShapeA.

A dereferenced pointer to a shape can be used as a shape-valued expression. For
example, if ptz points to ShapeA,

with (*ptr)

makes ShapeA the current shape.

Scalar pointers to shapes are discussed in more detail in Section 9.1.1, when we
introduce arrays of shapes.

7.3 Scalar Pointers to Parallel Variables

C* introduces a new kind of scalar pointer that points to a parallel variable. For
example,

int:ShapeA *ptr;

declares a scalar pointer ptr that points to a parallel int of shape ShapeA.

How can a scalar pointer point to a parallel variable? Clearly the mechanism
must be different from that used in C pointers, which store the memory address
of the object to which it points; each element of a parallel variable would have
a different address. In fact, a pointer to a parallel variable in C* does not store
a physical address, but a value that uniquely identifies the entire set of elements
of the parallel variable.

Note that scalar pointers to parallel variables aren't necessarily the same size as
scalar pointers to scalar values. However, they can still be operated on by the
usual C pointer operations: for example, addition or subtraction with scalar val-
ues, subtraction of pointers, and comparison to zero. See Sections 7.3.2 and

May 1993
Copyright) 1990-1993 Thinking Machines Corporation

,

Chapt- - - Po---i-r--s- ------------- - - - ---- - --- ---I...i :.....

7.3.3. See also Appendix C for a more in-depth discussion of the implementation
of scalar pointers to parallel variables in CM-5 C*.

If p1 is a parallel variable of shape shapeA,

ptr - &pl;

stores this value for p1 in the scalar pointer ptr. pi need not be of the current
shape.

ptr - &pl; '" active

E inactive

ptr [&pi 1

p1

0 1 2 3

18 55 15

Figure 26. A scalar-to-parallel pointer.

Once the above statement has been executed, a program can reference the paral-
lel variable pi via the pointer stored in ptr. For example,

(*ptr) ++;

increments the value in each active element of pl, as shown in Figure 27.

)

May 1993
Copyright @ 1990-1993 Dhinking Machines Corporation

n

Chaopter Z. Pointers 83

84 C*BPI~B~II~IOIl- Poai

(I

Figure 27. Dereferencing the scala-to-parallel pointer shown in Figure 26.

If si is a scalar variable,

sl += *ptr;

sums the values of the active elements of pi, and adds the result to si.

The constraints that apply to dealing directly with a parallel variable also apply
to dealing with it via a scalar pointer. For example, ShapeA must be the current
shape for the above statement to be executed.

7.3.1 Alternative Declaration Syntax Not Allowed

Recall from Chapter 3 that there are two ways of declaring a parallel variable:

int:ShapeA p;

and

int pl:ShapeA;

C* does not allow the latter syntax for declaring scalar-to-parallel pointers,
however:

int *ptr:ShapeA; /* This is wrong */

In this case, the compiler interprets the shape name as applying to the pointer,
and parallel-to-scalar pointers do not exist in the language.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

(

(

(*ptr) +a; 2 active

g inactive

ptr &pl

0 1 2 3 n

p1 19 56 16 ...

84 C *Programming Guide

7.3.2 Arrays

The close relationship between arrays and pointers is maintained in C*. For
example,

int:ShapeA A1 [40];

declares a parallel array of 40 ints of shape ShapeA, and Al points to the first
element of the array. (Recall that an element of a parallel array is a parallel
variable.)

7.3.3 Pointer Arithmetic

C* allows arithmetic on scalar pointers to parallel variables; it is similar to the
Standard C arithmetic on pointers to scalar variables. For example, given these
declarations,

shape [65536] ShapeA;

int:ShapeA A[40], *ptrl, *ptr2;

we can do the following:

ptrl ' &Al[7];

ptr2 = ptrl + 2;
printf("%d\n", ptr2 - ptrl);

* The first statement sets ptrl equal to the address of the eighth element
of the parallel array.

The second statement puts the address of the tenth element of the array
into ptr2.

It_ a- . . _ .. r.

l* ie printf statement pnnts z, tme result o subtracting ptrl Irom ptr2.

Note that these statements do not have to be within the body of a with statement,
since the pointers are scalar variables.

As described above, we don't need to declare separate pointers into the array. We
can also do this:

shape- [65536] ShapeA;
int:ShapeA A1[401, p2, p3;

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

(

Chapter Z. Pointers 85

86 C* Programming Guideslllisilsll"--Ii

main ()
{

with (ShapeA) {
p2 = *(Al + 9);

p3 = A1[9]; /* These two statements are
equivalent. */

I

Each parallel variable element of both p2 and p3 is assigned the value of the
corresponding parallel variable element of the tenth array element of Al.

Here is something we can t do:

shape [65536]ShapeA;

int:ShapeA A1[40], p2, p3, *ptrl, *ptr2;

ptrl = &A1[7];

ptr2 = ptrl + p2;
p3 = *(ptrl / p2);

/* This is wrong */

/* This is wrong too */

It is illegal to perform arithmetic operations with a parallel variable and a scalar-
to-parallel pointer as operands - except as discussed below. (

7.3.4 Parallel Indexes into Parallel Arrays

C* lets you use a parallel index into a parallel array. The result is essentially a
new parallel variable that contains elements from the existing parallel variables
that make up the array. This is referred to as parallel right indexing.

Consider the data shown in Figure 28. A parallel array, A, and a parallel variable,
i, have been allocated in a 1-dimensional shape, s.

(

May 1993
Copyright 0 1990-1993 Thining Machines Corporation

(

i

86 C* Programming Guide

Ch--aptr 15Wiil ? I ---. -. ------ 7

Figure 28. A parallel array and an index parallel variable.

C* allows the expression A [i] . The expression says: In each position, use the
value of i as an indexfor choosing a parallel variable element. For example, in
position [0] the value of i is 3; therefore, the element of parallel variable A [31
in that position is chosen. In position [1], the value of i is 2; therefore, the ele-
ment of A [21 in that position is chosen. The result is a "jagged" parallel variable
consisting of parallel variable elements taken from the different parallel variables
that make up the parallel array. Figure 29 shows the results.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

shape 8

0 1 2 3 4 n

A[O] ...

A l] ...
array A

A [2...
A[31 ...

Chapter Z. Pointrs 87

I I

i 3 2 1 ..

l

8 C- Prgamn ud

array A

0 1 n

...L
.e E

eee··

eelO

selected

not selected

2 3 4

A [0]

A [1]

A[2]

A [3] I' I iE
il 3 1 2 1

0 I 1 l31

Ali]

1

Figure 29. Indexing a parallel array by a parallel variable.

The values of the index parallel variable should be less than the number of paral-
lel variables in the parallel array; otherwise, the index chooses an element
outside the array, and the result is undefined. For example, if an element of i had
a value of 17, the result would be undefined, because i is indexing an array of
four parallel variables.

(

Adding a Parallel Variable to a Pointer to a Parallel Variable

The equivalence between arrays and pointers holds for parallel right indexing as
well. In other words, A [i] is equivalent to * (A+i). Note that * (A+i) is a legal
example of an arithmetic operation involving a parallel variable and a scalar
pointer to a parallel variable.

You can also subtract a parallel variable from a pointer to a parallel variable. For
example, you might have a pointer point to the end of an array rather than the
beginning. You could then subtract a parallel index from that pointer to choose
parallel variable elements within the array. Once again, such an index must cause
elements to be chosen from within an array; otherwise, the result is undefined.

i

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

.

iMi

C* Programming Guide88

shape S

.. :::::::

Chate 7............s

Limitations

C* limits what you can do with parallel right indexing. You can dereference these
expressions, but you cannot take their address. You can add a parallel variable
to a pointer to a parallel variable, or subtract it from the pointer, but in each case
the expression is legal only if it is immediately dereferenced. (The problem is
that otherwise the expression would represent a parallel pointer to a parallel vari-
able, and this kind of pointer does not exist in the language.) Thus, given these
declarations:

shape [8192]S;

int:S A[4], i, pl, p2, *ptr;

int sl;

these statements are legal:

p = A[i]; /* In all cases, i should index parallel

variable elements within the array */

A[i]++;
pl = *(A+i);

pl = (ptr - i); /* Pointer should point into

an array */

and these statements are illegal:

sl = &(A[i]);

sl = A+i);
pl = ptr + p2;

pi = *(ptr / i);

/* Can't take the address */

/* Creates invalid pointer type */

/* Can't perform an operation without

dereferencing */
/* Can only add or subtract */

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

)

Chapter Z. Pointers 89

1-: i ,
2-1:

I

I

-

,p

('I

(I
i

i

i

Chapter 8

Functions

C* adds support for parallel variables and shapes to Standard C functions.
Specifically:

* C* functions can take parallel variables and shapes as arguments.

* C* functions can return parallel variables and shapes.

* C* adds a new keyword current, which you can use to specify that a
variable is of the current shape.

* C* includes a void predeclared shape name so that you can declare an
argument to be a pointer to a parallel variable of any shape.

* C* supports overloading of functions, so that (for example) functions op-
erating on scalar and on parallel data can have the same name.

8.1 Using Parallel Variables with Functions

8.1.1 Passing a Parallel Variable as an Argument

C* functions accept parallel variables as arguments only if they are of the current
shape. As in Standard C, variables are passed by value; but see Section 8.2 for

a discussion of passing by value versus passing by reference.

The simple function below takes a parallel variable of type int and shape
ShapeA as an argument:

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

II I I II I I I 1 II I I II I I II I I , I I --- -- ---- ---

92 C* Programming Guide

void printsum(int:ShapeA x)

printf ("The sum is %d.\n", +=x);

}

(Note that C* supports the new Standard C function prototyping, in addition to
the older method. The new method is preferred.) There is actually a better way
of writing this function; we describe it in Section 8.4.1.

If pi is a parallel variable of type int and shape ShapeA, you could call
printsum as follows:

printsum (pl);

provided that ShapeA is the current shape. If ShapeA were not the current shape,
passing pi to the function would violate the rule that a program can operate only
on parallel variables of the current shape.

NOTE: If a funimction expects a scalar variable and you pass it a parallel variable
instead, you receive a compile-time error.

If the Parallel Variable Is Not of the Current Shape

If you want to pass a parallel variable that is not of the current shape to a func-
tion, use a pointer to the parallel variable. Note, though, that if the function is to
operate on the parallel variable, the function must include its own nested with
statement, and the parallel variable that is passed must be of that shape. For
example:

void print_sum(int:ShapeA *x)

(
with (ShapeA)

printf ("The sum is %d.\n", +*x);

}

If pi is a parallel variable of type int and shape ShapeA, you could call
printsum as follows, no matter what the current shape is:

print_sum (&pl);

Section 8.4.2 discusses a more general way of passing parallel variables that are
not of the current shape.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

8.1.2 Returning a Parallel Variable

C* functions can return parallel values. For example, this function:

float:ShapeA increment (float:ShapeA x)

{

return (x + 1.);

}

takes as an argument a parallel variable of type float and shape ShapeA, and
returns, for each active element of the variable, the value of the element plus 1.
Assuming that pi and p2 are parallel floats of shape ShapeA, and ShapeA is the
current shape, you could call increment as follows:

p2 = increment(pl);

Note that when a function is to return a parallel variable, you must specify both
the type and the shape of the variable. The header of the function increment
could also have been written with the shape after the parameter list:

float increment(float:ShapeA x):ShapeA

In a Nested Context

Consider a slightly different version of increment:

float:ShapeA incrementifover_5(float:ShapeA x,

float:ShapeA y)

where (y > 5.)

return (x + 1.);

Figure 30 shows some sample results of a call to this new function.

with (ShapeA)

p3 = increment_ifover5 (pl, p2);

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Chapter 8. Functions 93

4 C* Pn

p3 increment_if_over_5(pl, p2);

shape ShapeA

0 1 2 3 4 5 n

1 1
1...

Figure 30. Three parallel variables after a function call

Upon return from increment_if_over_5:

* All positions have once again become active, as we discussed in Chap-
ter 6.

* In every position where p2 is greater than 5, the corresponding element
of p3 has been assigned the value of the corresponding element of pi
plus 1.

* The values of all other elements of p3 are undefined.

8.2 Passing by Value and Passing by Reference

You can pass parallel variables by value or by reference, just as you can scalar
variables. However, in deciding whether to pass by value or pass by reference,
you must take into account the effect of inactive positions.

When you pass a variable by value, the compiler makes a copy of it for use in
the function. If the variable is parallel, and positions are inactive, elements in
those positions have undefined values in the copy. This is not a problem if the
function does not operate on the inactive positions; if it does, however, passing
by value can produce unexpected results. The function can operate on the inac-
tive positions in these situations:

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

pi

p2

p3

C *P~rogrammting Guide94

Ch$~ap 95---

* If the function contains an everywhere statement to widen the context,
and then operates on the parallel variable you pass.

* If it operates on an individual element of a parallel variable; see Section
6.2.

* If it performs send or get operations involving the parallel variable you
pass; send and get operations are described in Chapter 10.

As an example of the first situation, consider this function:

float:ShapeA f(float:ShapeA x)

{

everywhere
return (8. / x);

}

What happens if we pass in a parallel variable with an inactive element?
Figure 31 gives an example.

Figure 31. Passing by value when the function contains an everywhere statement,

The copy made of pI contains an undefined value, rather than 1.0, in the inactive
position; therefore, the value in [1] p2 is also undefined. Note that you wouldn't
want to divide by an undefined value.

To avoid this situation, define the function so that it passes by reference rather
than by value.

May 1993
Copyright 0 1990-1993 Thinidng Machines Corporation

where (pI I- 1.0) I active

p2 - f(pl); iactive
E imti

shape ShapeA

0 1 2 3 4 5 S

p1 L2.0 4.0 18.0 18.0 8.0...

p2 4. W 2.0 1.0 1.0 1.0 ...131

Chapter & Functions 95

96 C*Programming Guid

8.3 Using Shapes with Functions

8.3.1 Passing a Shape as an Argument

C* functions accept shapes as arguments. The function below takes a shape as
an argument and allocates a local variable of that shape.

int numberof_active_positions(shape x)

with (x) {

int:x local = 1;

return (+= local);

}

}

The shape that you pass need not be the current shape.

If the function also returns a parallel variable that is of the shape specified in the
parameter list, its shape must be declared after the parameter list, to avoid a for-
ward reference. For example:

float raise(shape employees, float:employees salary):employees

{
return (1.1 * salary);

}

This format is not especially useful in this case, since employees must be the
current shape. The format becomes more useful when you pass more than one
shape, and data is passing between the shapes. For information on communicat-
ing between shapes, see the discussion of parallel left indexing in Chapter 10 and
the discussion of general communication in Chapter 14.

8.3.2 Returning a Shape

C* functions can also return a shape. For example:

shape choose_shape(shape ShapeA, shape ShapeB, int n)

I

if (n)

return ShapeA;
else

return ShapeB;

}

May 1993
Copyright C) 1990-1993 Thinking Machines Corporation

I

(..

4

C *Programming Guide96

Chate &Fucton 9

This function returns ShapeA or ShapeB, depending on the value of n.

A function that returns a shape can be used as a shape-valued expression - that
is, you can use it in place of a shape name. For example:

with (choose_shape(shapel, shape2, sl))

/* ... */

See Section 9.7, however, for limitations on the use of a function as a shape-
valued expression when you are declaring a parallel variable.

8.4 When You Don't Know What the Shape Will Be

Some functions you write may be general enough that they can accept a parallel
variable of any shape as an argument. For example, the print_sum function
used as an example in Section 8.1 could work with any parallel variable. To al-
low this, C* introduces two new "predeclared" shape names: current and
void. A predeclared shape name is provided as part of the language; you do not
declare it in your program.

8.4.1 The current Predeclared Shape Name

The predeclared shape name current always equates to the current shape; cur -
rent is a new keyword that C* adds to Standard C. You can use current to
declare a parallel variable as follows:

int:current variablel;

If employees is the current shape when this statement is executed, variablel
is of shape employees; if image is the current shape, variablel is of shape
image.

NOTE: Since current is dynamic, you cannot use it with a parallel variable of
static storage duration.

Thus, we can generalize print_sum as follows to let it take any parallel int of
whatever shape is current when the function is called:

void print_sum(int:current x)

) {

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Chapter & Functionss 97

98�C*.....L�Programming----- Guide::::::"__'_--...........:--':.___"--%'--__.------:_'_...

printf ("The sum is %d.\n", +x);

In fact, this version of the function is more efficient than the version that speci-
fies a particular shape name in the parameter list. If the function specifies a shape
name, the compiler has to first make sure that the shape is current, and that the
parallel variable is of the current shape. If the function uses current, the com-
piler has to make sure only that the parallel variable is in fact of the current
shape.

8.4.2 The void Predeclared Shape Name

C* extends the use of the Standard C keyword void. In addition to the standard
use, it can be used as the shape modifier for a scalar-to-parallel pointer; it speci-
fies a shape without indicating what the shape's name is. C* does no type
checking of a void shape.

Use void instead of a shape name in a function's parameter list to specify that
any shape is acceptable as an argument to the function. If you are specifying a
parallel variable that can be of any shape, a type specifier (for example, int,
float) is still required. Since you cannot pass a parallel variable that is not of
the current shape, void must be the shape modifier of a scalar-to-parallel
pointer. For example, this function sums the values of the active elements of a
parallel int of any shape:

int sum(int:void *x)

{

with (shapeof(*x))

return (+= *x);

}

You can also use void outside a parameter list to declare a scalar pointer to a
parallel variable. For example:

int:void *ptr;

This declares ptr to be a pointer to a parallel int of an undetermined shape. The
shape is determined by the parallel variable whose address is ultimately assigned
to the pointer. For example, if ptr points to pi:

ptr = &pl;

(.

May 1993
Copyright O 1990-1993 Thinking Machines Corporation

98 C* Programming Guide

ChaiBp & Functions 99ll~-

then ptr is a pointer to an int of shape shapeof (pl). But note that a parallel
variable of another shape could subsequently be assigned to ptr, and the C*
compiler would not complain; ptr would then simply point to the new parallel
variable.

Using shapeof with the void Shape

While convenient, using the void shape slows down a program if run-time
safety is enabled. It is therefore preferable to use void only for the first parame-
ter of a function. For subsequent parameters of the same shape, use the shapeof
intrinsic function; shapeof provides more information to the compiler, thereby
allowing the compiler to generate better code. Also use shapeof in the control-
ling expression of the with statement to choose the current shape.

For example:

int sum of two_vars(int:void *x, int:shapeof(*x) *y)

{

with (shapeof(*x))

return (+= (*x + *y));

}

For parameters declared locally within the function, use current:

float average(int:void *x)

{

with (shapeof(*x)) {

int:current y = 1;

return (+=*x / +=y);

}

Using void when Returning a Pointer

Consider this function, which is passed a shape and returns a pointer to a parallel
variable of that shape:

int *f(shape ShapeA):ShapeA /* This is wrong */

{

}

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Chapter & Fctions 99

100 C* Programmi-g-G-ide

The shape of the return value must come after the parameter list, to avoid a for-
ward reference. However, C* doesn't allow this alternative syntax for a function
returning a pointer. The problem is the same as that discussed in Section 7.3.1;
the compiler interprets the return value incorrectly as "a parallel pointer of shape
ShapeA to a scalar int," and parallel-to-scalar pointers do not exist in C*.

Use void instead of the shape name for the return value in this situation. For
example:

int:void *f(shape ShapeA)

/ ...
}

Note that this causes an unavoidable loss of some type-checking, since the com-
piler cannot check for the correct use of the shape of the variable pointed to.

8.5 Overloading Functions (

It may be convenient for you to have more than one version of a function with
the same name - for example, one version for scalar data and another for paral-
lel data. This is known as overloading. C* allows overloading of functions,
provided that the functions differ in the type of at least one of their arguments
or in the total number of arguments. For example, these versions of function f
can be overloaded:

void f(int x);

void f(int x, int y);

void f(int:current x);

Use the overload statement to specify the names of the functions to be over-
loaded. For example, this statement specifies that there may be more than one
version of the increment function:

overload increment;

Put the overload statement at the beginning of the file that contains the declara-
tions of the functions. The statement must appear before the declaration of the
second version of the function, and it must appear in the same relative order with
respect to the function declarations in all compilation units. Thus, if it appears

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

100 C* Prpgramming Guide

Ch. -- --- ___ _ IIos

first in one compilation unit, it must appear first in all compilation units. If you
use a header file for your function declarations, this happens by default.

If you have different versions of more than one function, separate the function
names by commas in the overload statement. For example:

overload increment, average;

NOTE: The CM-200 and CM-5 implementations of C* restrict the shape of paral-
lel formal parameters you can specify in declaring overloaded functions. Only
current and void can be used in overloaded function declarations.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Chapter &. Functions 101

1r-

(:

Chapter 9

More on Shapes
and Parallel Variables

Chapter 3 introduced C* shapes and parallel variables. This chapter discusses
more aspects of these important topics. Specifically:

· Partially specifying a shape; see Section 9.1.

• Creating copies of shapes; see Section 9.2.

* Dynamically allocating and deallocating a shape; see Sections 9.3 and 9.4.

* Using the C* library function palloc to explicitly allocate storage for a
parallel variable; see Section 9.5.

* Casting to a shape, and casting to or from a parallel data type; see Sec-
tion 9.6.

9.1 Partially Specifying a Shape

It is possible to declare a shape without fully specifying its rank and dimensions.
You might do this, for example, if the number of positions in the shape is to be
determined from user input. For example,

shape ShapeA;

declares a shape ShapeA but does not specify its rank or dimensions. Such a
shape is fully unspecified.

shape [] ShapeB;

May 1993
Copyright © 1990-1993 Thinking Machines Corporation 103

104 C*Programming Guide

specifies that ShapeB has a rank of 1, but does not specify the number of posi-
tions. Such a shape is partially specified.

You must fully specify a shape before using it (for example, before allocating
e11ff1 .,fl Sffi AS+Sef ouff\ e^^+;> a n an ,, n Ago ,s,^.re #4;s11vt Ha_,paUJlw;1 VaLVUlc;Vb VA U WL Li). P;UtJJbm 1., UU . UCLu; Wl UiiU 1 L bL 1) -

ifying a partially specified or fully unspecified shape.

The rankof intrinsic function returns 0 for a fully unspecified shape. For a par-
tially specified shape, it returns the rank. For example, given these shapes:

shape s, [[t, [8092]u;

These statements are true:

rankof(s) == 0;

raI1Kor) == ;

rankof(u) == 1;

This information can be used if you don't know whether or not a shape is fully
specified - for example, in a function, where the function can fully specify a
shape only if necessary.

9.1.1 Partially Specifying an Array of Shapes

You can also create an array of shapes that is partially specified. For example,

shape ShapeC[10];

declares that ShapeC is an array of 10 shapes, but does not specify the rank or
dimensions of any of them.

shape [] [ShapeD[10];

declares that ShapeD is an array of 10 shapes, each of rank 2, but does not spec-
ify the number of positions in any of them.

A shape within such an array is specified with a right index in the standard man-
ner. For example,)

with (ShapeD[O])

makes the first shape in the array the current shape. Note that the shape must
become fully specified before you can use it in this way.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Cp9Mealelri

You cannot use a parallel variable as an index into an array of shapes.

Arrays and Pointers

The Standard C equivalence of arrays and pointers is maintained in C* with ar-
rays of shapes and pointers to shapes. For example, if we declare a scalar pointer
to Sarray:

shape *ptr;

ptr = Sarray;

then *ptr is equivalent to Sarray [0] and to *Sarray. Similarly,

Sarray [3]

is equivalent to

*(ptr + 3)

and to

*(Sarray + 3)

9.1.2 Limitations

You cannot partially specify
incorrect:

shape [1[4] ShapeE;

the dimensions of a shape. This statement is

/* This is wrong */

Also, you cannot partially specify the rank of a shape. This statement is incorrect,
if you later want to specify the shape as having a rank of 2:

shape []ShapeF;

A program cannot call the positionsof or dimof intrinsic function if the in-
formation the function requires has not yet been specified. If it is known when
the program is being compiled that an error will result from such a call, the com-
piler reports an error. Otherwise, a run-time error is reported.

A shape must be fully specified before you can declare a parallel variable to be
of that shape. You generally receive a compiler error if you try to declare a paral-
lel variable to be of a shape that is not fully specified. A couple of exceptions:

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

)

105Chapter 9. More on Shapes and Paralki ~ariables

I

i
I
i
iI
I

i
I
i

r

0l6-- 11-_Ylll _____ Suii S--_---

* If the parallel variable is declared as an automatic in a nested scope. For
example:

shape ShapeA;

main()

{

int:ShapeA pl;

In this case, the compiler assumes that Shapes is fully specified else-
where in the program. If it is not, a run-time error may be generated.

* If the shape has a storage class of extern. For example:

extern shape ShapeB;

int:ShapeB p2;

In this case, the compiler assumes that ShapeB is fully specified in some
other compilation unit, and a run-time error may be generated if it is not.

The next section describes how to, in effect, create copies of shapes. The section
after that describes how to fully specify a partially specified or fully unspecified
shape using the C* intrinsic function allocate_shape.

9.2 Creating Copies of Shapes

One way to fully specify a shape is by using the assignment operator to copy a
fully specified shape to a partially specified one. For example:

shape ShapeA;
shape [256][256]ShapeB;

ShapeA - ShapeB;

In this case, both ShapeA and ShapeB refer to the same shape. You can use
either one in a with statement to make this shape the current shape. This is dif-
ferent from what would happen if both were declared separately, but with the
same dimensions. For example:

shape [256] [256] ShapeA;

shape [256] [256]ShapeB;

May 1993
Copyright 1990-1993 Thinking MaŽnes Corporation

L.'

106 C *Programming Guide

Chapter 9. More onShpand-- -rae

In this case, ShapeA and ShapeB refer to two separate physical shapes that hap-
pen to have the same rank and dimensions.

You can also fully specify a shape by using a shape-valued expression as the RHS

of the assignment. For example:

ShapeA shapeof(pl);

ShapeB = (new_shape());

ShapeC *ptr;

/* p is a parallel variable of

some other shape */

/* newshape returns a shape */

/* ptr is a pointer to a shape */

9.2.1 Assigning a Local Shape to a Global Shape

Be careful when assigning a fully specified shape in local scope to a partially
specified shape in file scope. This code illustrates the problem:

shape ShapeA;

void f(void)

{

shape [1024] [512]ShapeB; /*

ShapeA = ShapeB; /*

main()

f();

int:ShapeA pl;

}

/* Unspecified shape ShapeA */

Fully specified shape ShapeB

in local scope */

ShapeB assigned to ShapeA */

/* This allocation fails because

ShapeA's shape was deallocated

when function f exited. */

}

In this case, the actual physical shape that ShapeA refers to is allocated in local

scope. When function f exits in the sample code, this shape is deallocated. When
the code subsequently tries to declare a parallel variable of shape ShapeA, it gets

an error, because the shape no longer exists.

The situation is analogous to what happens when a local pointer is assigned to

a global pointer in Standard C.

)

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Chapter 9. More on Shapes and Parallel Variables 107

1------ --- -------------- C- P---mm-

9.3 Dynamically Allocating a Shape

Another way to fully specify a partially specified or fully unspecified shape is
to use the C* intrinsic function allocate_shape. allocateshape's first ar-
gument is a pointer to a shape; its second argument is the rank of this shape;
subsequent arguments are the number of positions in each rank The function
returns the shape it points to. For example,

shape []ShapeB;
ShapeB allocate_shape(&ShapeB, 1, 65536);

completes the specification of the partially specified 1-dimensional shape
ShapeB.

You needn't partially specify a shape before calling allocate_shape. For
example,

allocate_shape(&new_shape, 3, 2, 2, 4096);

returns a 3-dimensional shape called new_shape.

allocateshape can also fully specify elements of an array of shapes. For
example:

ShapeD[0] allocate_shape(&ShapeD[0], 2, 4, 16384);

Alternatively, you can use an array to specify the number of positions in each
rank This format is useful if the program will not know the rank until run time,
and therefore can't use the variable number of arguments required by the previ-
ous syntax. The example below reads the rank and dimensions in from a file
named shape info and uses these values as arguments to allocateshape.

#define MAX AXES 31

#include <stdio.h>

main()

{

FILE *f;

int axes[MAX AXES], i, rank;

shape ShapeA;

f = fopen("shape_info", "r");

fscanf(f, "%d", &rank);

if (rank > MAXAXES) {

fprintf (stderr, "Rank bigger than maximum

May 1993
Copyrigt 0 1990-1993 T77inang Machinc Corporation

C* Programming ide108

Chapter 9. More onSpeandParallelVariables 109-------

allowed.\n");

exit(1);

for (i O; i < rank; i++)

fscanf(f, "%d", &axes[i]);

ShapeA = allocateshape(&ShapeA, rank, axes);

Note that axes is initialized as an array of 31 elements, since the CM restricts
shapes to a maximum of 31 dimensions. Of course, the file shape_info could
contain fewer than the maximum number of dimensions.

NOTE: For certain programs you may be able to improve performance by using
the intrinsic function allocate_detailedshape instead of allo-
cate_shape. Appendix A discusses this function for CM-200 C*; Appendix B
discusses it for CM-5 C*.

9.4 Deallocating a Shape

Use the C* library function deallocateshape to deallocate a shape that was
allocated using the allocateshape function. Its argument is a pointer to a
shape. Include the header file <stdlib.h> if you call deallocate_shape.
Note that this is not required for allocate_shape, which is an intrinsic
function.

There are two reasons to deallocate a shape:

If you have reached the limit on the number of shapes imposed by your
CM system. To avoid this, in general you should deallocate a shape when
you leave the scope in which the shape is defined.

If you want to reuse a partially specified shape.

As an example of the latter, consider this code:

#include <stdlib.h>

shape [S;
int positions = 4096;

main()

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Chapter 9. More on Shapes and Parallel Varlabkss 109

while (positions<=65536) {

S = allocateshape(&S, 1, positions);

{

int:S pl, p2, p3;

/* Parallel code omitted ... */

}

deallocate shape(&S);

positions *= 2;

In this code, shape s is allocated every time it goes through the while loop, and
deallocated at the end of the loop. This lets it have a different number of positions
each time through the loop.

The results of deallocating a shape that was fully specified at compile time are
undefined.

You should not deallocate a shape when there are parallel variables of that shape
still allocated; if you do, the behavior of these parallel variables is undefined.
Note that in the code fragment above, the parallel variables declared to be of
shape s go away when you leave the block.

As discussed in Section 9.2, you can create copies of shapes by assigning one
shape to another. If you have created copies of shapes in this way and you deallo-
cate one, the effect on the others is undefined.

9.5 Dynamically Allocating a Parallel Variable

The C* library routine palloc is the parallel equivalent of C library routines like
malloc and calloc. Use it to explicitly allocate storage for a parallel variable.
It can be called whether or not the parallel variable's shape is dynamically allo-
cated. Include the file <stdlib.h> if you call palloc or its companion
function pfree.

palloc takes two arguments: a shape, and a size (in bools). It allocates space
of that size and shape, and returns a scalar pointer to the beginning of the allo-
cated space. The shape passed as an argument must be fully specified before
palloc is called.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

110 C* Programming Guide

Chaptr sa---- -9. Moeon--- =-Sh....pes. and Parlle Var-ab ...

palloc returns 0 if it cannot allocate the memory.

To allocate space for a parallel variable of shape ShapeA, for example, you could
do this:

#include <stdlib.h>

shape [16384] ShapeA;

int:ShapeA *ptr;

main ()
{

ptr = palloc(ShapeA, boolsizeof(int:ShapeA));

}

The scalar variable ptr now contains a pointer to an int-sized parallel variable
of shape ShapeA. You can reference this parallel variable by using *ptr. The
contents of the parallel variable are undefined.

Use pfree to deallocate storage you allocated with palloc. pfree takes as its
argument the pointer returned by palloc. For example, to deallocate the storage
allocated by the call to palloc above, call pfree as follows:

pfree(ptr);

The palloc and pfree calls can also be used with a dynamically allocated
shape, as in this example:

#include <stdlib.h>

shape S;

double:S *p;

main()

S allocateshape(&S, 2, 4, 8192);

p palloc(S, boolsizeof(double:S));

/* ... */
pfree(p);

deallocateshape(&S);

Note that you are responsible for freeing the storage you allocate before you free
the associated shape.

May 1993
Copyright 1 1990-1993 Thinking Machines Corporation

Chaper 9. More on Shapes and Parallel ariables 111

112INII I--- --- n Guide---------- -- :--

Also, note that you can declare a scalar pointer to a parallel variable of a shape
that is not fully specified, even though you cannot declare a parallel variable of
that shape.

9.6 Casting with Shapes and Parallel Variables

Use the C* cast operator to cast an expression to a particular shape and type. For
example,

(char: employees)

specifies that the expression following it is to be formed into a char of shape
employees. You must specify a data type as well as a shape in a parallel cast;
there are no defaults.

9.6.1 Scalar-to-Parallel Casts

Using a parallel cast is a quick way to promote a scalar value. The statement
below stores in scalar variable sl the number of active positions of the current
shape:

sl = = (int:current)1;

In the statement, 1 is cast to a parallel int of the current shape. The += reduction
operator sums the resulting parallel variable for all active positions, and the result
is assigned to the scalar variable al.

9.6.2 Parallel-to-Parallel Casts

Parallel-to-parallel casts are also permitted

Casts to a Different Type

You can cast a parallel variable so that it has a different type. For example:

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

i
i
I

I

112 C* Programming Guide

Chpe 9.l M

int:ShapeA pl;

sqrt ((double:ShapeA)pl);

The parallel version of sqrt requires a float or a double; therefore, we must
cast the parallel int pi before we can pass it to this function.

Casts to a Different Shape

Casting of a parallel variable to a different shape is limited to the situation in
which the same shape can be referenced by more than one name. In this case, a
cast may sometimes be necessary to ensure that the compiler recognizes that two
parallel variables are supposed to be of the same shape. For example:

shape [:256] [256]ShapeB, ShapeA;

main()

{

ShapeA = ShapeB;

{

int a:ShapeA, b:ShapeB;

with(ShapeB) {

b = a; /* This gets a compile-time error */
b = (int:ShapeB)a; /* This works */

}

The cast is required so that the compiler is made aware that ShapeA and ShapeB

refer to the same shape.

No movement of data is implied in a parallel-to-parallel cast.

The effects of casting an expression between two shapes that are different (for
example, with a different rank or number of positions) are undefined.

9.6.3 With a Shape-Valued Expression

You can use a shape-valued expression with a scalar-to-parallel or parallel-to-
parallel cast. The expression must be enclosed in parentheses unless it is an
intrinsic function. For example,

s = +=(int: (shape_array[3]))1;

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Chapter 9. More on Shapes and Parallel Va~riables 113

1=1 C* ProgrammigGid

casts 1 to be an int of the fourth shape in the array shape_array.

9.6.4 Parallel-to-Scalar Casts

You can cast a parallel variable to a scalar type. The result is similar to a demo-
tion of a parallel variable when assigning it to a scalar (see Chapter 5); the
operation picks one of the active values of the parallel variable and returns that
as the result. If no positions are active, the result of the cast is undefined.

9.7 Declaring a Parallel Variable with a
Shape-Valued Expression

A shape-valued expression, as we have described earlier, is an expression that
can be used in place of a shape name. You can therefore use a shape-valued ex-
pression in declaring a parallel variable. The expression must be enclosed in
parentheses unless it is the shapeof intrinsic function. For example:

shape [256] [256]matrix;

int:matrix p;
int:shapeof(pl) p2; /* p2 is of shape matrix */

int:(get_shape()) p3; /* get_shape returns a shape */

However, if the declaration appears at file scope, or is static or extern, the
shape-valued expression must be a constant. This means that the expression must
be one of the following:

* A simple shape that is fully specified at compile time, or that has a storage
class of extern. For example, shapeof in the example above refers to
a fully specified shape.

* An array of shapes that is fully specified at compile time and whose right
index is a constant expression. For example:

shape [256] [512]Sarray[40];
int: (Sarray [17]) p;
int: (Sarray [4-3]) p2;

* An indirection of an array of shapes that is fully specified at compile time,
with a constant expression added to it. For example: (

May 1993

Copyright © 1990-1993 Thinking Machines Corporation

114 C* Programming Guide

ae.Sasa Va
shape [512] [256]Sarray[40];

int:(*(Sarray + 17)) pi;

int:(*(Sarray + 4 - 3)) p2;

These are illegal:

shape Sarrayl[40];

int: (Sarrayl [17]) pl; /* This is wrong */

Sarrayl is not fully specified; therefore, you
variable of any of the elements of it.

can't declare pi to be a parallel

shape [512] [256]Sarray[40];

int:(Sarray[f(x)]) p; /* This is wrong */

In this case, Sarray is fully specified, but f (x) is not a constant expression,
since it invokes a function whose result is not known until run time.

shape *ptr;

int: (*ptr) pi; /* This is wrong */

In this case, ptr does not point to a fully specified shape.

9.8 The physical Shape

C* contains the predeclared shape name physical; physical is a new key-
word that C* adds to Standard C. The shape physical is always of rank 1; its
number of positions is the number of physical processors on which your program
is running. (In the CM-5 implementation, it is either the number of nodes or the
number of vector units, depending on how you compiled the program. See the
CM-5 C* User Guide for more information.) Note, therefore, that the number
of positions in the shape is not known until run time.

You can use physical as you would any other shape. For example,

positionsof(physical);

returns the number of positions in shape physical, which is equal to the num-
ber of physical processors on which the program is running.

(int:physical)pl

casts pi to be an int of shape physical.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Chapter 9. More on Shapes and Parallel Variables 115

(I

4

Chapter 10

Communication

This chapter describes methods you can use to perform communication among
parallel data. For example:

· Sending values of parallel variable elements to other elements of the same
or a different shape.

* Getting values of parallel variable elements that are of the same or a differ-
ent shape.

C* provides two methods of communication:

* General communication, in which the value of any element of a parallel
variable can be sent to any other element, whether or not the parallel vari-
ables are of the same shape. You can use parallel left indexing to perform
general communication. Parallel left indexing is described in Section 10.1.

* Grid communication, in which parallel variables of the same shape can
communicate in regular patterns by using their coordinates. We use the
term "grid communication" since the coordinates can be thought of as lo-
cating positions on an n-dimensional grid. Grid communication is faster
than general communication. You can use the pcoord function, combined
with parallel left indexing, to perform grid communication. The pcoord
function is described in Sections 10.2 and 10.3.

In addition to the methods described in this chapter, C* includes a library of
functions that provide an alternative way of performing grid and general commu-
nication; these functions are discussed in Part III of this manual. There are some
differences in what you can accomplish using the different methods, but for most
purposes the choice between the methods depends on individual preference.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation 117

1188~88 C......Jn Pr amm.ng- Gu........ide.....--_.......E..E.-- zz---"- ~~~~~ -: i . . . _ _-- --. _ _

10.1 Using a Parallel Left Index for a Parallel Variable

By now you should be familiar with the left indexing of a parallel variable to
specify an individual element. For example, [lo] pi specifies the first element of
the 1-dimensional parallel variable pi. Similarly, if si and s2 are scalar vari-
ables, their values determine which element is specified by the 2-dimensional
parallel variable [sl [s2al dl. But we have not yet covered the case in which
a parallel variable is used as a left index for another parallel variable. If p0 and
pa are both 1-dimensional parallel variables, what does [po]pl mean? If do,
da, and d2 are all 2-dimensional parallel variables, what does [dO] [di] d2

mean?

Basically, a parallel left index rearranges the elements of the parallel variable,
based on the values stored in the elements of the index; the index must be of the
current shape. The example discussed below will help show how this works.

Note to users of CM-200 C*: This and other examples in this chapter do not
represent valid shapes in the CM-200 implementation, because there are too few
positions; we use these small shapes to make it easier to visualize what happens
when you use a parallel left index.

Figure 32. Three parallel variables.

a;

May 1993
Copyright) 1990-1993 Thinking Machines Corporation

0 1 2 3 4

source 0 10 20 30 40

index 1 3 1 4 1 2

dest J I I I I

118 C* Programtming Guide

-aper-- 10. Cmato1

10.1.1 A Get Operation

Given the situation shown in Figure 32, what is the result of the statement below?

dest = [index]source;

Let's look first at what goes into element 0 of dent. The value in element [0] of
index is 1. This value is used as an index into the elements of source. The
value in element 1 of source is 10. Therefore, element 0 of dest gets assigned
the value 10. The way to think of this is that the LHS variable gets a value of the
RHS variable, based on the value of the corresponding element of the index vari-
able; we refer to this as a get operation. In C* code, what happens is this:

[O]dest = [l]source;

For element 1 of dest, the value of the index variable is 3. Therefore, element
1 of dent gets the value of element 3 of source, which is 30. In C* code:

[l]dest = [3]source;

And for the remaining elements:

[2] dest =

[3]dest =

[4] dest =

[0] source;

[4] source;

[2] source;

It's important to note the difference between parallel left indexing and these se-
rial statements. Parallel left indexing causes these assignments to occur at the
same time, in parallel. In the serial statements, the result of an earlier statement
could affect the result of a later one; this does not happen when all the statements
are executed at the same time.

Figure 33 shows the results of the assignment statement for all elements of dest;
the arrows show the process by which a value is assigned to [01 dent. The value
of [0o] index is 1, which causes [0] dest to get the value in [1] source.

)

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Chapteria0.Communication 119

120 CI Programming-Guide

Figure 33. Parallel left indexing of a parallel variable - a get operation.

10.1.2 A Send Operation

Here is another assignment statement that uses the data in Figure 32:

[index]dest = source;

In this case, index is being used as an index for dest. In statements of this form,
the RHS variable sends a value to the LHS variable, based on the value of the
corresponding element of the index variable; we refer to this as a send operation.

Let's look at element 0 of source. The value in element 0 of the index variable
index is 1; this value is used as an index into dest. The value in element 0 of
source, 0, is sent to element 1 of dest. In C* code:

[1ldest [source;

For element 1 of source, in the corresponding element, the value of index is
3; therefore, the value in element 1 of source, 10, is sent to element 3 of dest.
In C* code:

[3]dest = [1]source;

The serial C* statements for the rest of the elements are:

[O]dest = [2]source;

[4]dest = [3]source;

[2]dest = [4]source;

May 1993

Copyright Q 1990-1993 Thinking Machines Corporation

dest - [index]source;
0 1 2 3 4

source

index

dest

C* Programming Guide120

Chapter- ' 1.Cm niao 121-

Note once again, however, that parallel left indexing causes all these statements
to be executed at the same time. The results are shown in Figure 34; the arrows
show the process by which the value in [01 source is assigned to an element
of dent. The value in [01 index is 1; therefore, [01 source sends its value to
Il] dent.

Figure 34. Parallel left indexing of a parallel variable - a send operation.

10.1.3 Use of the Index Variable

The index variable would typically contain values that cause a meaningful rear-
rangement of the parallel variable it indexes. For example, if we use the values
shown in Figure 35,

dest = [index] source;

causes dest to contain the source values in reverse order; the arrows show the
process by which [o] dest gets its value, based on the index in index.

The index variable cannot reference nonexistent elements of a parallel variable.
For example, an index value of 5 in Figure 35 creates unpredictable results.

May 1993
Copyright) 1990-1993 Thinking Machines Corporation

[index]dest source;

0 1 2 3 4

source

index

dest

Chapter 10. Communication 121

122 -- ---------------- Guide-------

Figure 35. An index that reverses the order of a parallel variable.

10.1.4 If the Shape Has More Than One Dimension

Parallel left indexing can be used if the parallel variable is of a shape with more
than one dimension. In this case, however, you need to specify a left index for
each axis of the shape. For example:

shape [128] [512]ShapeA;

int:ShapeA dest, indexO, indexl, source;

main()

with (ShapeA)

dest = [indexO] [indexl]source;

In this case, source is of the 2-dimensional shape ShapeA. Therefore, it re-
quires two left indexes to specify the values to be assigned to dest. indezO is
used as the index for axis 0 of source, and indexi is used as the index for axis
1 of source.

If one of the indexes is parallel and one or more are scalar, the scalar indexes are
promoted to parallel in the current shape.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

[index]dest - source;

source

index

dest

122 C * Prpgramming Guide

Chapter ~a s~~ 10. m Icati 1-

10.1.5 When There Are Potential Collisions

In the examples of parallel left indexing shown so far, the index variable, index,
has had different variables in each element. Let's consider a situation, shown in
Figure 36, where this is not true.

source

index

dest

0 1 2 3 4

0 10 20 30 40

l . i

Figure 36. An index with the same value in each element.

For a Get Operation

Using the data in Figure 36, the result of this get operation is straightforward:

dest [index]source;

For each element of dest, the index index into source is 1. This means that
the value in element 1 of source, 10, is assigned to each element of dent, as
shown in Figure 37.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Chapter 10. Communication 123

124*-------- C*Pr Guide

Figure 37. A get operation where the index has the same value in each element.

It is equivalent to this C* code:

[O]dest = [1]source;

[l]dest = [source;

[2]dest [1]source; /* ... and so on */

except that all operations are carried out at the same time, in parallel.

For a Send Operation

If we try this, however:

[index]dest = source;

we have a problem. For each element of source, the index into dest is 1. This
means that all the values of all the elements of source attempt to write into ele-
ment 1 of dest. In serial C* code:

[l]dest = [O]source;

[1]dest = [source;

[1]dest = [2]source; /* ... and so on */

This is an example of potential collisions, which could occur when more than
one element tries to write into the same element at the same time. To avoid the

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

dent - [index]source;

0 1 2 3 4

source 0 10 20 30 40

index 1L I 1 1 1

dent 10 10 10 10 10

(

.-

C *Programming Guide124

ap

collisions, C* chooses one of the source elements to assign to [1] dest. How
it chooses the element is defined by the implementation.

You can use any C* reduction assignment operator in this situation. For example,
we could specify this:

[index]dest += source;

This statement says: If there is going to be a collision of source values assigned
to any of the elements of dest, add the values of the source elements that would
otherwise collide, then add this result to the value of the dest element.

In cases where there are no collisions, the value of the source element is simply
added to the value of the dest element. In the example, all the values of source
are summed, and the result is assigned to element 1 of dest, as shown in
Figure 38. (Note that if you knew that all the index values were the same, it
would be more efficient to use a simple unary reduction operator instead of doing
parallel left indexing.)

Figure 38. A reduction assignment when the parallel left index is on the LHS.

The kind of reduction assignment operator you use specifies the way the collid-
ing elements are combined. For example, the > ?7 operator selects the maximum
value of the elements.

Note that the reduction occurs only for elements that would otherwise collide.
Given the examples shown in the previous section, for example, the type of re-

Ma' 1993
Copyright © 1990-1993 Thinking Machines Corporation

[index]dest + source;

0 1 2 3 4

source 0 10 20 30 40

index 1 1 1 1 1

dest 100 | l

Chapter 10. Communication 125

126I CPg mg i

duction assignment you use would not matter, because there are no possible
collisions. This is consistent with the way parallel-to-scalar reduction operators
work, because all values of the parallel variable will collide when they are as-
signed to a scalar variable; therefore, all must be included in the specified
reduction operation.

To sum up:

* In a get operation, you don't have to consider using a reduction assign-
ment operator, because there are no potential collisions.

* In a send operation, there may be potential collisions. If you simply use
- instead of a reduction assignment operator, and there is a potential colli-
sion, C* picks one of the colliding values and assigns it to the element.

10.1.6 When There Are Inactive Positions

The examples of parallel left indexing shown so far have assumed that all posi-
tions are active. What happens when a where statement makes some positions
inactive?

For a Get Operation

Consider this get operation:

where (source < 30)

dest [index]source;

In this situation, the where statement deselects positions [3] and [4], using the
data shown in Figure 39, but it deselects them only for getting purposes. Parallel
variable elements in these positions cannot get values; however, elements in ac-
tive positions can get values from them. The serial C* code would therefore be:

[O]dest = []source;

[l]dest [3]source;

[2]dest - [O]source;

except that all operations occur at the same time. Figure 39 shows the results; the
arrows show how [l] dest gets its value.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

126 C* Programming Guide

am

Figure 39. A get operation with inactive positions.

Note these results:

) [1] dest gets a value from [3] source, even though position [3] is inac-
tive.

* [41 dest does not get a value from [21 source, because position [4] is
inactive.

For a Send Operation

Send operations work similarly:

where (source < 30)
[inclex]dest = source;

The where statement "turns off" positions 3 and 4, as shown in Figure 40. But
it turns them off only for sending purposes. Elements in inactive positions cannot
send values, but elements in active positions can send to them. Thus, the serial
C* version of this statement would be:

[l]dest = [0]source;

[3]dest = [1]source;

[O]dest = [2]source;

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

where (source < 30)

dest=[index]source;
active

[2 inactive

0 1 2 3 4

source

index

dest

Chapter 10. Communication 127

A C*Pormmn

The results are shown in Figure 40; the arrows show how the value in
[1] source is sent to [3] dest.

Figure 40. A send operation with inactive positions.

Note these results:

* [1] source sends its value to [31 dest, even though position [3] is inac-
tive, because position [1] is still active.

* [4] source does not send its value to [2] dest because position [4] is
inactive.

One way to look at the concept of inactive positions in these situations is that the
parallel variable without the parallel left index is the one doing the work (sending
or getting). When a position is made inactive, it can't do work, but it can have
work done to it. Thus:

· In a send operation, the inactive position can't send,
can send to it.

* In a get operation, the inactive position can't get, but
get from. it.

but other positions

other positions can

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

where (source < 30)
[index] dest=source;

_ active

El inactive

0 1 2 3 4

sour'ce

index

dest

C* Programming Guide128

Chae 1 C

)

Send and Get Operations in Function Calls

As we mentioned in Section 8.2, you should be careful about passing a parallel
variable by value to a function that involves the parallel variable in a send or get
operation. If there are inactive positions when the function is called, the results
may not be what you expected.

For example, suppose we define this function:

int:current get_op(int:current source, int:current index)

{

return ([index] source);

}

If we use the data and the context from Figure 39, we get the results shown in
Figure 41.

where (source < 30)

dest get_op(source, index);
D active

E' inactive
0 1 2 3 4

0 10 20 M

1 3 0 M/X

10 0 / .

source

index

dest

Figure 41. A function that includes a get operation.

Note the difference in results between Figure 39 and Figure 41: In Figure 39,
[1] dest got its value from [3] source, even though position [3] was inactive.

In Figure 41, [1] dest receives an undefined value. This happens because the
compiler makes a copy of a parallel variable when it is passed by value, and ele-
ments at inactive positions receive undefined values.

Mayo 1993
Copyright 1990-1993 Thinking Machines Corporation

Chapter 10. Communication 129

0 - -C* Pormn

The solution is to pass source by reference. In that case, the compiler does not
make a copy of the parallel variable, and the function can gain access to values
at inactive positions.

Note that in send operations it is the dest parallel variable that should be passed
by reference, since positions can send to an inactive destination.

10.1.7 Mapping a Parallel Variable to Another Shape

One use of the parallel left index is to map a parallel variable into another shape.
Consider the situation shown in Figure 42.

Figure 42. Two shapes.

The statement:

dest = [index]source;

has the same interpretation as before: Elements of dest get values of source,
based on the value in the corresponding element of index. But in this situation,
we are essentially mapping source into shape ShapeD, based on index.
ShapeD must be the current shape. Since the values in index are the same as
the coordinates for ShapeP, the assignment is straightforward: the value of
index for position [0][0] is 0; this value is used as an index into the elements

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

shape ShapeD

0 1 2

0 0 1 2 shape ShapeP
index -

1 3 0 1 2 3 4 5

source 10 11 12 13 14 15

dest

C*C Programming Guide130

Chate1s.Commicai

of source. The value of element [0] of source is 10; therefore, 10 is assigned
to element [0][0] of dest.

The mapping occurs only for the specified operation; it does not permanently
affect the parallel variable being mapped. For example, source remains of
shape ShapeP after the operation above.

shape ShapeD

0-/ 1 2

0 1 2

3 4 5

10 31 12

13 34 15

shape ShapeP

1 2 3 4 5

source 10 I11 12 113 1 14 15

Figure 43. Mapping a parallel variable to another shape.

If a parallel variable is not of the current shape, you can use a parallel left index
to map it to dile current shape and then operate on it. For example:

shape [64] [64]ShapeD;

int:ShapeD index, dest;

shape [1.6384] ShapeP;

int:ShapeP source;

/* Code to initialize variables omitted. */

main()

{

with (ShapeD) {

dest = source; /* This doesn't work--source
is the wrong shape. */

dest = [index]source; /* This does work. */

}

}

May 1993

Copyright © 1990-1993 Thinking Machines Corporation

0

index
1

dest

Chapter 10. Communication 131

! I

l f

132C*-----B 'I--- Program

Only active elements of a parallel left index participate in the indexing. If we add
a where statement to the code example above and assume the data shown in
Figure 42:

/ ... */
with (ShapeD) {

where (index != 0)

[0] [O]dest += [index]source;

the value of element [0] of gource is not included in the summation.

10.1.8 Limitation of Using Parallel Variables with a
Parallel Left Index

A parallel variable with a parallel left index is a modifiable lvalue; therefore, it
can appear as the left operand of assignment operators, as the operand of prefix
or postfix ++ or -- , and in all cases where an rvalue is needed. You cannot, how-
ever, take the address of it using the & operator. (In general, this would require
a parallel pointer handle, which isn't supported in C*.)

10.1.9 What Can Be Left-indexed

Parallel left indexing follows the general rules about performing parallel opera-
tions within the current shape; see Section 4.4. Specifically:

* If an expression is of the current shape, you can always left-index it.

* If an expression is not of the current shape, you can left-index it when it
is any of these:

* A simple identifier.

* A per-processor array that is not of the current shape, if it is right-
indexed by a scalar value. (You cannot left-index an array that is not
of the current shape if it has a parallel right index, because that
would require a parallel operation on a variable not of the current
shape.)

· A parallel variable with the operator applied to it to take its
address.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

132 C* Programming Guide

Chaper 0. ommnictio 13

* A member of a parallel structure or union that is not of the current
shape (so long as the member is not an aggregate type, such as
another structure or union).

10.1.10 An Example: Adding Diagonals in a Matrix

The example in this section uses a parallel left index and the +- reduction assign-

ment operator to add diagonals in a matrix. It uses the data shown in Figure 44.

Figure 44. Two 4-by-4 parallel variables.

The task is to add the values of source in the diagonals of the matrix. The code

below accomplishes this.

shape [4] [4]ShapeA;

shape [7]ShapeB;

int:ShapeA source, index;

int:ShapeB dest 0;

)

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

shape ShapeA

0 1 2 3
00 1 2 3

14 5 6 7
source . .

2 8 9 10 11

3 12 13 14 15

3 4 5 6

2 3 4 5
index

1 2 3 4

0 I 2 3

Chapter 10. Communication 133

134 C* Programm--ng-Guide

/* Code to initialize the parallel variables omitted */

main()

{

with (ShapeA)

[index]dest += source;

}

As you can see, the actual computation is quite simple, once the data has been
set up properly. Let's look in detail at the statement:

[index]dest += source;

First, note that the statement is legal, even though dest is not of shape Shape,
since dest is left-indexed by a parallel variable that is of that shape. The state-
ment says: Use index as an index into dest for sending values of source; if
there are potential collisions, add the values of source. So, for example, ele-
ment [0][0] of parallel variable source is assigned to element [3] of dest,
because the value of the corresponding element of index is 3. Element [1][1],
element [2][2], and element [3][3] are also assigned to element [3] of dest. They
are all added, thus avoiding collisions.

The other elements of source are also assigned to dest, based on the value of
the corresponding elements of index. The result is the addition of the diagonals.
Figure 45 shows the results, highlighting the values that go into [31 dest.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

I

134 C* Programming Guide

Chpe 0.Cmuicto 3

Figure 45. Using parallel left indexing to add the diagonals of a matrix.

10.2 Using the pcoord Function

C* includes a new library function called pcoord, which is especially useful
when combined with parallel left indexing. Use pcoord to create a parallel vari-
able in the current shape; each element in this variable is initialized to its
coordinate along the axis you specify as the argument to pcoord. For example,

shape [65536]ShapeA;

int:ShapeA pl;

main()

{

with (ShapeA)

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

with (ShapeA)

with (ShapeA)
[index] dest +=source;

shape ShapeA

0

1
source

3

3

shape ShapeP

0 1 2 3 4 5 6

dest 121 21 27 1 18 9 3

3 4 5 6
2 345

index

)

1 2 3 4

0 1 2 3

Chapter 10. Communication 135

136 C*Programming Guide

pl = pcoord(0);

initializes pI as shown in Figure 46.

pl - pcoord(0);

shape ShapeA

0 1 2 3 4 S 6 7 8 65535

pI 0 1 2 3 4 5 6 7 8 ...

Figure 46. The use of pcoord with a 1-dimensional shape.

Likewise, for a 2-dimensional shape,

shape [4] [4096]ShapeB;

int:ShapeB p2;

main ()

with (ShapeB)

p2 = pcoord(l);

initializes p2 as shown in Figure 47.

Figure 47. The use of pcoord with axis 1 of a 2dimensional shape.

May 1993
Copynght 0 1990-1993 Thinking Machines Corporation

.44

I

Chapter 1Commuitin 1----

Similarly,

with (ShapeB)

p2 pcoord(O);

initializes p2 as shown in Figure 48.

Figure 48. The use of pcoord with axis 0 of a 2-dimensional shape.

The pcoord function provides a quick way of creating a parallel left index for
mapping a parallel variable into another shape. For example:

shape [16384]ShapeA, [16384] [4] ShapeB;

int:ShapeA source;

/* Code to initialize source omitted. */

main()

{

with (ShapeB) {

int:ShapeB index, dest;

index - pcoord(O);

dest - [index]source;

}

}

Rather than assign the results of pcoord to a parallel variable, you can simply
use it as the parallel left index itself:

dest - [pcoord(O)]source;

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

p2 pcoord(O);

0 1 2 3 4095

0 0 0 0 0 ... 0

1 1 1 1 1 ... 1
p2

2 2 2 2 2 ... 2

3 3 3 3 3 ... 3

)

Chapter ia.Communication 137

138 -- C ogrmEl..m1 Guide-----------

The index of the specified axis of the current shape is generated by pcoord This
index is used as an index for selecting elements of a parallel variable of another
shape. The values of these elements are assigned to elements of a parallel vari-
able of the current shape.

10.2.1 An Example

This example uses pcoord to transpose a matrix - in other words, to turn its
rows into columns and its columns into rows. For example, consider the simple
3-by-3 parallel variable called matrix shown on the left in Figure 49. The task
is to turn it into the new matrix shown on the right.

Figure 49. Tramnsposing a 3-by-3 matrix.

This can be done by reversing the axes for the parallel variable matrix. For
example,. [0] [matrix (which contains the value 1) becomes element
[1] [o] of a new parallel variable. To do this for a 256-by-256 matrix, use

pcoord as follows:

Shape [256] [256]ShapeA;

int:ShapeA matrix, newmatrix;

main ()
{

with (ShapeA)
[pcoord(l) [pcoord(O)]newmatrix matrix;

}

The statement

May 1993
Copyright O 1990-1993 Thinking Machines Corporation

.I.

0 1 2

00 1 2 0 3 6
matrix 1 3 4 5 - . new matrix 1 4 7

2 6 7 8 2 5 8

(I

C *Programming Guide138

Chaptr10Rga. Communication139

[pcoord(l)] [pcoord(O)]new matrix = matrix;

says: Assign each element ofmatrix to new_matrix, but reverse the axis num-
bering. Thus, in serial C* code:

[0] [O]new matrix = [0] [O]matrix;
[0] [l]new matrix = [1] [O]matrix;

[0] [2]new matrix = [2] [0]matrix;

[1] [0]newmatrix = [0] [l]matrix; /* And so on */

except that all operations take place at the same time. This algorithm can be gen-
eralized for use in a function with any 2-dimensional parallel variable:

void transpose(float:current *matrixp,

float:void *newmatrixp)
{

[pcoord(1) [pcoord (O)] *new matrixp = *matrixp;

Note these points about transpose:

* It passes two pointers to parallel variables. matrixp is a pointer to a par-
allel variable of the current shape; we pass a pointer rather than the parallel
variable itself to avoid having to make a copy of the variable.
new matrixp is a pointer to a parallel variable of a new shape; we must
pass a pointer in this case because we will be modifying the vari-
able - therefore, it can't be passed by value.

* We use a second shape so that the function can work with a matrix that
isn't square. For example, if the current shape is 256 by 512, make
neow matrixp a pointer to a parallel variable of a shape that is 512 by
256.

* The variable pointed to by matrizp is assigned to the variable pointed to
by new matrixp, and this variable has its coordinates reversed.

10.3 The pcoord Function and Grid Communication

When used with parallel left indexing, pcoord provides the grid communication
capabilities we discussed at the beginning of this chapter.

Consider this statement, where both dest and source are of the current shape:

May 1993
Copyright C 1990-1993 Thinking Machines Corporation

Chapter 10. Communication 139

140 I P Guide.......

dest = [pcoord(O) + 1]source;

This statement says: Each active element of dest is to get the value of source
that is in the position one coordinate higher along axis 0. You can either add a
scalar value to or subtract a scalar value from pcoord in the left index. Which
operation you choose determines the direction of the communication; the value
added or subtracted specifies how many positions along the axis the values are
to travel. Note, however, that the values must stay within the border of the grid;
the behavior is undefined if dest tries to get a nonexistent element of source.

You can use pcoord for a send operation as well as for a get operation; send and
get operations are discussed in Section 10.1. For example:

[pcoord(O) + l]dest = source;

This statement says: Send the value of the source element to the dest element
that is one position higher along axis 0.

You can use pcoord to specify movement along more than one dimension. For
example:

dest = [pcoord(O) - 2] [pcoord(1) + 1]source;

Note that specifying the axes in this kind of statement provides redundant infor-
mation. By definition, the first pair of brackets contains the value for axis 0, the
next pair of brackets contains the value for axis 1, and so on. C* therefore lets
you simplify the expression by substituting a period for pcoord(axis-number).
The period is position-dependent. If it is in the first pair of brackets, it means
pcoord (0); if it appears in the second pair of brackets, it means pcoord (1),
and so on. Thus, this statement is equivalent to the statement above:

dest = [. - 2] [. + 1]source;

10.3.1 Grid Communication without Wrapping

As we noted above, behavior is undefined when elements try to get or send be-
yond the border of the grid. This means that the statements shown so far are not
especially useful, because they do not solve this problem. What happens to the
elements of dest in row 0 when they try to get from [pcoord (0) -1] - that
is, from beyond the border of the grid?

For this kind of statement to work, you must first use a where statement to turn
off positions that would otherwise get or send beyond the border of the grid. For

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

C *Programming Guide140

ChaperI, 10. ComniaioI4

example, if you want elements to get from elements two coordinates lower along
axis 0 (that is, position 2 gets from position 0, position 3 gets from position 1,
and so on), you must turn off positions 0 and 1, because elements in these posi-
tions would otherwise attempt to get nonexistent values. The code below
accomplishes this:

where (pcoord(0) > 1)

dest = [. - 2]source;

If you want to get from a parallel variable two coordinates higher along axis 0
(position 0 gets from position 2, and so on), you can use the dimof intrinsic
function to determine the number of positions along the axis. For example:

where (pcoord(0) < (dimof(ShapeA, 0) - 2))

dest = [. + 2]source;

Note that you must subtract 2 from the result returned by dimof to turn off the
correct number of positions. If dimof returns 1024, the positions are numbered
0 through 1023. To turn off positions 1022 and 1023, you must subtract 2 from
1024 and specify that the result of calling pcoord is to be less than this.

10.3.2 Grid Communication with Wrapping

To perform grid communication in which the values "wrap" back to the other
side of the grid, we once again need to use the dimof intrinsic function. Consider
this statement:

dest = [(. + 2) %% dimof(ShapeA, O)]source;

The express:ion in brackets does this:

1. It adds 2 to the coordinate index returned by pcoord.

2. For each value returned, it returns the modulus of this number and the
number of positions along the axis.

Step 2 does not affect the results as long as step 1 returns a value that is less than
the number of coordinates along the axis. For example, if (. + 2) is 502 in a
1024-position axis, the result of (502 %% 1024) is 502. When step 1 returns
a value equal to or greater than the number of coordinates along the axis, step 2
achieves the desired wrapping. For example, element [1022] of dest attempts
to get from element [1024] of source, which is beyond the border of the grid.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Chapter 10. Communicaztion 141

.._-__ 142----- II G _d - e-; I!I-Y;NO

But (1024 %% 1024) is 0, so instead [10221 dest gets from [01 source.
Thus, the %% operator provides the wrapping back to the low end of the axis.

Similarly,

dest [(. - 2) %% dimof(ShapeA, O) source;

provides wrapping to the high end of the axis. For this statement, let's look at the
case where [o0 dent tries to get a value from the element of source that is two
lower along axis 0. If there are 1024 coordinates along the axis, this produces the
expression (-2 %% 1024) for the left index of source. Following the proce-
dure for %% shown on page 52, we find that the result of this expression is 1022.
This is the element of source from which [01 dest gets its value.

Note that you cannot use the Standard C operator % to perform these operations,
because different implementations of % can give different answers when one or
both of its operands is negative. The %% operator guarantees that the sign of the
answer is the same as the sign of the denominator, which is what is required.

May 1993
Copyright O 1990-1993 Thinking Machines Corporation

142 C * Prpgrammzing Guide

Part Im
C* Communication Functions

)

$

4

Chapter 11

Introduction to the
C* Communication Library

Chapters 11-14 of this guide describe a set of C* library functions that provide
different kinds of communication. For example, these functions allow you to:

* Send values of parallel variable elements to other elements of the same
shape.

* Send values of parallel variable elements of one shape to elements of an-
other shape.

* Perform different kinds of computation on values while sending them to
elements of the same or a different shape.

* Send data from parallel variable elements to a scalar variable, and from a
scalar variable to a parallel variable element.

* Send data from a parallel variable to a scalar array, or from an array to a
parallel variable.

Of course, you can perform similar kinds of communication using features of C*
itself; see Chapter 10. These library functions supplement, and in many cases
overlap, the comnunication features contained in the language itself. Several of
them are particularly useful when the rank of a shape is not known until run time;
in that situation, you cannot use left indexing to specify a parallel variable ele-
ment, because you cannot specify values for all the axes when you write the
program. The functions, however, provide a way to manipulate such data.

This chapter introduces the methods of communication available using C* li-
brary functions, and gives an overview of these functions.

May 1993
Copyright) 1990-1993 Thinking Machines Corporation

146----- C* Programming-Gui

Include the header file <cscorm.h> in programs that call any of the functions
discussed in the next three chapters. The functions are part of the C* run-time
system, and are linked in to your program by default.

11.1 Two Kinds of Communication

There are two different kinds of communication in C*: grid and general.

11.1.1 Grid Communication

In grid communication, elements of parallel variables in the same shape commu-
nicate in regular patterns by using their coordinates. In other words, values of all
elements in a parallel variable move the same number of positions in the same
direction - for example, each element sends its value to the element of another
parallel variable that is two coordinates higher along axis 0.

These functions implement grid communication:

* from grid

* fromgrid_dim

· from torus

* from torusdim

* togrid

* to_grid dim

· totorus

* to_torus dim

In addition, the pcoord function, which we discussed in Chapter 10, can be used
in certain kinds of grid communication.

Grid communication is discussed in Chapter 12.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

146 C* Programming Guide

ChapterB 11 It n oth ComuatnLr1-47

11.1.2 General Communication

General communication allows any parallel variable element to send its value to
any other element, whether or not they are of the same shape, and whether or not
the pattern of communication is regular. It also allows scalar variables to send
values to or receive values from parallel variables. This kind of communication
uses a position's send address rather than its coordinates. The send address is a
combination of a position's shape and coordinates that uniquely identifies the
position among all positions in all shapes. General communication is more versa-
tile than grid communication, but it is also slower. It achieves the same result as
parallel left-indexing a parallel variable; see Chapter 10.

General communication is implemented by these C* functions:

· make end_address

· send

· get

· read_fromposition

· read frompvar

· writeto_position

· writeto_pvar

* make multi_coord

These functions are discussed in Chapter 14.

11.2 Communication and Computation

Many C* functions perform computations or combining operations on the paral-
lel values they transmit. Most of these functions involve grid communication.
For example, the scan function lets you combine values of specified elements
of a parallel variable along an axis of a shape. You can add these values, for ex-
ample, multiply them, or take the minimum or maximum. These C* library
functions provide communication and computation:

* scan

* spread

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Chapter 11. ntroduction to the C* Communication Library 147

18 C*Pr---grammiing Guidel

4

* copyspread

· multispread

· copy multispread

· enumerate

· rank

* reduce

* copy_reduce

· global

These functions are discussed in Chapter 13.

May 1993
Copyright 1990-1993 Thinking Machines Corporation

1.

148 C * Pwogramming Guide

Chapter 12

Grid Communication

As we mentioned in the previous chapter, there are two ways for data to be com-
municated from one position to another within a shape: by using the absolute
address (called the send address) of the position, or by using the position's coor-
dinates within the shape. Within-shape communication in regular patterns that
uses positions' coordinates is referred to as grid communication, since the coor-
dinates can be thought of as locating positions on an n-dimensional grid.

This chapter describes C* library functions that provide grid communication.
These functions are faster than the general communication functions described
in Chapter 14. If you use any of the functions discussed in this chapter, include
the file <cs comm. h> in your program. You can also achieve grid communication
by using the pcoord function, as described in Chapter 10.

All grid communication functions are overloaded so that they can be used with
any arithmetic or aggregate data type.

12.1 Aspects of Grid Communication

There are several aspects to grid communication to consider before using these
functions:

* axis

* direction

* distance

* border behavior

* behavior of inactive positions

May 1993
Copyright © 1990-1993 Thinking Machines Corporation 149

12.1.1 Axis

Grid communication functions let parallel variable elements communicate along
any axis of a shape. In a 2-dimensional shape like Figure 50, for example, you
can specify that elements communicate along axis 0 or along axis 1.

Axes 1

x°ro 0 1 2 3 16383

21 1 1 I . 1

3 ..

.

Figure 50. A 2-dimensional shape.

The functions fromgrid, to_grid, from_torus, and to_torus allow com-
munication along more than one axis - for example, an element could transmit
a value to another element by sending it down axis 0, then across axis 1.

12.1.2 Direction

Parallel variable elements can also communicate in either direction along an axis
using grid communication. In Figure 50, for example, parallel variable elements
at position [0][2] can commmunicate along axis 1 with elements to the right (posi-
tion [0][3]) or to the left (position [0][1]).

(1

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

150 C* Pogamming Guide

.I

CBapter 12. GridCommunication 151

12.1.3 Distance

Parallel variables can communicate at any distance along an axis. For example,
parallel variable elements at position [0][0] in Figure 50 can communicate with
elements at position [0][16383].

12.1.4 Border Behavior

What happens when a parallel variable element at position [0][16383] in
Figure 50 tries to get a value from the right - off the border of the grid? The
behavior of grid communication at the border is handled in different ways by
different functions. Specifically:

* In the functions from_grid, from grid_dim, to_grid, and
to_grid dim, you can specify a value that the element is to receive when
it tries to get a value from beyond the border. This value is referred to as
the fill value.

* In the functions from_torus, fromtorus dim, to torus, and
to_torusdim, the element receives the value from the opposite border
of the grid - in this case, the element at position [0][16383] gets its value
from position [0][0]. This is known as wrapping.

12.1.5 Behavior of Inactive Positions

What happens when positions in the grid are inactive? For example, a parallel
variable element at position [0][0] tries to get the value of an element at position
[0][1], but position [0][1] is inactive.

Different functions handle inactive positions in different ways, depending on
whether parallel variables are seen as sending their values to other positions or
getting values from other positions. The distinction is the same one made for
parallel left indexing; see Section 10.1.6. Specifically:

In a get operation, a parallel variable element in an active position can get
a value from an element in an inactive position, but an element in an inac-
tive position cannot get a value from any position. The functions
fromgrid, from riddim, from torus, and from torus_dim

use get operations.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Chapter 12. Grid Comrmunication 151

1521 CPo- -graming uid

In a send operation, a parallel variable element in an active position can
send a value to an element in an inactive position, but an element in an
inactive position cannot send its value. The functions to_grid,
to_grid dim, totorus, and totorusdim use send operations.

Note that the issue of getting from or sending to inactive positions requires pass-
ing some parallel variables in the grid communication functions by reference,
rather than by value. See Chapter 10 for a discussion of this issue.

Table 3 summarizes the features of the grid communication functions.

Table 3. Features of grid communication functions.

Function Multiple Axes? Wrapping? Get or Send?

from grid Yes No Get

from_grid dim No No Get
from torus Yes Yes Get

from torus dim No Yes Get

to_grid Yes No Send
to_grid dim No No Send
to torus Yes Yes Send
totorusdim No Yes Send

12.2 The from_grid_dim Function

Use the from_grid_dim function to communicate along one axis of a grid,
without wrapping. from_grid_dim is a get operation, as described in Chapter
10.

12.2.1 With Arithmetic Types

Like all grid communication functions, fromgrid dim can be used with arith-
metic data types, as well as with parallel structures and parallel arrays. The
version of from_grid dim for arithmetic data types has this definition:

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

.

152 C* Programming Guide

Chapter 12. Grid Communication-153

type:cu.rrent from_grid_dim (

type:current *sourcep,

type:current value,

int axis,

int distance);

where:

sourcep is a scalar pointer to the parallel variable from which val-
ues are to be obtained. The parallel variable can be of any
arithmetic type; it must be of the current shape.

value is a parallel variable of the current shape whose values are
to be used when elements try to get values from beyond
the border of the grid. The parallel variable must be of the
same arithmetic type as the parallel variable pointed to by
sourcep.

axis specifies the axis along which the communication is to
take place.

distance specifies how many positions aonng the axis the values are
to travel. For example, if distance is 2, each parallel
variable element gets a value from an element whose po-
sition is two greater along the specified axis. distance
can be a negative number, which reverses the direction in
which the data is to travel.

fromgrid_dim returns the source values in their new positions. You can as-
sign these values to a parallel variable of the current shape and of the same
arithmetic type as the source parallel variable; this "destination" parallel variable
can be viewed as the parallel variable that is doing the "getting."

Note the difference between from_grid dim and the corresponding use of
pcoord described in Chapter 10: pcoord does not provide a fill value when an
element tries to get from beyond the border.

Examples

Figure 51 shows three parallel variables of the same shape.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Chapter Z. Grid Communicadion 153

154 C* Programming Guide~psn~aa~a~rs ---

Note to users of CM-200 C*: The shape below, like others shown in the chapter,
is smaller than would be legal in the CM-200 implementation of C*, so that it's
easier to visualize what is happening.

Figure 51. Three parallel variables of shape ShapeA

The goal is for dest to get values of the parallel variable pointed to by sourcep
that are one position lower along axis 0. This is equivalent to scalar C* state-
ments like these (except that all operations happen at the same time):

[1] [O]dest =

[2] [0]dest

[3] [0]dest =

[1] [lldest =

[o] [0] source;

[1] [0] source;
[2] [0] source;
[0O] 1] source; /* . .. and so on */

In the case where dest tries to get a value of source from beyond the border
(for example, the dest element at position [0][0]), it is to use the value from the
corresponding element of fill.

The code below accomplishes this:

#include <cscomm.h>

shape [256] [256]ShapeA;

int:ShapeA source, dest, fill;

/* Code to initialize parallel variables omitted. */

main()

May 1993
Copyright) 1990-1993 Thinking Machines Corporation

0 1 2 3

0 10 11 12 131 1 2 3 4

1 20 21 22 23 1 1 2 3 4

2 30 31 32 33 _ 1 2 3 4

3 40 41 42 43 1 2 3 4

source dest fill

(

154 C* Programming Guide

C3-.apter.... 12. Gri C uation

with (ShapeA)

dest = from_grid_dim(&source, fill, 0, -1);

Figure 52 shows the results.

Note that we use -1 for the distance argument, even though the values move
to higher-numbered positions along the axis. As mentioned above,
from_griddim is a get operation; in this case, the element in the higher-num-
bered position is viewed as getting the data from the lower-numbered position,
and that is why a negative distance is used.

Note also the values of fill that are used when dest attempts to get from be-
yond the border of the grid.

dest - fromgriddim(&source, fill, O, -1);

0 1 2 3

0

2

1 4

31 40141431

source dest fill

Figure 52. An example of the from_grid_dim function.

4-
1

1

2

2

3

3 4

41 2 3

Now let's take the data in Figure 52 and move the values in dest
lower along axis 1, but leaving them in dest. In scalar C* code:

two positions

[O] [O]dest =

[0] [1]dest =

[1] [0]dest =

[0] [2]dest;

[0] [3]dest;

[1] [2] dest; /*

In this case, the source parallel variable is the same as the destination parallel
variable. This is legal. This statement does the job:

May 1993

Copyright © 1990-1993 Thinking Machines Corporation

{

}

· .. and so on */

I

I

Chapter 12. Grid Communication 155

4

C* Programming Guide

dest = from_grid_dim(&dest, fill, 1, 2);

A positive integer is used for the distance, because the elements in the lower-

numbered positions along the axis are getting data from the elements in the

higher-numbered positions.

Figure 53 shows the results.

Note that the elements of dent at positions [n][2] and [n][3] (where n is any axis

0 coordinate) are assigned the values from the corresponding elements of fill,

because they attempt to get values from beyond the border of the grid.

dest from_grid_dim(&dest, fill, 1, 2);

0 1 2 3

1 2 ;i
1 2 3
1 2

Xt2 l t~~~~~~~~~~~~~~~'::''

dest (before) dent (after) fill

Figure 53. Another example of the from_grid dim function.

When Positions Are Inactive

Finally, let's see what happens when positions in a shape are inactive. The code
fragment below makes position [2] inactive, using the simple data in Figure 54,
and then calls from_grid_dim:

1

10

20

30

2

11

21

31

where (source != 7)

dest = from_grid_dim(&source, fill, 0, -1);

Figure 54 shows the results.

I

May 1993
Copyright) 1990-1993 Thinking Machines Corporation

156

0

1

2

3

MUN100,111 - ...

r

N,

i

Chaper1.idComu
)

where (so
dest =

urce 1[= 7) active

from_grid_dim(&source, fill, O., -1); inactive

0 1 2 3

source 3 5 7 9

dest 1 3 7

fill 1 1 v 1

Figure 54. An example of from_grid_dim when a position is inactive.

Since fromgriddim is a get operation, these rules apply:

* Elements at active positions can get values from elements at inactive
positions.

* Elements at inactive positions cannot perform any gets at all.

* Elements at inactive border positions do not receive a fill value.

Note how these rules are applied in Figure 54:

* Position [2] is inactive, so it doesn't get a value from position [1]. (It keeps
the value it had before the operation.)

* Position [3] gets a value from position [2], even though position [2] is
inactive.

12.2.2 With Parallel Data of Any Length

The definition of from_grid_dim for parallel data of any length is as follows:

void from_grid_dim (
void:current *destp,

void:current *sourcep,
void:current *valuep,

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

)

__

Chapter 12. Grid Commurnicaton 157

158.... C Programmi...g...idel.........:::............::......:_:......-::_---

int length,
int axis,
int distance);

In this version, the location pointed to by destp gets values from the location
pointed to by sourcep, using the axis and distance arguments to determine
the axis for the communication and how many positions along the axis the values
are to travel. If destp tries to get from beyond the border of the grid, it gets
values from the; corresponding location pointed to by valuep instead. The loca-
tions pointed to by destp, sourcep, and valuep are all length bools long.

You can use this version of from_grid_ dim to transfer data that is larger than
the standard data types - typically, this data would be in a parallel array or par-
allel structure. Note that there is no return value, and the destination is specified
as the first argument to the function.

For example, in the code below, dest struct gets the values of
source_struct that are four coordinates higher along axis 0. When this takes
dest_struct beyond the border of the grid, it gets the corresponding values of
value struct.

#include <cscomm. h>

shape [65536]ShapeA;

struct S {

int a;

int b;

};
struct S:ShapeA source_struct, deststruct, value_struct;

main()

{
with (ShapeA)

from_grid_dim(&dest_struct, &source_struct,

&valuestruct,boolsizeof (sourcestruct), 0, 4);

}

12.3 The from_grid Function

The from_grid lets data travel along more than one axis of the grid. Like
from grid dim, it is a get operation.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

158 C* Programming Gukke

Chapter 12. Grid Communication 159

12.3.1 With Arithmetic Types

The definition of from_grid (for the version that takes arithmetic types) is:

type:current from_grid (

type: current *sourcep,

type: current value,
int distance_along_axis_0,);

where sourcep, value, and the return value are defined as they were for
from_griddim.

The argument distance_along_axis_0 specifies how many positions along
this axis the data is to travel. As with from_grid_dim, the sign of the integer
(positive or negative) indicates the direction of travel along the axis. The ellipsis
(... .) indicates a variable number of arguments. Each argument is an int that
represents the distance along succeeding axes that the data is to travel. You must
include as many arguments as there are axes in the current shape. If the data is
not to move along an axis, specify the distance for that axis as 0.

from_grid lets you combine movement along different axes. For example, in
) the previous section we used two calls to from_grid dim so that each dest

element got the value from the source element that was one position lower
along axis 0 and two positions higher along axis 1. This call to from_grid ac-
complishes the same thing:

dest = from_grid(&source, fill, -1, 2);

The -1 argument specifies the direction and distance of the communication
along axis 0; the 2 argument specifies the direction and distance of the communi-
cation along axis 1. The movement along axis 1 takes place after the movement
along axis 0. That is, the dest elements first get the source elements one posi-
tion lower along axis 0; the dest elements that are two positions lower along
axis 1 then gets these values from these other dest elements.

Note an important difference between the single fromgrid call and the two
from_grid_dim calls, however. With from_grid, the fill value is inserted
only after all data movement is completed. No fill values are inserted when ele-
ments try to get from beyond the border in intermediate steps. This ensures that
elements of the destination parallel variable receive fill values from correspond-
ing elements of the fill parallel variable. But it yields a different result from
consecutive from grid_dim calls, where the fill value is inserted for each call.

Figure 55 shows the results of the from_grid call shown above on the data in
Figure 51. Compare these results with those for the two from_grid_dim calls

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

160 C*Programmzng Guide

shown in Figure 53 (the arrow on the left shows that [0] [2] source ends up at
[ll [0] dest).

dest from_grid(&source, fill, -1, 2);

0 1 2 3

0

1

2

3 L40141142

source dest fill

X.4- 2

1 2 2

1 2 2

Figure 55. An example of the from_grid function.

from_grid handles inactive positions in the same way that from_grid_dim
does.

12.3.2 With Parallel Data of Any Length

Like from_grid_dim, from_grid has an overloaded version that can be used
with parallel data of any length. Its definition is:

void fror,_grid (
void:current *destp,

void:current *sourcep,
void:current *valuep,
int length,

int distance_along_axis_O,);

Once again, destp, sourcep, and valuep are pointers to parallel locations that
are length bools long. Specify the data movement for each axis in the argu-
ments distance_along_axis_n. destp gets the value of sourcep based on

May 1993
Copyright 1990-1993 Thinking Machines Corporation

3 4

3 4

_ 41 21 2

160 C *Programmitng Guide

ACapUIerP 12. Grid Commnica 161gt

these arguments, unless this brings it beyond the border of the grid, in which case
it gets a value: from the corresponding location pointed to by valuep.

12.4 The to_grid and to_grid_dim Functions

The to_grid and to_grid_dim functions are similar to from_grid and
from_grid_dim, except that they are send operations instead of get operations.
Both pairs of functions provide grid communication, with substitution of a fill
value when the communication would otherwise go beyond the boundary of the
grid. Both provide overloadings for arithmetic and aggregate types. The differ-
ences between the get operations and the send operations are:

* in the way the distance argument is interpreted

* in the way inactive positions behave

These differences are described in more detail below.

12.4.1 With Arithmetic Types

The definitiorns of to_grid and to_grid dim (for the versions that take arith-
metic types) are:

void togrid (
type:current *destp,

type:current source,

type: current *valuep,

int distance_along_axis_O, ...);

void to_ grid_dim
type: current *destp

type: current source,
type: current *valuep,

int axis,

int distance);

where:

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Chapter 12. Gid Communication 161

162 CiiProgramming Guide

destp is a scalar pointer to the parallel variable to which values
are to be sent. This parallel variable can be of any arith-
metic type; it must be of the current shape.

source is the parallel variable that is to send its values. It can be
of any arithmetic type; it must be of the current shape and
of the same type as the parallel variable pointed to by
destp.

valuep is a scalar pointer to a fill parallel variable whose values
are to be used when elements of source try to send val-
ues to destinations beyond the border of the grid. It must
be of the current shape and have the same type as
source.

distance along axis 0
(for to grid) specifies how many positions along axis
O the values are to travel. For example, if dis-
tance_along_axis_0 is 2, each parallel variable
element of source sends a value to an element of the par-
allel variable pointed to by destp whose position is two
greater along axis 0. Include a distance argument for each
dimension in the current shape. If the data is not to move
along an axis, specify the distance for that axis as 0. The
distance can be a negative number, which reverses the di-
rection in which the data is to travel.

axis (for to_grid_dim) specifies the axis for the
communication.

distance (for to_grid_dim) specifies how many positions along
axis the values are to travel, as discussed in the descrip-
tion of distance_along _axis_o.

There is no return value.

Note the way that the distance argument is interpreted in send operations like
to_grid and to_grid_dim. Specifying a positive integer for the distance
sends values to higher-numbered positions. This is different from the behavior
for get operations like from grid and fromgrid_dim, where specifying a
positive integer for the distance gets values from higher-numbered positions.

May 1993

Copyright O 1990-1993 Thinking Machines Corporation

C* Programming Gukle162

Chpter12GridCommnication 163...o

When Positions Are Inactive

Since to_grid and to_grid_dim are send operations, these rules apply when
positions are inactive:

· Elements at active positions can send values to elements at inactive
positions.

* Elements at inactive positions cannot send their values.

* Elements at border positions receive fill values even if they are inactive.
This follows the general behavior of send operations, in which elements
at inactive positions can be sent values.

Examples

The first example uses to_griddim to achieve the same result as the use of
from_grid_dim shown in Figure 52. The goal is for source to send values to
elements of dest that are one position higher along axis 0. When the sending
goes beyond the border of the grid, values of the corresponding elements of fill
are used instead. This code accomplishes this:

to_grid dim(&dest, source, &fill, , 1);

The results are shown in Figure 56.

to_grid_dim(&dest, source, &fill, 0, 1);

0 1 2 3

0

1

2

1 2 3 4

2 2 3

31 4141142 1

source dest fill

Figure 56. An example of the to_grid dim function.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

1

1

2 3

4

4

Chapter 12. Grid Communication 163

.4

2

2

3

3

1

4

164 C*Programmlng Guide

Similarly, to obtain the same results as those shown in Figure 53 for
for_grid_dim, use this code:

to_grid_dim(&dest, dest, &fill, 1, -2);

These two calls to to_grid_dim are similar to this call to to_grid:

to_grid(&dest, source, &fill, 1, -2);

Note, however, that, as with from_grid, the fill values for to_grid are in-
serted only after all data movement has occurred. In this case, this produces a
slightly different result for the single to_grid call; see Figure 55.

In all cases, note that the difference from the corresponding from_grid or
from_grid_dim call is that the sign of each distance argument is reversed.

The final example makes positions [0] and [2] inactive and then calls
to_grid_dim:

where (source != 7)

to_grid_dim(&dest, source, &fill, O, 1);

Figure 57 shows the results.

where (source 1- 7)

to_grid_dim(&dest, source, &fill, 0,

1 2 3

1);
D active

7 iactive

0

source

dest

fill

Figur 57. An example of to_grid_dim when position are inactive.

Note how the rules for inactive positions and send operations are applied in
Figure 57:

May 1993
Copyright ©) 1990-1993 Thinking Machines Corporation

5 9~~

VZO(A~

164 C *Programming Guide

Chpe rid Communication 165a~l ~ r

* [0 source and [21 source are at inactive positions, so they don't send
their values to tl] dest and [31 dest.

[* l]source sends its value to [2] dest, even though position [2] is
inactive.

* [0 fill sends its value to [ol dest, even though position [O] is inactive.

12.4.2 With Parallel Data of Any Length

The definitions of to_grid and to_grid_dim for parallel data of any length
are:

void to_grid (
void:current *destp,

void:current *sourcep,

void:current *valuep,

int length,

int distance_along_axis_0, ...);

void to_grid_dim (

void:current *destp,

void:current *sourcep,

void:current *valuep,

int 'length,

int axis,

int distance);

These versions are useful if you want to transfer data in a parallel array or paral-

lel structure. As with the corresponding versions of from_gr i d and
from_grid_dim, the length argument specifies the length in bools of the lo-
cations pointed to by destp, sourcep, and valuep. There is no return value,
and the destination is specified as the first argument to the function

12.5 The from torus and from torus dim Functions

A torus is a doughnut-shaped surface. The C* "torus" functions (two more are
discussed in the next section) use the grid as if it were wrapped into a torus, with
the opposite borders of the grid connected. If a value is required from beyond the

May 1993
Copyright 1990-1993 Thinking Machines Corporation

Chapter 12. Grid Communicadion 165

166 C* Programming Guide

border, it comes from the other side of the grid. Thus, these functions don't need
the fill value used in the "grid" functions, since there is never a case where an
element will not be able to obtain a value because it is beyond the border.

Except for this difference, fromtorus and from_torus_dim are equivalent
to from_grid and from_grid_dim. As with the other grid functions, there are
overloaded versions for use with all arithmetic and aggregate types.

12.5.1 With Arithmetic Types

The definitions of from_torus and from_torus_dim (for the versions that
take arithmetic types) are:

type:current from torus (
type:current *sourcep,

int distance_along_axis_0, ...);

type:curient from torus dim (

type: current *sourcep,

int axis,

int distance);

Let's look at how the results change when we use these functions on data from
previous sections.

For example, let's take the data from Figure 51 and use fromtorus_dim in-
stead of from_grid_dim. The goal is the same: dest elements are to get the
values of source elements that are one position lower along axis 0:

dest = from torusdim(&source, 0, -1);

Note that fromtorus_dim does not require a valuep argument, since values
wrap from the other side of the grid. The results of this statement are shown in
Figure 58. The arrows in the figure show the movement for two elements of
source: [to o] dest wraps around to get the value of [3] [01 source, and
[2] 3] dest gets the value of [1] [3] source.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Chatr. G-r-id Communicatin67 __

Figure 58. An example of the from_torus_dim function.

Compare the results shown in Figure 58 with those for the equivalent
from_grid_dim call, shown in Figure 52. The differences are only in the dest
elements that are at position [Oln]. from_grid_dim puts the value of the corre-
sponding element of fill into the dest element. from torus_dim wraps
around to the other side of the grid and has the dest elements get the values of
the source elements at position [3][n].

Similarly, using the same source data, this from_torus call:

dest - fromtorus(&source, -1, 2);

produces the results shown in Figure 59. Compare these results with those shown
in Figure 53, which are the results for the two from_grid_dim calls. Once
again, dest elements that previously were assigned values of f ill now get val-
ues of source elements from the other side of the grid. In Figure 59, the arrows
show where the value of [0] [3] source ends up: After the movement along
axis 0, [1] [3] dest gets it, and after the movement along axis 1, it ends up
wrapping around to [1] [1] dent.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

dest - from _torus_dim(&source, O, -1);

0 1 2 3

0

1

2

3

source

Chapter 12. Grid Communication 167

dent

168C*Proramin Gid

dest - from torus(&source, -1, 2);

0 1 2 3

0

1

source
2

3

dest
Step 1:
Movement
along axis

Step 2:
Movement
along axis 1

dest
(before)

Figure 59. An example of the from_torus function.

fromtorus and from torusdim are both get operations, so their handling
of inactive positions is the same as that of from_grid and from_grid_dim.

With Parallel Data of Any Length

The from torus and from torus dim functions also have overloaded ver-
sions that can be used with parallel data of any length. Their definitions are:

void from torus(

void:current *destp,

void:current *sourcep,

int length,

int distance_along_axis_O,);

void from torus dim (
void:current *destp,

May 1993
Copyright) 1990-1993 Thinking Machines Corporation

dest
(after)

12.5.2

168 C *Programming Guide

Chaper 12. Grid Communication-169

void:current *sourcep,

int length,

int axis,

int distance);

Note that these definitions are the same as those for f rom_gr id and
from_grid dim, except that a valuep argument is not required, since values
wrap when they go beyond the border of the grid.

12.6 The totorus and totorus_dim Functions

The to_torus and to_torus_dim functions are send operations that provide
grid communication with wrapping to the other side of the grid. As with the other
grid communication functions, the dim version provides communication along
one axis only, while the more general version provides communication along all
axes. Both functions have overloaded versions for all arithmetic and aggregate
types.

12.6.1 With Arithmetic Types

The totorus and to_torus_dim functions have these definitions when used
with an arithmetic type:

void totorus (
type:current *destp,

type: current source,

int distance_along_axis_O, ...);

void to torus dim (

type:current *destp,

type:current source,

int axis,

int distance);

where:

destp is a scalar pointer to the parallel variable to which values
are to be sent. This parallel variable can be of any arith-
metic type; it must be of the current shape.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Chrapter IZ2 Grid Communication 169

170 C'| Programming Guide

source is a parallel variable from which values are to be sent; it
must be of the current shape and have the same arithmetic
type as the parallel variable pointed to by destp.

distance along axis_0
(for totorus) specifies how many positions along axis
0 the values of source are to travel. If the distance is 2,
for example, source sends its value to the destination
element whose position is two greater along axis 0. In-
clude a distance argument for each'dimension in the
current shape. If the data is not to move along an axis,
specify the distance for that axis as 0. The distance can be
a negative number, which reverses the direction in which
the data is to travel.

axis (for totorusdim) specifies the number of the axis
along which the values of source are to be sent.

distance (for totorusdim) specifies how many positions along
the axis the values of source are to be sent, as discussed
in the description of distance- _along_axis_0.

The behavior of inactive positions for to_torus and to_torus_dim is the
same as it is for togrid and to_grid_dim: Elements of source at inactive
positions cannot send values, but source can send values to elements at inactive
positions.

Examples

The code below uses the source data also used in previous figures; it sends val-
ues of source to dest elements that are one position lower along axis 0:

to torus dim(&dest, source, 0, -1);

The results are shown in Figure 60. Compare these results to those for the com-
parable call to from_torus_dim, shown in Figure 58. The arrows in the figure
show the movement of two elements of source: [01 [31 source wraps around
and sends its value to [31 [3] dest; [31 [01 source sends its value to
[21 tO]dest.

May 1993
Copyright 1990-1993 Thinking Machines Corporation

170 C* P~ogramming Guide

171

Figure 60. An example of the to_torus_dim function.

to_torus is similar to to_torus_dim, except that you must specify the data
movement for each axis, as you do for from_torus and from_grid. This code
uses the same source data used in previous figures:

totorus(&dest, source, -1, 2);

The results are shown in Figure 61. Compare these results to those for the com-
parable call to fromtorus, shown in Figure 59. The arrows in the figure show
where [01 [3] source ends up after the movement along axis 0 and axis 1.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

-r

Chapter 12. Grid Communication

to torus_dim(&dest, source, 0, -1);

0 1 2 3

0

1

2

3

source

------- . g I..i.I

dest

1 C Pogrammig Guid

to_torus(&dest, source, -1, 2);

0 1 2 3

0

3

source
2

3

dest
Step 1:
Movement
along axis 0

Step 2:
Movement
along axis 1

dest
(before)

Figure 61. An example of the to_torus function.

In this example, we make a position inactive and call to_torus dim:

where (source != 7)
totorus dim(&dest, source, 0, 1);

Figure 62 shows the results for some sample data.

where (source 1- 7)

totorus-dim(&dest, source, 0, 1);
D active

inactive

dest
(after)

source 3 5

dest 9 3 X

0 1 2 3

9 1

Figure 62. An example of totorus_dim when a position is inactive.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

I

-·- -

172 C* Programming Guide

.

I

-Chapte 2. rd--- Cicaion ----- 7

Note how the rules for send operations with inactive positions are applied in
Figure 62:

· ll] source sends a value to [21 dest, even though position [2] is
inactive.

* Position [2] is inactive, so [21 source doesn't send a value to [3] dest,
which keeps its original value from before the call.

12.6.2 With Parallel Data of Any Length

The totorus and totorusdim functions also have overloaded versions
that can be used with parallel arrays or parallel structures. Their definitions are:

void to torus(
void:current *destp,

void:current *sourcep,

int length,

int distance_along_axis_0, ...);

void to torus dim (
void:current *destp,

void:current *sourcep,

int length,

int axis,

int distance);

Note that these definitions are the same as those for from_torus and
from_torus_dim. But, as with the versions that use arithmetic types, the dis-
tance arguments are interpreted differently, and the behavior of inactive positions
is different.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Chapter 12 Grid Communication 173

i

4:

I

Chapter 13

Communication with Computation

This chapter discusses C* library functions that let you perform computations on
parallel values that are being transmitted. Most of these functions use grid com-
munication. The functions differ in these ways:

* The kinds of computation that are available for each function See Sec-
tion 13.1.

* The way in which parallel variable elements are selected For example,
) some functions let you divide the parallel variable elements into groups

called scan classes. You can then operate on each scan class independ-
ently. See Section 13.2.

* The way in which the function reports the results of the computation For
example, scan provides a running total of its computations; spread pro-
vides only the final result.

Include the file <cscomm. h> when calling any of the functions discussed in this
chapter.

13.1 What Kinds of Computation?

The scan, reduce, spread, multispread, and global functions let you

specify a combiner type that indicates the kind of computation or combining you

want carried out on the parallel data. Each of these functions is overloaded for

some subset of the combiner types listed in Table 4.

)

May 1993
Copyright © 1990-1993 Thinking Machines Corporation 175

'17 C*Programmi------- G

Table 4. Combiner types.

Combiner Meaning

CMC combiner max

CMC combiner min

CMC combiner add

CMC combiner copy

CMC combiner multiply

CMC_combiner_logior

CMC combiner logxor

CMC combinerlogand

Take the largest value among the specified
parallel variable elements.
Take the smallest value among the specified
elements.
Add the values of the specified elements.
Copy the values of the specified elements.
Multiply the values of the specified elements.
Perform a bitwise logical inclusive OR on
the specified elements.
Perform a bitwise logical exclusive OR on
the specified elements.
Perform a bitwise logical AND on the
specified elements.

These combiner types are also
the next chapter.

used by the send function, which is described in

13.2 Choosing Elements

Several of the C* functions discussed in this chapter provide methods for choos-
ing the subsets of parallel variable elements on which they are to operate. The
terminology we use in referring to these subsets of elements comes from scan,
which is the most general of the functions that use these methods.

13.2.1 The Scan Class

Two positions belong to the same scan class if their coordinates differ only along
a specified axis. These functions use the concept of a scan class: scan, reduce,
copy_reduce, spread, copy_spread, enumerate, rank, and
multispread.

May 1993
Copyright Q 1990-1993 Thinking Machines Corporation

-

C* Prpgramming Guide176

Cht - - Comuncaio witCmpta

To see how scan classes work, consider the 2-dimensional shape shown in
Figure 63.

Note for users of CM-200 C*: This and other shapes in this chapter are smaller
than legal size in the CM-200 implementation of C*, so that they are easy to
visualize.

Figure 63. A 4-by-4 shape.

If you specify axis 0 as an argument to one of the functions listed above, you get
the scan classes shown in Figure 64. Positions [0][0], [1][0], [2][0], and [3][0]
differ only in their coordinates for axis 0; therefore, they belong to the same scan
class. Position [0][1] does not belong to this scan class, because it has a different
axis 1 coordinate; it belongs to a scan class with positions [1][1], [2][1], and
[31[1].

Thus, specifying axis 0 for this shape creates four separate scan classes, each of
which is a column of positions through axis 0 in the shape. Functions like scan
operate on each of these scan classes independently.

Figure 64. Scan classes for axis 0 of a 2-dimensional shape.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Axes 1

II0
0 1 2 3

T

1

2

3

;. . I.. .::: .m i

scan Classg
I NA.. .. A./t U :W: ;m ~~~~~~~~~~~~~~~~~...

B .

.

Chapter 13. Communication ivith Computation 177

;

w

178C*mgamin Gid

Specifying axis 1, on the other hand, creates four different scan classes, each one
consisting of a row of positions through axis 1 in the shape, as shown in
Figure 65.

Figure 65. Scan classes for axis 1 of a 2-dimensional shape.

If you have a 1-dimensional shape, there is, of course, only one axis you can
specify, and only one scan class for the shape. You can, however, subdivide a
scan class, as we discuss below.

If you have a 3-dimensional shape, specifying an axis gives you a set of scan
classes consisting of the rows of positions that cross this axis. For example, in
a 2-by-2-by-2 shape, specifying axis 0 creates these four scan classes:

[0][0][0] and [1][0][0]

[o][1][0] and [1][1][0]

[0][0][l] and [1][01[1]

[0[[[1][] and [1][1][1]

Tb operate on more than one dimension in a multi-dimensional shape (for exam-
ple, on planes of positions instead of rows of positions), you must use the
multispread or copy_multispread function; these functions are discussed
in Section 13.8.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

scan class

'K="IxxS�sx:... :..::
..

.

1-7-77.1 z z
/A/

........................

r-7-77Z./Z
�Y2

71VI;z

S:SN
:::
... :::: - -

r-,v'7-
ZZ'411

;Y2

ii::-::::
... w.: .: ,

UNAM;Sjl6MOM /NOMMkm=~B~
Kan= m o DEC$= mom

-

C * Pwogramming Guide178

Caplier 1. CmIImnctoihCpua

The Scan Subclass

Only active positions participate in computations within a scan class. The active
positions within a scan class are referred to as the scan subclass.

13.2.2 The Scan Set

There may be times when you want a function to operate independently on dif-
ferent parts of a scan subclass. The scan, enumerate, and rank functions let
you do this by subdividing a scan subclass into scan sets.

To create scan sets, declare a bool-size parallel variable of the shape on which
the function is to operate, and initialize it to 0. This parallel variable is referred
to as the sbit, it is used as the bit argument to the functions listed above. As-
sign a 1 to an element of this parallel variable to mark the beginning of a scan
set at that element's position. In the simplest case, the scan set for each position
starts either at the beginning of the scan subclass, or at the nearest position below
it in the scan subclass that has its sbit set to 1.

Figure 66 shows a 1-dimensional shape divided into scan sets. In the figure, the
scan set for position 1, for example, consists of positions 0 and 1 (the scan sub-
class starts at position 0, so the scan set starts there also, even if the sbit for that
position isn't set to 1). The scan set for position 7 consists of positions 5, 6, and
7, since 51 abit is set to 1, thus starting a new scan set.

Figure 66. Scan sets in a 1-dimensional shape.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

)

0 1 2 3 4 s 6 7

O O o 1 o 1 o0 abit

scan sets for
each position
of a shape

w

Chapter 13. Communication MAt Computation 179

0 CPrgamnud

Note than scan sets include only active positions; see Section 13.2.3, however,
for a more in-depth discussion of inactive positions and scan sets.

To show how scan sets work, let's use an example in which we keep a running
total of the values in the parallel variable data (this is a scan operation, as dis-
cussed in Section 13.3). The results are shown in Figure 67.

Figure 67. An operation that provides a running total, using scan sets.

In the example, [1] running_total contains the sum of [0] data and
[1I data, since 0 and 1 are the positions in its scan set. [3] running_total
contains only the value in [3] data, since [3] sbit is set to 1, thus starting a
new scan set in this position.

You actually have more flexibility than this in how you can divide up scan sub-
classes:

* Whether an operation is inclusive or exclusive affects the way scan sets are
interpreted; see "Inclusive and Exclusive Operations," below. The exam-
ple in Figure 67 shows an inclusive operation.

* There are two ways of interpreting the sbit; see Section 13.2.3. In particu-
lar, this affects the way scan classes are divided when there are inactive
positions, and when an operation proceeds in a downward direction. The
example in Figure 67 shows an operation that proceeds in an upward
direction.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

0 1 2 3 4 5 6 7

sbit 0 1 0 0O 1 0 0

data 0 1 2 3 4 5 6 7

running_total 0 1 3 3 7 5 11 18

C *Programming Guide180

Chapte ... 13..... Communcatio w..th.C
)

Inclusive and Exclusive Operations

The way in which scan sets work when you are performing a particular operation
depends on whether the operation is inclusive or exclusive. (NOTE: In this sec-
tion, we are ignoring the effect of segment bits and start bits; these are discussed
in the next section.)

In an inclusive operation (specified by CMC_inclusive), an element partici-
pates in the operation for its position-in other words, the scan set for a position
contains that position. As we mentioned, Figure 67 shows the results of an inclu-
sive operation.

In an exclusive operation (specified by CmC_exclusive), the scan set for an
element does not contain the element itself - in other words, it does not partici-
pate in the operation for its position. Figure 68 shows the results of an exclusive
operation, using the same data as that shown in Figure 67.

)

0 1 2 3 4 $ 6 7

o 1 1 2 3 4 5 6 7

0 0 0i 1 3 1 5 11

Figure 68. An exclusive operation on scan sets.

Note the difference between the two results. In the inclusive operation, for exam-
ple, [2] running_total receives the running total for [o] data, [l data,
and [21 data; in the exclusive operation, [2] runningtotal receives the run-
ning total only for [0 data and [1] data. When there are no preceding
elements in the scan set (for example, in 31 runningtotal), the element re-
ceives the identity for the operation.

)

May 1993
Copyright Q 1990-1993 Thinking Machines Corporation

data

running total

Chpter 13. Communication with Computation 181

182 Cp rogrammng Guid

13.2.3 Segment Bits and Start Bits

There are two different kinds of sbits: segment bits and start bits. Use the smode
argument to the scan, enumerate, or rank function to specify which kind of
sbit you want, as discussed below.

If smode Is CMC_segment_bit

If the value of the smode argument is CMC_segment_bit, the sbit is considered
a segment bit, and it divides a scan subclass into segments, as follows:

* An sbit element set to 1 starts a new segment, whether or not the element
appears in an active position.

* The way in which the segment bit divides the scan subclass is not affected
by the direction of the operation.

* Operations in one segment never affect values of elements in another
segment.

If smode Is CMC_start_bit

If the value of the smode argument is CC_start_bit, the sbit is considered
a start bit, and scan classes are divided as follows:

* An sbit element set to 1 divides a scan subclass only if its position is active.

* The division is affected by the direction of the operation. When the direc-
tion is downward, for example, the division occurs from the higher
coordinate to the lower coordinate.

* When an operation is exclusive, the position whose sbit element is set to
1 will receive a value from the preceding scan set.

These differences between segment bits and start bits are discussed below.

May 1993
Copyright @ 1990-1993 Thinking Machines Corporation

C *Programming Guide182

Chapter 13. Commumcat----I wihCmuttoE8
.)

Inactive Positions

When the sbit is a segment bit, a new scan set is created, even though the position
where it starts is inactive. Figure 69 shows an example (the scan sets displayed
are for positions [2], [4], and [7]).

Figure 69. An inclusive operation in an upward direction
on segment-bit scan sets, with an inactive position.

Note that position [3] does not participate in the operation, even though it starts
a new scan set.

A start bit does not start a scan set if its position is inactive. Figure 70 is an exam-
ple. Note that the scan set for position [4] begins at position [0], not at position
[3], as in Figure 69.

)

May 1993
Copyight 0 1990-1993 Thinking Machines Corporation

D - active

0 1 2 3 4 5 6 7 i imactive

segment_bitl 0 0 0 O |/ o 1 J0 o

NM -. "~ > scan sets

data 0 1 2 4 5 6 7

ruraingtotal | 1 | 3 Aft 4 5 11 18

Chapter 13. Communication MMt Computation 183

am~·1684 Cs ProgrammiOgSGuide

Figure 70. An inclusive operation in an upward direction
on start-bit scan sets, with an inactive position.

The Direction of the Operation

When the direction of the operation is upward, it proceeds from lower-numbered
positions to higher-numbered positions along the scan subclass. Both kinds of
sbits divide the scan subclass in the same way when the direction is upward (pro-
vided that all positions are active); see Figure 66 for an example. You specify an
upward direction with the argument CMC_upward.

When the direction of the operation is downward (specified by the argument
CMC_downward), the operation proceeds from higher-numbered positions to
lower-numbered positions along the scan subclass. In this case, segment bits di-
vide the scan subclass in the same way as the sbits shown in Figure 66; however,
since the operation proceeds in a downward direction, this means that a segment
bit ends a scan set, and the operation begins again in the position with the next
lowest coordinate. Figure 71 is an example; it shows the scan sets for positions
[0], [3], and [5].

May 1993
Copyright ©) 1990-1993 Thinking Machines Corporation

'I active

2 inactive
0 1 2 3 4 5 6 7

tart bit O I O I o O I O O

I go > scan sets

data 07 1 2 R 4 5 6 7

runningtotal 0 1 3 r/ 7 5 11 18

C* Programming Guide184

1.

ChapteT 13. Communication with Computation-185

0 1 2 3 4 5 6 7

I 0 0 1 1 0 1 o 1 0 1 0o

scan sets

data I

3 12 1 4 118 113 1 7

112131415161 7

Figure 71. An inclusive operation in a downward direction
on segment-bit scan sets.

Start-bit scan sets, however, follow the downward direction; in other words, start
bits start scan sets, rather than ending them. Figure 72 is an example; it shows

) the scan sets for positions [0], [4], and [6].

start_bit I 0

0 1 2 3 4 s 6 7
P----

o I oI 1 lo I 1 1 I o-.- - scan sets

data 1

runing_total 6 6
i 5 3 1 5 1 1 3 1 7

2 13 1 5 6 171

Figure 72. An inclusive operation in a downward direction
on start-bit scan sets.

)

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

)

_ .I II

�----------- �

.

i . . . i .l . i

· ,

i ~ ~ i. . .i

i . .l i

i II I I B I I I I I

Chapter 13. Conumunication MMt Computation 185

sement it 1-0- I

r-1-1-in lfotal1 3 I

186 C* Programm---ng Guide-

4

Data from Another Scan Set

In exclusive operations on start-bit scan sets, the first position in a scan set re-
ceives the result of the operation for the preceding scan set, if there is one.
Figure 73 is an example.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 1 3 14 15 16 7

O 0 I 1 3 31 11I

Figure 73. An exclusive operation in an upward direction
with start bits.

Compare these results with those shown in Figure 68, which assumes that the sbit
is a segment bit. [3] running_total and [51 runningtotal receive the re-
sults from the preceding scan set, rather than 0. [0 running_ total still
receives 0 (the identity for the operation) because there is no preceding scan set.

What constitutes a "preceding" scan set depends on the direction of the opera-
tion, of course. In a downward direction, scan sets with higher-numbered
coordinates along the axis precede scan sets with lower-numbered coordinates.

13.3 The scan Function

Use the scan function to provide running results for operations on the scan sets
you specify.

The definition of scan is:

type:current scan

type: current source,

May 1993
Copyright 0 1990-1993 Thinlang Machines Corporation

start_bit

data

running_total

4

186 C *Programmintg Guide

int axis,

CMC combiner t combiner,

CMC communication direction t direction,

CMC_segment_mode_t smode,
bool:current *sbitp,

CMC scan inclusion t inclusion);

where:

source is the parallel variable whose values are to be used in the
operation. It must be of the current shape, and it can have
any arithmetic type.

axis specifies the axis along which the scan class or classes are
to be created; see Section 13.2.

combiner specifies the type of operation that scan is to carry out.
Possible values are listed in Section 13.1.

direction specifies the direction of the operation. Possible values
are CMC_upward and CMC_downar.

sm ode specifies wheththe sbit is a segment bit or a start bit; see
Section 13.2.3. Possible values are CMcstart_bit,
CMC_segment_bit, and CKC_none. Specify CQnone
if there is no sbit.

sbitp is a scalar pointer to a bool-size parallel variable of the
current shape. This parallel variable is the sbit, which cre-
ates scan sets for the operation. Specify cC_no_ ield
if there is no sbit.

inclusion specifies whether the operation is exclusive or inclusive;
see "Inclusive and Exclusive Operations," above. Possi-
ble values are CMCexclusive and CMC_inclusive.

The function returns the result of the scan in a parallel variable of the current
shape and with the same type as source.

The types CMC_combiner_t, CMC_communication_direction_t,
CMC_segment_mode_t, and CMC_scan_inclusiont are defined by the
compiler.

The scan function provides a running result of the operation you specify on the
parallel variable you specify. If you assign this result to a parallel variable of the

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Chapter 13. Communication %dth Computation 187

. I

C* Programming Guide

current shape, each element of the parallel variable receives the running result
for its position. The operation is carried out independently for each scan set.

13.3.1 Examples

The example below adds the values of data in an upward direction and assigns
the running result to running_total; there is no sbit, and the operation is in-
clusive. The results are shown in Figure 74.

running_total = scan(data, 0, CMC_combiner_add,
CMC_upward, CMC_none, CMC no field, CMC_inclusive);

running_total

CMCupward,

data

running_total

a scan(data, 0, CC_combiner_add,
CMC_none, CMC_nofield, CMC inclusive);

0 1 2 3 4 s 6 7

4 7 9 5 3 5 9 6

4 11 20 25 28 33 42 48

Figure 74. An example of the scan function with no sbit.

The next example assigns the minimum value of data in the scan set to
running_min. The direction is downward, the operation is inclusive, and the
sbit is a start bit. The results are shown in Figure 75.

running_min = scan(data, 0, CMC_combiner_min,
CMCdownward, CMCstartbit, &start bit,

CMC inclusive);

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

188

(i

~~1118811611111IM N III II------------- 6 P1111 lfi g- g -- -- --------------- --

Chp 13..... Commn-iation wih an

Figure 75. An example of the scan function with a start bit and a downward direction.

Note that you would get a different result in this example if the sbit were a seg-
ment bit, since segment bits and start bits behave differently when the direction
is downward.

The example below multiplies the values of data in the scan set and assigns the
product to running product. The direction is upward, the operation is exclu-
sive, and the sbit is a segment bit. The results are shown in Figure 76.

running_product = scan(data, 0, CMC combiner multiply,

CMC_upward, CMC_segment_bit,

&segment_bit, CMC_exclusive);

runningproduct - scan(data, 0,
CMCcombinermultiply, CMCupward,
&segment_bit, CMCexclusive);

CMC segment_bit,

0 1 2 3 4 5 6 7

segment_bit O O O 0 1 O O 0

data 4 7 | 9 5 |3 3 5 9 6

1 1 4 128 125 21 1 1 3 115 11 35

Figure 76. An example of the scan function using a segment bit
) and an exclusive operation.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

running_min - scan(data, 0, CMC_combinermin

CCdownward, CMC startbit, &start_bit,
CMC_inclusive);

0 1 2 3 4 s 6 7

start bit

running_min
3 13 1 3 1 3 1 3 1 6 1 6 1

Co
.

data 4 · 9 1 1 3 5 1 91 6

! i . i . . i .

Chapter 13. Communication MAt Computation 189

running roduct I

O I O I O I I I-0 - -- -

1 C*88~lIII ProgramInGE=

These examples are of a 1-dimensional shape, which by definition has only one
scan class. If a shape has more than one dimension, more than one scan class is
created, and scan carries out the operation on all scan subclasses (or scan sets,
if the sbit is used) at the same time.

The destination parallel variable can be the same as the source parallel variable.
In other words, a statement like this is legal:

data = scan(data, 0, CMC combiner add, CMC_upward,
CMCnone, CMCno_field, CMCinclusive);

In this case, the elements of data are overwritten with the results of the
operation.

13.4 The reduce and copy_reduce Functions

13.4.1 The reduce Function

Use the reduce function to put the result of an operation into a single parallel
variable element in each scan subclass.

The reduce function has this definition:

void reduce (
type: current *destp

type:current source,

int axis,

CMC combiner t combiner,

int tocoord);

where:

destp is a scalar pointer to a parallel variable, of the current
shape and of any arithmetic type. One element of each
scan subclass of this parallel variable receives the result
of the operation.

source is a parallel variable (of the current shape) whose values
are to be used in the operation. It must be of the same type
as the parallel variable pointed to by destp.

May 1993
Copyright © 1990-1993 Thining Machines Corporation

190 C* Programming Guide

Capter 13. Communication with Computation 191

axis specifies the axis along which the scan class or classes are
to be created; see Section 13.2.

combiner specifies the type of operation that reduce is to carry out.
Possible values are CMC_combiner_max, CMC_com-

biner_min, CMC_combiner_add,
CMC_combiner_logior, CMC_combiner_logxor,
and CMC_combiner_logand.

to_coord specifies the coordinate of the parallel variable pointed to
by destp that is to receive the result of the operation.

Note these differences between reduce and scan:

* reduce puts the final result of the operation into a single parallel variable
element of the scan subclass; it does not produce a running result.

* reduce does not use scan sets; therefore, it does not have the arguments
smode and sbit.

* Copying with reduction is handled as a separate function, which is dis-
cussed below.

Elements of source that are at inactive positions do not participate in the opera-
tion. If a position specified by to_coord is inactive, that element of dest does
not receive the, result.

dest can be thile same parallel variable as source; the result simply overwrites
the value(s) in the specified element(s).

An Example

The statement below puts the maximum value of data into element 0 of max.
The results are shown in Figure 77.

reduce(nax, data, 0, CMC_combiner max, 0);

May 1993
Copyright 1990-1993 Thinking Machines Corporation

Chapter 13. Communication with Computation 191

192 CP mn Guid

Figure 77. An example of the reduce function.

Incidentally, this statement is virtually equivalent to this C* statement:

[O]max = >?= data;

But note these points:

* If position [0] were inactive, the assignment statement above would work;
if you used reduce, the reduction would not take place.

* The equivalence holds only for 1-dimensional shapes. In shapes with more
dimensions, reduce carries out its operation separately for each scan sub-
class, whereas the reduction assignment carries out its operation once for
all elements of the parallel variable.

13.4.2 The copy_reduce Function

Use the copyreduce function to copy a value from one parallel variable ele-
ment of a scan subclass to another parallel variable element.

The definition of copy_reduce is:

void copy_reduce (
type:current *destp
type: current source,

int axis,

int to_coord,
int from_coord);

May 1993
Copyright 1990-1993 Thinking Machines Corporation

reduce(&max, data, 0, CMCcombiner_max, 0);

0 1 2 3 4 5 6 7

data 7 9 5 3 5 | 9 6

max I I I I

192 C *Programming Guide

Chapte81Commuication with-Computio -19-----

The arguments are the same as for the reduce function, except that there is a
from_ coord argument instead of a combiner. from_coord specifies the ele-
ment of source from which the value is to be copied. It is copied into the
to_coord element of the parallel variable pointed to by destp for each scan
subclass. If either from coord or to_coord specifies an inactive position, the
copying does not take place for that scan subclass.

An Example

This example copies the values of elements in row 1 of data into elements of
row 0 of copy:

copy_reduce(©, data, 0, 0, 1);

The results for some sample values are shown in Figure 78.

copy.reduce(©, data, 0, 0, 1);

0 1 2 3

0 0 2 3

data 1 10 11 12 13 copy

2 20 21 22 23

Figure 78. An example of the copy_reduce function.

If the example of copy_reduce shown in Figure 78 were applied to a 1-dimen-
sional shape, it would be equivalent to:

[0] copy = [1]data;

If position [0] were inactive, however, the results would be different. [0] copy
would get the result from 1] data if you used the assignment statement above;
it would not get the value if you used copyreduce.

)

May 1993
Copyright C) 1990-1993 Thinking Machines Corporation

10

L - I I I I

11 12 13

._

. _ . _

Chapter 13. Communication with Computation 193

9_C----. -Progrmmin Gui

13.5 The spread and copy_spread Functions

13.5.1 The spread Function

Use the spread function to place the result of an operation into all the elements
of a specified parallel variable in a scan subclass.

The spread function has this definition:

type:current spread(

type: current source,

int axis,

CMC combiner t combiner);

where:

source is a parallel variable (of the current shape) whose values
are to be used in the operation. It can have any arithmetic
type. '

axis specifies the axis along which the scan class or classes are
to be created; see Section 13.2.

combiner specifies the type of operation that spread is to carry out.
Possible values are CMC_combiner max, CMc_com-
b ine rmin, CMC_c omb ine r_add,
CMC_combiner_logior, CCcombiner_logxor,
and CMC_combiner_logand. See Section 13.1.

spread returns its result in a parallel variable of the current shape; the parallel
variable has the same type as source. This destination parallel variable can be
the same as the source parallel variable, in which case the elements of the source
parallel variable are overwritten with the result.

The spread function "spreads" the result of an operation into all active elements
of the destination parallel variable in a scan subclass. Like reduce, spread
does not use scan sets, and it does not have a CMC_combiner_copy operation;
copying is handled by the copyspread function, as discussed below.

Inactive positions do not participate in the operation.

t
May 1993

Copyright Q 1990-1993 Thinking Machines Corporation

194 C* Programming Guide

Chapter 13.Commuicatiowi

An Example

The code below adds the values of the elements in data in the scan subclasses
of axis 1, and assigns the result to total. The results for sample data are shown
in Figure 79.

total = spread (data, 1, CMC combineradd);

Figure 79. An example of the spread function.

13.5.2 The copy_spread Function

Use the copy._spread function to copy a value from an element of a parallel
variable in a scan subclass to all elements of a parallel variable in the scan
subclass.

The copy_spread function has this definition:

type:current copy_spread (
type: current *sourcep,

int axis,

int coordinate);

where:

sourcep is a scalar pointer to a parallel variable, one value of
which is to be copied.

)

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

)

total - spread (data, 1, CMC_combiner_add);

0 1 2 3

00 1 2 3 6 6

data 1 10 11 12 13 total 46 46 4

2 20 21 22 23 86 86 8

$ 6

6 46

6 86
L - I I I I I I .l

Chapter 13. Communication with Computation 195

196 C* Programming-Guide

specifies the axis along which the scan class or classes are
to be created.

coordinate is the coordinate along axis that specifies the source par-
allel variable element whose value is to be copied.

The function returns a parallel variable of the current shape and the same arith-
metic type as the parallel variable pointed to by sourcep, containing the results
of the operation.

If a specified element of the source parallel variable is inactive, its value is cop-
ied. However, inactive positions of the destination parallel variable do not
receive a result.

An Example

The code below copies the value from element [n][ll] of data to elements of
copy in the same scan subclass along axis 1. The results are shown in Figure 80.

copy = copy spread(&data, 1, 1);

Figure 80. An example of the copy_spread function.

Note that, for a 1-dimensional shape, the above statement is
statement:

equivalent to this

copy = [1]data;

unless position [1] is inactive. In that case, the assignment statement works;
copy_spread, however, would not copy El] data.

May 1993
Copyright C) 1990-1993 Thinking Machines Corporation

axis

copy - copy_spread(&data, 1, 1);

0 1 2 3

0 0 1 2 3 1 1 1 1
data 1 10 11 12 13 copy 11 11 11 11

2 20 21 22 23 21 21 21 21

4'

196 C* Programming Guide

13.6 The enumerate Function

Use the enumerate function to place in each active element of a parallel vari-
able the size of its scan set. As we discuss in more detail below, enumerate is
a generalized version of the pcoord function.

The enumerate function has this definition:

unsigned int:current enumerate

int axis,

CMC communication direction t direction,

CMC scan inclusion t inclusion,

CMC segment mode_t smode,

boo.l:current *sbitp);

All the parameters for enumerate have the same meanings and take the same
values as the corresponding parameters for the scan function; see Section 13.3.
Like scan, enumerate lets you specify a direction, an sbit, and whether the
operation is to be exclusive or inclusive. Note, however, that the return value is
an unsigned int of the current shape.

If you specify CMC_inclusive, enumerate includes each position in calculat-
ing the size of the scan set for that position. If you specify CC exclusive,
enumerate does not include the position in calculating the size of its scan set.

An inactive position does not receive a value and is not included in the calcula-
tion of values for other positions; see the third example, below.

13.6.1 Examples

The first example does an exclusive enumerate in an upward direction, ignoring
the sbit, and assigning the result to number. The results are shown in Figure 81.

number = enumerate(0, CMC_upward,

CMC_exclusive, CMC none, CMC_no field);

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Chapter 13. Communication with Computation 197

l C o mmn Guidell ..I ------1-i-..

number enumerate(O,
CMC_no_field);

CMCupward, CMCexclusive, CC_none,

0 1 2 3 4 5 6 7

number 0o 1 2 [3 1 4 1 5 6

Figure 81. An example of the enumerate function without an sbhi

This is exactly equivalent to this use of pcoord when all positions are active:

number = pcoord(0);

Both functions initialize each parallel variable element to its coordinate along the
axis. The enumerate function, however, is more versatile than pcoord. In the
next example, enumerate uses the sbit as a start bit and proceeds in a downward
direction, using the inclusive mode:

number enumerate(O, CMC downward, CMC inclusive,
CMCstart bit, &start bit);

The results are shown in Figure 82.

Figure 82. An example of the enumerate function
with a start bit and a downward direction.

4

May 1993
Copyright C 1990-1993 Thinking Machines Corporation

number - enumerate(O, CMC_downward,
CMC_inclusive, CMC_start_bit, &start_bit);

0 1 2 3 4 5 6 7

start_bit O O O O 1 O O O

number 3 4 3 2 1 3 2 1

198 C *Prgramming Guide

I

Chapter13.Commuicatio- wth-Computation 19199

In the example below, the sbit is a segment bit, the enumerate is exclusive, the
direction is upward, and position 2 is inactive. The results are shown in
Figure 83.

where (p ! 9)

number enumerate (0, CMC_upward, CMC_exclusive,

CMC segment_bit, &segment_bit);

where (pl 9)
number - enumerate(O, CMC upward,

CMC_segment_bit, &segment_bit);

cMCexclusive,

0 1 2 3 4 5 6 7

segment bit 0 0 0 1 o0 I 0 1

pI 1 t7 m 5 1 3 1 5 8 6

number L I 1 / 2 1 O I 1 1 2 1 3

Figure 83. An example of the enumerate function using a segment bit
and. an exclusive operation, with an inactive position.

Note that the inactive position is not included in the enumeration.

13.7 The rank Function

Use the rank function to produce a numerical ranking of the values of parallel
variable elements in a scan set.

The definition of rank is:

unsigned int:current rank
type:current source,

int axis,
CMC communication direction t direction,

May 1993
Copyright 0 1990-1993 Thinldng Machines Corporation

)

active

mctive

Chapter 13. Communication with Computation 199

200 Cilpns Programming Guide------------

CMC_segmentmode_t smode,

bool:current *sbitp);

The parameters for rank have the same meanings and take the same values as
the corresponding parameters for the scan function; see Section 13.3. Like scan
and enumerate, rank lets you specify a direction and an sbit. It does not, how-
ever, let you specify that its operation is exclusive; the operation can only be
inclusive. Also, note the behavior of rank with scan sets discussed below. Like
the enumerate function, rank returns an unsigned int of the current shape.

The rank function returns, for each active position, the rank of the value of the
specified parallel variable at that position in its scan set. Inactive positions are
not included in the determination of the rank for other positions, and they do not
receive a rank themselves. The ranking is from 0 to n-l, where n is the total
number of positions in the scan set. The ranks are assigned as follows:

* When the direction is upward, the lowest value is assigned rank 0.

* When the direction is downward, the highest value is assigned rank 0.

* If more than one element has the same value, their ranks are assigned arbi-
trarily within the range of ranks they represent.

* An sbit restarts the ranking of values within the scan set; however, it does
not restart the values assigned to the ranks. This behavior is different from
that of other functions. For example, if a scan set extends from position

[4] through position [15], the ranks assigned within this scan set are 4
through 15, not 0 through 11.

13.7.1 Examples

The first example has no sbit and ranks the values of data in a upward direction;
it assigns the ranks to data_rank. The results are shown in Figure 84.

data rank = rank(data, 0,
CMC_upward, CMCnone, CMC no field);

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

C* Programming Guide200

Chapte 1 3.iiiiiiiiiiD CommuniI .. IctIo ta n

Figure 84. An example of the rank function with no sbit.

In the next example, the sbit is a segment bit, the direction is downward, and
position 1 is inactive. The results are shown in Figure 85.

where (data ! 7)
datarank rank(data, 0, CMC downward,

CMC_segment bit, &segment_bit);

where (data 1- 7)
data_rank rank(data, 0, CC downward,

CMC_segmentbit, &segment bit);

0 1 2 3 4 5 6 7

segment bit O K1 0 O 1

active

3 nctive

O o lo l

data 4 9 5 3 5 9 6

datarank 5 ~ 3 4' 6 2 | 1

Figure 85. An example of the rank function using a segment bit
and a downward direction, with an inactive position.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

)

data rank rank(data, 0, CMCupward, CMCnone,
CMC_nofield);

0 1 2 3 4 5 6 7

data 4 7 9 S 3 5 9 6

datarank 1 5 6 2 0 3 7 4

)

r . :Y s . . .

.
I . ff

Chrapter 13. Communicadton with Computation 201

202 C*Programming Guidepllr~arrruss-----

The final example uses rank along with parallel left indexing to actually reorder
parallel variable elements according to their rankc

[rank(data, 0, CMC_upward, CMC none,
CMC_no_field)]sorted data;

In this example, data sends values to sorted, using the return values friom
rank as an index. The key here is to have rank operate on the parallel variable
that is doing the sending. The results are shown in Figure 86.

Figure 86. Using rank as a parallel left index to reorder parallel
variable elements according to their ranks.

Note how values move in the example: [o] data, for example, has a rank of 1;
therefore, its value (4) is sent to [1] sorted.

You can also achieve the same result using the make_send_address and send
functions along with rank; see Section 14.3.3.

13.8 The multispread Function

The multispread function is like the spread function, except that you can use
it to spread the result of an operation along more than one axis at the same time.
This is useful in shapes that have more than two dimensions. For example, in a
3-dimensional shape, you can use spread to spread results along any one of the

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

[rank(data, 0, CMC upward, CC none,

CEC_nofield)]sorted - data;

0 1 2 3 4 5 6 7

data 4 7 9 5 |3 5 9 6

sorted 3 4 5 5 6 7 9 9

4i

202 C *Programming Guide

Cha8~1BBB~lbBIpter 13. ComncainwthCmuato 0

dimensions; multispread lets you spread results through entire planes of posi-
tions instead of along a single dimension.

To see how this works, consider the simple 8-position 2-by-2-by-2 shape shown
in Figure 87.

Figure 87. A 3-dimensional shape.

As we mentioned
for this shape:

in Section 13.2.1, specifying axis 0 creates four scan classes

[0][0][0] and [1][0][0]

[0][1][0] and [1][1][0]

[0][0][1] and [1][0][1]

[0][1][1] and [1][1][1]

In each scan class, the positions differ only along axis 0. These scan classes are
shown in Figure 88.

)

May 1993
Copyright @ 1990-1993 Thinking Machines Corporation

)

Axaf2/.1h

1

S

1

)

Chapter 13. Communication mith Computation 203

204. C-*---Pro- r--_mm__--- G - '; i

Ax 4

0·Rj,

class

0

$

Figure 88. Scan classes in a 3-dimensional shape.

For the multispread function, you can specify more than one axis along which
the positions can differ. In this case, let the positions differ along axes 0 and 1;
axis 2 is fixed. This results in two sets of positions:

[0o] [] 0o]

[1] [O] [o]
[0] [1] []
[1 [1] [0]

and:

[0] [0] [1I
[1] [0] [1]
[o0] [1] [1]
[1] [1] [1]

Figure 89 shows these two sets of positions. The sets of positions in which the
positions are allowed to differ along more than one axis are called hyperplanes.
Scan classes are therefore a special case of hyperplanes, in which the positions
can differ along only one axis. The multispread function operates on any kind
of hyperplane.

I

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

o 0

1

--

C* Programmaing Guide204

C 1. Communicatio

Axes

hyperplane

plane

0

Figure 89. Hyperplanes in a 3-dimensional shape.

The multispread function has this definition:

type:current multispread (

type:current source,

unsigned int axis mask,

CMC combinert combiner);

The only difference between this definition and that of spread is the
axis_mask parameter. The axis_mask parameter is a bit mask that specifies
the axes along which the positions in a hyperplane are allowed to differ. For ex-
ample, use a bit mask of 3 to specify axes 0 and 1; use 6 to specify axes 1 and 2.

The example below assumes a 3-dimensional shape like the one shown above.
In it, the values of source in the hyperplanes described by axes 0 and 1 are
added, and the results are spread to all elements of dest in the same hyperplane.

dest = multispread(source, 3, CMCcombiner add);

13.8.1 The copy_lmultispread Function

There is also a copy_multispread function, comparable to the copy_spread
function, but available for use on hyperplanes instead of scan classes. Using

) copy_multispread, however, requires an understanding of send addresses,

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

91

0

1

Chapter 13. Commnunication Mth Computation 205

.T

206 C*Programming Guide

which are discussed in the next chapter. We therefore defer discussion of this
function until Section 14.5.

13.9 The global Function

Use the global function to perform reduction operations on a parallel variable
and assign the result to a scalar variable.

The global function has this definition:

type global (
type: current source,

CMCcombiner t combiner);

where:

source is a parallel variable (of the current shape and any arith-
metic type) upon whose values the reduction operation is
to be performed.

combiner specifies the reduction operation. Possible values are
CMCcombiner max, CMC combiner_min, CMC com-

bineradd, CMCcombiner_logior,
CMC_combiner_logor, and CMC_com-
biner_logand; see Section 13.1 for definitions of these
values.

The function returns a scalar variable of the same type as source.

The global function provides an alternative method for performing certain re-
duction operations. For example, these two statements are equivalent (where sil
is a scalar variable and pi is a parallel variable of the same type):

si - I p1;

and:

sl - global(pl, CMC_combiner_logior);

Both do a bitwise inclusive OR of pi and assign the result to sl.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Chaptr 13. Com uniation with Comptation 207i
:)

Note that global does not have a combiner value for the reduction assignment
operator -- (negative of the sum of the parallel values).

The global function operates only on active positions.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Chapter 13. Communication MMt Computation 207

I

4

)

Chapter 14

General Communication

The C* communications functions we have discussed so far have required that
the source and destination parallel variables be of the current shape (except for
global, where the destination is a scalar variable), and that the communication
be in regular patterns - that is, all elements transfer their values the same num-
ber of positions in the same direction. In this chapter, we introduce functions that
allow communication in which:

* One of the parallel variables need not be of the current shape, and

* The communication need not be in a regular pattern.

The get and send functions described in this chapter provide communication
comparable to that offered by parallel left indexing; see Chapter 10.

The read_romposition function described in this chapter provide commu-
nication comparable to that offered by assigning a scalar-indexed parallel
variable to a scalar variable; write_toposition is comparable to assigning
a scalar variable to a scalar-indexed parallel variable. The read_from pvar
function reads data from a parallel variable into a scalar array; writetopvar
writes data from an array to a parallel variable.

Include the header file <cacomm. h> when calling any of the functions discussed
in this chapter.

14.1 The make_send_address Function

Grid communication requires knowing the coordinates of parallel variable ele-
ments in the shape. More information is required for general communication.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation 209

21 C*Pormmn ud

Specifically, you need to supply a send address for a parallel variable element's
position. This send address, along with a position's shape, uniquely identifies a
position among all positions in all shapes; thus, you can use this address when
an element of the current shape is communicating with an element that is of a
different shape.

Use the make send address function to obtain a send address for one or more
positions. make_send_address is an overloaded function that has different
versions depending on these conditions:

* Whether you want to return a single address or multiple addresses. Multi-
ple addresses are returned as a parallel variable of the current shape.

* Whether you specify axis coordinates for the position in a stdargs list or
in an array. The choice is the same as that for the allocateshape func-
tion, which we discussed in Section 9.3. If you know the rank of the
position's shape, it is easier to use the stdargs version. If the rank will not
be known until run time, you must use an array.

14.1.1 Obtaining a Single Send Address

To obtain a send address for a single position, use make_send_address with
one of these formats:

CMCsendaddr_ t makesendaddress (
shape s,

int axis_O_coord, ...);

or:

CMCsendaddr t make send address
shape s,

int axes[]);

where:

s is the shape to which the position whose address you are
obtaining belongs.

axis O coord

(in the first version) specifies the position's coordinate
along axis 0. Specify as many coordinates as there are
axes in the shape.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

210 C* Programming Guide

axes t (in the second version) is an array that contains the posi-
tion's coordinates.

The function returns a scalar value (of type CMC_sendaddx_t) that is the send
address of the position. This address is returned even if the position is inactive.

Note that the shape you specify in the parameter list need not be the current
shape.

An Example

The code below calculates the send address of position [77][44] in shape image
and assigns this address to the scalar variable addr:

CMC sendaddr t addr;
addi = make send address(image, 77, 44);

14.1.2 Obtaining Multiple Send Addresses

To obtain send addresses for more than one position, use make_send_address
with one of these formats:

CMC sendaddr t:current make send address(

shape s,

int:current axis O coord, ...);

or:

CMC sendaddr t:current make send address
shape s,

int:current axes [);

These formats are the same as the ones shown in Section 14.1.1, except that the
axis_n_coord arguments take parallel ints of the current shape, and the func-
tion returns a parallel variable of the current shape.

The value in each element of the parallel variable you specify for an axis of shape
* represents a coordinate along that axis. The corresponding elements of the par-
allel variables that represent all the axes of the shape therefore fully specify a
position in shape a. The function returns the send address for each position speci-
fied in this way. These send addresses are returned as the values of elements of

) a parallel variable that is of the current shape.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Chapter 14. General Communicadion 211

212lll ~ ~ ~ ~~~~~~~~~~7" C*-P-:ogr- - -m- - g Guide8---

For example, if you specify pi as the axis argument for a 1-dimensional shape
a, and [Ol p contains the value 4, then the send address of position [4] of shape
s is returned in element [0] of a parallel variable of the current shape.

You cannot mix scalar values and parallel values in the argument list. If you want
to use a scalar value (for example, because you only want the send addresses of
positions whose coordinate for axis 1 is 3), either:

· Use a separate assignment statement to assign 3 to a parallel variable; or

* Use a cast in the argument list to explicitly promote 3 to a parallel value.

When Positions Are Inactive

If a position in the current shape is inactive, that position does not participate in
the operation. In other words, the function does not return the send address speci-
fied by that position's parallel variable elements.

If elements specify a position in shape s that is inactive, the send address for that
position is returned.

An Example

Figure 90 shows an example of make_send_address, using parallel variables
of the 1-dimensional shape t to map parallel variables of the 2-dimensional
shape a.

(.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

212 C *Programming Guide

Chapter1.Geneammncat

address make_sendaddress(s, axis_0, axisl);

shape t

I active

E inactive

0 1 2 3

axis 0 1 0 0

axisl 0 1 3

address (1] [o0l[o] [1] 0] [3]

Figure 90. An example of the make_send_address function.

Note these points in Figure 90:

* Two elements contain the same send address; this is legal.

Position [2] is inactive; therefore, element [2] of address does not obtain
the send address specified by the values in [21 axis_0 and [21 axis_l.

The values of the elements that specify coordinates for an axis must be within
the range of these coordinates. If, for example, shape s has 256 positions along
axis 0, an element of axis_o cannot have a value greater than 255.

14.2 Getting Parallel Data: The get Function

Use the get function to get values from a parallel variable when grid communi-
cation is not possible - that is, when communicating between shapes, or when
the communication is not in a regular pattern. The get function is overloaded for
both arithmetic and aggregate types.

)

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

16383

. [0 . 3]

)

Chapter 14. General Communication 213

214 C* ProgrammiaI I NGuid

14.2.1 Getting Parallel Variables

The get function has this definition when used with arithmetic types:

type:current get (

CMC sendaddr t:current send address,

type:void *sourcep,

CMC_collision_mode_t collision mode);

where:

send_address

is a parallel variable of the current shape. The parallel
variable contains send addresses for positions in a shape
that need not be the current shape; see Section 14.1. They
must, however, be of the same shape as the parallel vari-
able pointed to by sourcep.

sourcep is a scalar pointer to a parallel variable (of any shape)
from which values are to be returned. The parallel vari-
able pointed to by send_address specifies which values
are to be returned and where they are to be assigned.

collision mode
specifies the behavior if more than one destination paral-
lel variable element tries to get from the same element of
the source parallel variable. Possible values are
CMC_collisions, CMC_no_collisions,
CMC_few collisions, and cc_many collisions.
See "Collisions in Get Operations," below.

The get function returns a parallel variable of the current shape. It has the same
arithmetic type as the parallel variable pointed to by sourcep, and it contains
the values of the parallel variable pointed to by sourcep in the positions speci-
fied by send_address.

The get fmunction works like a get operation using a parallel left index; see Chap-
ter 10. A destination parallel variable obtains values of the source parallel
variable, using the parallel variable send_addxess as an index. Thus, given this
code:

#include <cscomm.h>

shape [65536] ShapeA;

shape [512] [128]ShapeB; 4

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

C* ftgrtamming Guide214

Caer1. Genera Comm-nicat.n 2- - - _ _

int:ShapeA axis 0, axis_1, dest;

int:ShapeB source;

These two code fragments have the same results:

with (ShapeA) {

CMCsendaddr_t:ShapeA address;

address = make sendaddress(ShapeB, axis_0, axis 1);

dest = get(address, &source, CMC collisions);

}

and:

with (ShapeA)

dest - [axis_O] [axisl]source;

The get function is more general, however:

* You can use get even if the rank of the shape from which you want to get
values is not known until run time. Parallel left indexing requires that you
know the rank of the shape when you write the program.

) * The get function lets you control how collisions are handled; see below.

* The get function also lets you get parallel arrays. See Section 14.2.2,
below.

If there are inactive positions in ShapeA in the first example above, elements of
dest at these positions do not get values from source. The status of the posi-
tions in ShapeB does not matter; the active elements of dest get the values from
the positions for which addressa has send addresses, whether or not these posi-
tions are active. Once again, this behavior is the same as that for get operations
with parallel left indexing.

Collisions in Get Operations

The collisions we have talked about previously occur when two elements try to
send to the same element at the same time. Get operations also have collisions,
however; these occur when more than one parallel variable element tries to get
a value from the same element at the same time. Unlike send collisions, get colli-
sions are permitted in C*; they are handled automatically by get operations in the
language. The get function and its collisionmode argument, however, gives
you some control over how collisions are handled.

May 1993
Copyright @ 1990-1993 Thinking Machines Corporation

Chavier 14. General Communrication 215

216 C*Programming GuideBB88 ~ ~ ------- 111

We recommend using the cKccollisions option of collision_mode for
most applications. This is the method used by get operations in the language it-
self. The other options may be useful in special circumstances:

If there is no possibility of collisions, you can specify CC_no_colli-
sions; currently, this option uses the same code as CMC_collisions.
However, future implementations of the get function may increase the
performance of Cac_no-collisions.

* CEC_many_collisions and cKcfew_collisions can be useful if
your application is memory-intensive and risks running out of storage.
(You can determine this if, for example, your program doesn't run with a
certain number of physical processors, but does run with a larger number
of processors.) CKc_collisions requires memory for two aspects of its
operation: to store the paths it takes in doing gets for each position, and
to store colliding addresses. If it runs out of memory, it switches over and
tries the algorithm used by cxc many_ollisions, which is slower but
requires less memory. Under these circumstances, the operation would be
faster if you specified cxc manycollisions to begin with, thus avoid-
ing the time spent trying the cmc_collisions algorithm.

If CC_collisions takes a long time due to memory limitations and the get has
few collisions, CMCfew_collisions may be faster. In this case, the get opera-
tion iterates separately over each collision, saving the memory required to store the
colliding addresses.

14.2.2 Getting Parallel Data of Any Length

You can also use the get function to obtain values from parallel locations of any
length - typically, parallel structures or parallel arrays.

This version of the get function has this definition:

void get (
void:current *destp,

CMC_sendaddr_t:current *sendaddressp,
void:void *sourcep,

CMC_collisionmodet collision mode,
int length);

where:

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

216 C *Programmzing Guide

Chap.......er. 14 ' ommuncto----------- --- --.--- - --7-

destp is a scalar pointer to a parallel location of the current
shape. This location obtains values from sourcep, based

on the index in the parallel variable pointed to by
send_add essp.

send_addressp

is a scalar pointer to a parallel variable of the current
shape. The parallel variable contains send addresses for
positions in a shape that need not be the current shape.
See Section 14.1.

sourcep is a scalar pointer to a parallel location; it need not be of
the current shape. The parallel variable pointed to by
send_addressp specifies positions of this location.
Data is to be gotten from these positions.

collision mode

specifies what to do if more than one destination parallel
variable element tries to get from the same element of the
source parallel variable. Possible values are CMC_colli-

) sions, CMC_no_collisions,
CMC few_collisions, and cc_many_ collisions.
See "Collisions in Get Operations," above.

length specifies the length in bools of the parallel location
pointed to by sourcep.

This version of the get function lets you obtain data that is larger than the stan-
dard data types; typically, this data would be in a parallel structure or parallel

array. For example:

#include <cscomm.h>

shape [65536]ShapeA;

shape [512] [128] ShapeB;

struct S {

int a;

int b;

};
int:ShapeA axis_O0, axis_1;

struct S:ShapeA dest_struct;

struct S:ShapeB source_struct;

main()

) with (ShapeA) {

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Chapter 14. General Communicadion 217

218l¥* j;--IY --~BII O I * l l C*Prgra min Guide-- --_H-:_-7~-__-~-U_-_---YU- ~ - '? _ !-__-----____-

CMC_sendaddr_t:ShapeA address;

address - makesendaddress(ShapeB, axis_0, axis_l1);

get(&deststruct, &address, &source_struct,

CMCcollisions, boolsizeof(source_struct));

deststruct, of shape ShapeA, gets data from individual positions of the
structure source_struct, of shape ShapeB, based on the send addresses
stored in address. Note the use of the intrinsic function boolsizeof to obtain
the length in bools, of source_struct.

14.3 Sending Parallel Data: The send Function

Use the send function to send parallel data when grid communication is not pos-
sible - that is, when communicating between shapes, or when the
communication is not in a regular pattern. The send function is overloaded for
both arithmetic and aggregate types.

14.3.1 Sending Parallel Variables

The send function has this definition when used with arithmetic types:

type:current send (
type:void *destp,

CMC sendaddr t:current send address,

type:current source,

CMC combiner t combiner,

bool:void *notifyp);

where:

destp is a scalar pointer to a parallel variable to which values
are to be sent. It can be of any arithmetic type and any
shape.

sendaddress
is a parallel variable of the current shape. The parallel
variable contains send addresses for positions in the shape

May 1993

Copyright C0 1990-1993 Thinking Machines Corporation

C* Prpgramming Guide218

.

of the parallel variable pointed to by destp. This shape
need not be the current shape; see Section 14.1.

source is a parallel variable from which values are to be sent. It
must be of the current shape, and it must have the same
type as the parallel variable pointed to by destp.

combiner specifies how send is to handle collisions. Possible val-

ues are CMC_combiner_max, CMC_combinermin,
CMC_combiner add, CMC_combine r_l ogi o r,
CMC_combiner_logxor, CMCcombiner_l ogand,
and CMCcombiner overwrite. All of these are
defined in Section 13.1 except CMC_combiner_over-
write. If you specify CC_combiner_overwrite and
more than one value is sent to a parallel variable element,
one of the values is chosen arbitrarily and stored in the
element, and the rest of the values are discarded.

notifyp is a scalar pointer to a bool-size parallel variable of the
same shape as the parallel variable pointed to by destp.

When an element of the destp parallel variable receives
a value, the corresponding element of the parallel variable
pointed to by notifyp is set to 1; other elements are set
to 0. If you do not want to use a notify bit, specify
CMC_no_f eld for this argument.

send returns the source.

Using the send function is roughly equivalent to performing a send operation

with parallel left indexing; see Chapter 10. The source parallel variable sends

values to the destp parallel variable, using send_address as an index. The

combiners are equivalent to reduction assignment operators. CMC_com-
biner_overwrite has the same effect as the operator, when the parallel

right-hand side is cast to the type of the scalar left-hand side.

There are some differences, however, between the send function and send op-

erations with parallel left indexing:

* The send function can be used when the rank of the shape of the destina-

tion parallel variable is not known until run time.

* The send function lets you include a notify bit, which provides notifica-
tion that a value has been received by an element of the destination parallel

) variable.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Chapter 14. General Communicadion 219

* There is not a complete correspondence between the combiners and the
reduction assignment operators. For example, there is no combiner that is
equivalent to the -- reduction assignment operator.

* The send function has an overloaded version that lets you send parallel
arrays; see Section 14.3.2, below.

inactive Positions

Inactive positions are treated in the same way they are treated by send operations
with parallel left indexes:

· An element in an inactive position in the current shape does not send a
value.

· Destination parallel variable elements receive values even if they are in
inactive positions.

In addition, the notify bit can be set even in an inactive position.

An Example

This code sends values from elements of source to elements of dest:

#include <cscomm.h>

shape [16384]ShapeA;

shape [2] [16384] ShapeB;

int:ShapeA axis_0, axis_1, source;
int:ShapeB dest;

/* Code to initialize parallel variables omitted. */

main ()
{

with (ShapeA) {

CMC_sendaddrt:ShapeA address;
address - make_send_address(ShapeB, axis_0, axis_1);

where (source < 9)

send(&dest, address, source, CMCcombiner min,
¬ify_bit);

May 1993
Copyright 3 1990-1993 Thinking Machines Corporation

220 C* Pr--amminr Guide

Capr4.GnerlCommunication

Some sample results are shown in Figure 91. The arrows show what happens to
the value at [3] source, based on the send address in [31 address.

Note these points in the results:

· Position [2] of ShapeA is inactive; therefore, [21 source does not send
its value.

* The CMC_combiner_min combiner causes the 3 from [01 source,
rather than the 5 from [1 source, to be sent to [11] [0] dest.

· The notify bit is set in the two positions that receive values.

where (source < 9)

send(&dest, address, source,

CMC_combiner_min, ¬ify_bit);
E[

active

inactive

ShapeA

0 1 2 3

1 1 1, 0 ... 0
notify.bit

1

ShapeB

0 1 2 3

0 0 0 1

1 0 O 0

3

·ares I[1 r]o0I

source

[10] [301 -- .O[3 . -r//A ' 7dest
El

Figure 91. An example of the send function.

14.3.2 Sending Parallel Data of Any Length

You can also use the send function to send parallel data of any length - typical-
ly a parallel structure or parallel array.

This version of the send function is defined as follows:

May 1993
Copyright O 1990-1993 Thinking Machines Corporation

)
axis 0

axi 1

Chzapter 14. General Communication 221

*-i

222 C*ProlsQI ;Egr Guide

void:current * send (
void:void *destp,

CMCsendaddrt:current *sendaddressp,
void:current *sourcep,

int length,

bool:void *notifyp);

where:

destp is a scalar pointer to a parallel location to which data is to
be sent. void:void specifies that destp points to a lo-
cation that can be of any type and of any shape.

send_addressp
is a scalar pointer to a parallel variable of the current
shape. The parallel variable contains send addresses for
positions in the shape of the parallel variable pointed to
by destp.

sourcep is a scalar pointer to a parallel location from which data
is to be sent. It must be of the current shape.

length specifies the length in bools of the location whose begin- 4
ning is pointed to by sourcep.

notifyp is a scalar pointer to a bool-sized parallel variable of the
same shape as the location pointed to by destp. When
data is written to a position pointed to by destp, the cor-
responding element of the parallel variable pointed to by
notifyp is set to 1. If you do not want to use a notify bit,
specify CC_nofjield for this argument.

send returns a pointer to the source.

This version of the send function lets you send data that is larger than the stan-
dard data types; typically, this data would be in a parallel structure or parallel
array. The data is sent from the source location to the destination location, using
the parallel variable pointed to by sendaddressp as an index to determine the
destination

Note that this version of send does not include a combiner argument. This ver-
sion uses the CC_combiner_overwrite option, and arbitrarily chooses a
position of the array or structure if there would otherwise be a collision.

For example:

May 1993
Copyright C 1990-1993 Thinking Machines Corporation

C *Programming Guide222

#include <cscomm.h>

shape [65536] ShapeA;

shape [512] [128]ShapeB;

struct S {

int a;

int b;

};
int:ShapeA axis_0, axis 1;

struct S source_struct:ShapeA, deststruct:Shape B;

main()

{
with (ShapeA) {

CMC_sendaddr_t:ShapeA address;

address - make_send_address(ShapeB, axis_0, axis_l1);

send(&deststruct, &address, &sourcestruct,
boolsizeof(source struct), ¬ify_bit);

The values of individual positions of the parallel structure sourcestruct, of
shape shapeA, are sent to dest_struct, of shape ShapeB, based on the send
addresses stored in address. Note the use of the intrinsic function boolsizeoof
to obtain the length, in bools, of source_struct.

14.3.3 Sorting Elements by Their Ranks

You can use send, along with the makesend address and rank functions,
to reorder elements of a parallel variable by the ranks of their values. Note that
this is also possible with parallel left indexing, as described in Section 13.7.1.

In the example below, we rearange salary data for employees:

#include <cscomm.h>

shape [5] employees;

struct employee {

int id;

int salary;

};
struct employee:employees staff;

main()

{

May 1.993
Copyright 0 1990-1993 Thinking Machines Corporation

Chapter 14. General Communication 223

224 C*Programming? Gu jj'jjj¥ -~ - % 1 ¥ f~ - _ - - --- _ide-- -

/* Code to initialize salaries and ids omitted. */

with (employees) {

int:employees order;

CMC sendaddrt:employees address;

/* Determine ranks of salary values. */

order - rank(staff.salary, 0, CMC_upward, CMC_none,

CMC no field);

/* Create send addresses, using salary ranks as

the index. */

address - make_send_address(employees, order);

/* Send employee data for each employee to new

positions, based on the salary ranks. */

send(&staff, &address, &staff, boolsizeof(staff),

CMCno field);

The code proceeds as follows:

1. It declares the shape, and declares and initializes the parallel structure.
(The initialization of staff. salary and staff. id is omitte.)

2. It calls rank to return the ranks of the elements of staff. salary. The
results are shown in Figure 92.

3. It calls makesend_address to return send addresses, using the salary
ranks as the index. Upon return, [0to address contains the send address

of position [1] of shape employees, [1] address contains the send ad-
dress of position [0] of employees, and so on.

4. It then calls send to send the variables in the parallel structure to new
positions, based on the send addresses. The result is that the values are
rearranged as shown in Figure 93.

May 1993

Copyright 0 1990-1993 Thinldng Machines Corporation

224 C *Prgramming Guide

Captr4.GeealComB -municatio225-
)

order - rank(staff.salary, 0, CMC_upward, CMC none,

CMC no_field);

shape employees

0 1 2 3

staff.id 50 51 52 53 54

staff.salary 530 2301616 161418001

order 1 j 0 3 2 1 4

4

Figure 92. Using the rank function to rank elements of a parallel variable.

Figure 93. Using make-sendaddress and send to reorder
the elements of parallel variables by rank.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

address make_send_address (employees, order);

send(&staff, &address, &staff, boolsizeof(staff),
CMC_no_field);

shape employees

0 1 2 3 4

staff. id 51 50 53 52 54

staff.salary 220 153016141616 8001

order 1 0 3 2 4

Chapter 14. General Communication 225

226C*Prgmmg -Gui

14.4 Communicating between Scalar and
Parallel Variables

This section discusses C* communication functions that provide general com-
munication between the scalar and parallel variables.

14.4.1 From a Parallel Variable to a Scalar Variable

The read_from_posltion Function

Use the read_from osition function to read a value from a parallel variable
element (not necessarily of the current shape) and assign it to a scalar variable.
This function is overloaded for any arithmetic type.

The read_from position function has this definition:

type read_fromposition (
CMCsendaddr t send address,

type:void *sourcep);

where:

sendaddress

is the send address of a position from which a value is to
be read.

sourcep is a scalar pointer to the parallel variable from which a
value is to be read; the parallel variable can be of any
shape and any arithmetic type.

Before calling read fromposition (or as part of the read fromposi-
tion call), you must use the single-address version of makesendaddress to
obtain a send address; see Section 14.1. The read_fromposition function
uses this send address to specify the position, and it uses sourcep to specify the
parallel variable. It returns the value obtained from the parallel variable element
at that position. The value is returned even if the position is inactive.

Since read_from osition deals with a scalar value, it does not have to be
called within the scope of a with statement, and the source parallel variable does
not have to be of the current shape.

May 1993
Copyright D 1990-1993 Thinking Machines Corporation

226 C* Prpgramming Guide

Chapter 14.-eneal-ommnictio-22

This function, in combination with makesend_addxes, produces the same
result as assigning a scalar-indexed parallel variable to a scalar variable. For ex-
ample:

scalar - [7]pl;

You can use readfrom position even when the rank of the shape is not
known until run time, however.

The example below reads the value from element [16][4] of parallel variable pi,
which is of shape image. It assigns the value to the scalar variable si.

#include <cscomm.h>

shape [256][256]image;

float:image p;
CMC sendaddr t address;

float sl;

main ()
{

address = make send address(image, 16, 4);

sl read from_position(address, &pl);

Note that the call to makesend address can also be made from within
read_from position's argument list:

si - read_from_position(make_send_address(image, 16, 4),

&pl);

The read_from_pvar Function

Use the read_from pvar function to read the values of active elements of a
parallel variable and assign them to a scalar array. This function is overloaded
for any arithmetic type. It has this definition:

void read_from_pvar (
type *destp,
type: current source)

where:

destp is a pointer to the buffer to which values are to be written.

May 1.993

Copyright 0 1990-1993 Thinking Machines Corporation

Chapter 4. General Comrmunication 227

228 C*Programming Guide

source is a parallel variable of the current shape from which val-
ues are to be read. Both source and the array pointed to
by destp must have the same arithmetic type.

The values in source are written into the specified scalar array. Values in inac-
tive elements are not copied; array elements that correspond to inactive positions
receive undefined values. Typically, the scalar array will have the same number
of elements and dimensions as the source parallel variable. It cannot have fewer
elements than the source parallel variable.

This example copies the values in pi to the scalar array scalararray:

#include <cscomm.h>

shape [16384] ShapeA;

int:ShapeA p;
int scalar_array[16384];

main ()

/* Initialization of p omitted */

with (ShapeA)

read_from_pvar(scalararray, p);

Note, however, that if the scalar array has more than one dimension, you must
cast it to be a pointer to the type of the array, so that the function knows where
to put the data. For example:

#include <cscomm.h>

shape [128] [256]ShapeB;

float:ShapeB ql;

float scalararray2 [128] [256];

main()

{

/* Initialization of ql omitted */

with (ShapeB)

read_frompvar ((float *)scalar array2, ql);

May 993
Copyright 0 1990-1993 Thinking Machines Crporation

Chapter14.GeneraCommunication229----

Also, when there is more than one dimension involved, the data is transferred so
that the highest-numbered parallel dimension is contiguous in scalar memory. In
other words, the left indexes of the parallel variable match up with the right
indexes of the scalar array.

Note for users of CM-5 C*: The CM-5 implementation also has a version of this
function for parallel data of any length. It has this definition:

void read_frompvar (
void' *destp,
void:current *sourcep,

int length);

where destp is a pointer to the scalar array to which the values are to be written,
sourcep is a pointer to the parallel data, and length is the length, in units of
bools, of each data element pointed to by sourcep.

Note that using this version of read_fzom.pvar with aggregate data may
improve performance, but it will also make your program nonportable (because
of its reliance on size, alignment, and structure field padding).

14.4.2 From a Scalar Variable to a Parallel Variable

The write_to_position Function

Use the writeto..position function to write a value from a scalar variable
to a parallel variable element (not necessarily of the current shape). The
write_toposition function has this definition:

type write_to_position (
CMC sendaddr t send address,
type:void *destp,

type source);

where:

sendaddress
is the send address of the position to which a value is to
be written.

destp is a scalar pointer to the parallel variable to which a value
is to be written; the parallel variable can be of any shape
and any arithmetic type.

Ma 1993
Copyright D 1990-1993 Thinking Machines Corporation

Chrapter 14. General Communication 229

I...* _ * fw
zau -- rrograummg uuCe

source is the scalar variable whose value is to be sent to the desti-
nation parallel variable element. Both source and the
parallel variable pointed to by destp must have the same
arithmetic type.

The function returns the value of source.

As with read_from position, you must use the single-address version of
make_send_address to obtain a send address; see Section 14.1.
write_to position uses this send address to specify the position, and it uses
destp to specify the parallel variable. It sends the value in source to the ele-
ment specified by these arguments. The value is written into this element even
if the element's position is inactive.

writetoposition does not have to be called within the scope of a with
statement, and the destination parallel variable does not have to be of the current
shape.

This function, when used along with make_send_address, produces the same
result as assigning a scalar variable to a scalar-indexed parallel variable. For
example: 4

[7]pl - scalar;

You can use write_toposition even when the rank of the shape is not
known until run time, however.

The example below reverses the example for read_from position in the pre-
vious section. It assigns the value of the scalar variable al to element [161][4] of
parallel variable p., which is of shape image.

#include <cscomm.h>

shape [256] [256]image;

float:image pl;

CMC sendaddr t address;

float sl;

main ()

address = make send address(image, 16, 4);

write_to_position(address, &pl, si);

}

May 1993
Copyright 0 1990-1993 Thinkng Machins Corporation

I.-

e, r~I1. ThAeI ' -r. l-t -sIvsssi-ssvais -- --
The wrteopvar Function

Use the write_to_pvar function to write data from a scalar array to a parallel
variable of the current shape. The function is overloaded for any arithmetic type.
It has this definition:

type:current write topvar

type *sourcep)

where sourcep is a pointer to a scalar array from which data is to be written.

The function returns a parallel variable of the current shape containing the values
in the scalar array. If there are inactive positions in the shape at the time the func-
tion is called, the values in these inactive positions are not overwritten. The
scalar array typically has the same number of elements and dimensions as the
current shape; it cannot have fewer elements.

The example below reverses the example for readfrom pvar shown in the
previous section. The array scalar array writes its values to the parallel vari-
able pl:

) #include <cscomm.h>

shape [16384]ShapeA;

int:ShapeA pl;

int scalar_array[16384];

main ()
{

/* Initialization of scalar_array omitted */

with (ShapeA)

pl = write_to_pvar(scalar array);

Note once again, however, that if the scalar array has more than one dimension,
you must cast it to be a pointer to the type of the array, so that the function knows
where to put the data. For example:

#include <cscomm.h>

shape [128] [256]ShapeB;

float:ShapeB ql;

float scalar_array2 [128] [256];

main()

May 1993

Copyright © 1990-1993 Thinking Machines Corporation

I'ds df~rm Irm.~Ah~

232-- C*Pogrammng Guide

/* Initialization of scalar_array2 omitted */

with (ShapeB)

ql = write to_pvar((float *) scalararray2);

Also, when there is more than one dimension involved, the data is transferred so
that values that are contiguous in scalar memory become the highest-numbered
dimension of the parallel variable. In other words, the right indexes of the scalar
array match up with the left indexes of the parallel variable.

Note for users of CM-5 C*: The CM-5 implementation also has a version of this
function for parallel data of any length. It has this definition:

void write_topvar (
void:current *destp,

void *sourcep,

int length);

where destp is a pointer to the parallel data in which the values are to be written,
source is a pointer to the scalar array, and length is the length, in units of
bools, of the data pointed to by destp.

Note that using this version of write_topvar with aggregate data may
improve performance, but it will make your program nonportable (because of its
reliance on size, alignment, and structure field padding).

14.5 The make multi coord and
copymultispread Functions

As we mentioned in Section 13.8, the copy_multispread function is compara-
ble to the copyspread function, except that you use it on hyperplanes instead
of scan classes.

copy_multispread takes as one of its arguments a multicoordinate. The multi-
coordinate specifies which position of the parallel variable is to be spread
through each hyperplane. For example, in the discussion of multispread in
Section 13.8, we saw that, if we allowed positions to differ along axes 0 and 1
while keeping axis 2 fixed, we created these two hyperplanes (for a 2-by-2-by-2
shape):

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

232 C* Programming Guide

Channter 14 General Communication
._-_-_ - *- - ------------------- ,-------

[0] [0 [0

[1 [0] [0]
10] [1] [o]
[1] [1 [0

and:

[01 [01 [11

(1] [0] [1]
[01 [11 [1I

[1] [1] [1]

Choosing an individual element in these hyperplanes requires that you specify
only two of the three coordinates, since the third (the coordinate for axis 2) is
fixed (it is [0] in the first hyperplane, [1] in the second). The multicoordinate
specifies what the coordinates are along the axes that are not fixed. If the multi-
coordinate specifies [0] for axis 0 and [0] for axis 1, for example, then position
[0][0][0] is chosen for the first hyperplane, and [0][0][1] is chosen for the second
hyperplane.

To obtain this multicoordinate for a position, use the make_multi_coord func-

) tion. You can then use the multicoordinate in the call to copy multispread.

The multicoordinate specifies the desired position in each hyperplane.

make_multi_coord is an overloaded function. It provides three different ways

of specifying a position:

By including the position's coordinates as arguments to the function.

* By specifying an array that contains these coordinates. Use this version if
the shape's rank will not be known until run time.

· By specifying the position's send address.

The three versions of make_multi_coord have these definitions:

CMC multicoord t make multi coord

shape s,
unsigned int axis mask,
int axis _0_coord, ...);

or:

CMC multicoord t make multi coord (

shape s,

May 1993

Copyright @ 1990-1993 Thinking' Machines Corporation

93q

234 C* Programming Guide

unsigned int axis_mask,

int axes[]);

or:

CMC multicoord t make multi coord

shape s,

unsigned int axis mask,
CMCsendaddrzt send address);

where:

a specifies the shape for which the multicoordinate is to be
obtained.

axis_mask is a bit mask that specifies the axis or axes along which
positions in a hyperplane are allowed to differ. Bit 1 cor-
responds to axis 0, bit 2 to axis 1, and so on. For example,
use a bit mask of 3 to specify axes 0 and 1; use 6 to speci-
fy axes 1 and 2; use 5 to specify axes 0 and 2.

axis O coord

(in the first version) specifies the coordinates of a position
in shape s along axis 0. Specify as many coordinates as
there are axes in the shape.

axes [1 (in the second version) is an array that contains the posi-
tion's coordinates. Specify as many coordinates as there
are axes in the shape.

send address

(in the third version) is the send address for a position in
shape s. Any position will do.

In all versions, the function returns the multicoordinate for the specified position
with the specified axis mask

The definition of copy_multispread is:

type:current copy_multispread
type:current *sourcep,

unsigned int axis_mask,
CMC multicoord t multi coord);

where:

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

sourcep is a scalar pointer to a parallel variable from which values
are to be copied. The parallel variable can be of any arith-
metic type; it must be of the current shape.

axi_mask is a bit mask that specifies the axis or axes along which
positions in a hyperplane are allowed to differ.

multi coord
specifies the coordinates that determine the elements of
the source parallel variable from which values are to be
copied.

The function copies the value from each specified element to each active position
in that element's hyperplane. It returns a parallel variable containing these val-
ues; the parallel variable is of the current shape and has the same arithmetic type
as source. Values of inactive elements are copied.

14.5.1 An Example

For example, given these declarations:

#include <cscomm.h>

CMC sendaddr t address;

CMC multicoord t multi_coord;
shape [128] [128] [128] ShapeA;

int:ShapeA source, dest;

then:

address - makesend address(ShapeA, 0, 0, 1);

obtains the send address for position [0][0][1] in shape shapeA and assigns it to
the scalar int address.

multi coord - make multi coord(ShapeA, 3, address);

obtains the multicoordinate for this position along axes 0 and 1 (specified by the
value 3 for the axisask argument) and assigns it to the multi_coord.

with (ShapeA)

dest - copy_multispread(&souzce, 3, multi_coord);

May 1993
Copyright 1990-1993 Thinking Machines Corporation

rkwntr d rnoral nmmunirntinn 9q~

r* P*rn rmmin avind
*llllP~BB~ss ·11 Jl&l&&lf Iv,

' :

takes each element of parallel variable source specified by the axis mask (3)
and the multicoordinate (multi_coord) and copies its value into the elements
of parallel variable dent in the same hyperplane. In other words (for a
2-by-2-by-2 shape):

* The value in [01 [o]0 [o]source is assigned to [0o] [01 [01 dent,
i] 01] to01 dent, [0] [11 [O]dent, and [11 [11 [01 dent.

* The value in [o 01] o] []ource is assigned to o] [o01 [ldest,
11] [0] [11 dent, 10 [1] [11 dent, and [1] [1] [ildent.

4

/ May1993
Copyright- 1990-1993 Thinking Machines Corporation

'Ytd

)

Appendixes

.)

(

(

/

1

Appendix A

CM-200 C* Performance Hints

This appendix describes ways to improve the performance of CM-200 C* pro-
grams. In some cases, it repeats information included in the body of this guide;
in other cases (for example, the discussion of allocate_detailed_shape),
it presents information not discussed elsewhere in the guide.

A.1 Declarations

A.1.1 Use Scalar Data Types

If data is scalar, declare it as a regular C variable, so that it is stored on the front
end. In other words, do not store scalars in parallel variables.

A.1.2 Use the Smallest Data Type Possible

To save storage on the CM, use the smallest data types possible for parallel vari-
ables. For example, if the parallel variable is a flag, declare it as a bool. If it is
to have values only from -4 to 17, declare it as a signed char.

A.1.3 Declare float constants as floats

Declaring float constants as floats (that is, with the finalf) reduces the
number of conversions that the compiler must make, thereby speeding up the
program. For example,

)

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

-- -- ------------ ------

239

240 C*Programming Guide~at~a

float:ShapeA pl, p2;

pl p2 * 4.0f;

is better than writing the code with just 4.0".

A.2 Functions

A.2.1 Prototype Functions

Using ANSI function prototyping speeds up a program by reducing the number
of conversions. For example, a call to anunprototyped function with a char will
promote the argument to an int. The called function must then convert the ant
back to a char.

A.2.2 Use current instead of a Shape Name

4If a program is to be run with safety on, it is more efficient to define a function
to take a parallel variable of the current shape as an argument, rather than a paral-
lel variable of a specified shape. In the latter case, the compiler must take the
additional step of determining that the specified shape is current.

A.2.3 Use everywhere when All Positions Are Active

If a function contains statements that are to operate on all positions, regardless
of the context in which they are called, you may be able to increase performance
by enclosing the function's statements in an everywhere statement. The explic-
it use of everywhere lets the compiler use faster instructions that ignore the
context.

NOTE: This technique can also work with a program's main function.

4

May 1993
Copyright 1990-1993 Thinking Machines Corporation

C *Programming Guide240

~Appendix A. CM-20 C* Perfrmace Hints 241

A.2.4 Pass Parallel Variables by Reference

In function calls, pass a parallel variable by reference (that is, take its address and
pass the pointer) if passing the parallel variable by value is not required.

A.3 Operators

A.3.1 Avoid Parallel &&, II, and ?: Operators Where
Contextualization Is Not Necessary

As discussed in Chapter 5, the parallel versions of the &&, I I, and ?: operators
perform implicit contextualization. If you do not require this aspect of the opera-
tors' behavior, your code will run faster if you can avoid using them.

For example, if pl and f (p1) are known to be 0- or 1-valued, then

p2 p & f(pl);

) is much more efficient than

p2 - p && f(pl);

The former statement avoids contextualization, and it avoids doing a logical con-
version of its operands, because it assumes that the two operands have logical
values.

Similarly,

where ((pi < p2) & (p2 < p3))

is more efficient than a version that uses the logical AND operator. The "less-
than" relational expressions have logical values; therefore, the use of the logical
AND (and the resulting contextualization) is not required.

A.3.2 Avoid Promotion to ints by Assigning
to a Smaller Data Type

As discussed in Chapter 5, the compiler evaluates an expression at the precision
of the variable to which the expression is assigned, provided that the results are

May 1993

Copyright 0 1990-1993 Thinking Machines Corporation

Appenm~z A. CM-200 C * Performance Hints 241

the same as if standard ANSI promotion rules were followed. Otherwise, smaller
data types such as bools and chars are promoted to ints when used in expres-
sions. Therefore, explicitly assigning the result of an expression involving these
data types to a variable of the same data type will increase performance.

A.4 Communication

To get the best performance in programs in which parallel variables send values
to and receive values from other parallel variables, do the following:

1. If possible, put parallel variables that are to communicate in the same
shape.

2. Use grid communication functions instead of general communication
functions or the language features (like parallel left indexing) that are the
equivalent of general communication functions.

3. Use send operations instead of get operations for general v

communication.

4. If the program has known, stable patterns of communication that use one
axis more than another, use allocate_detailed_hape to weight
the axes.

Some of these points are covered in more detail below.

A.4.1 Use Grid Communication Functions instead of
General Communication Functions

As mentioned in Part III of this guide, grid communication is faster than general
communication. Therefore, your program will run faster if parallel variables that
are to communicate are in the same shape, and you use the grid communication
functions for send and get operations.

May 1993
Copyright @ 1990-1993 Thinking Machines Corporation

242 C * Programming Guide

- A.4.2 Use Send Operations Instead of Get Operations

For general communication, send operations are up to twice as fast as get opera-
tions, and use less storage. If possible, use communication functions and C* code
that perform send operations rather than get operations.

In grid communication, send operations and get operations have the same cost.

A.4.3 The allocate_detailed_shape Function

Typically, programs use the C* intrinsic function allocatehape to dynami-
cally allocate shapes. If, however, your program has mknown, stable patterns of
communication, you may be able to improve the performance of your program
by using the intrinsic function allocatedetailedshape instead; this func-
tion lets you weight the axes of the shape according to the relative frequency of
communication along the axes. C* can then lay out the shape on the CM to opti-
mize performance based on these weights.

Like allocate_shape, allocate detailed shape is overloaded In one

version, you use a variable arguments list to specify each dimension of the shape.
In the other, the information about the dimensions is included in an array that is
passed as an argument to the function; this format is useful if the program will
not know the rank until run time.

Include the header file <cm/cmtypes.h> when you call allocate_de-
tailed shape.

The variable-arguments format of the function is as follows:

CMC_Shape_t allocate_detailed_shape
shape *shapep,

int rank,

unsigned long length,

unsigned long weight,

CM_axis_order_t ordering,

unsigned long on_chip_bits,

unsigned long off_chip_bits, ...

where:

shapep is a pointer to a shape. The remaining arguments specify
) this shape, and the function returns this shape.

May 1993
Copyright 0 1990-1993 T7hbling Machines Corporation

Appndix A. CM-200 C * Perjfbrmance Hints 243

244 C* Programming Guide

rank specifies the number of dimensions in the shape.

length is the number of positions along axis 0.

weight is a number that indicates the relative frequency of com-
munication along the axis. For example, weights of 1 for
axis 0 and 2 for axis 1 specify that communication occurs
about half as often along axis 0. Only the relative values
of the weight arguments for the different axes matter; for
example, weights of 5 for axis 0 and 10 for axis 1 specify
the same communication as weights of 1 and 2, or 3 and
6. Specifying the same values for different axes indicates
that they have the same level of communication.

ordering specifies how coordinates are mapped onto physical CM
processors for the axis. There are three possible values:
CM news order, C_send_order, and CMfb_order.

The value cM news_order specifies the usual mapping,
in which positions with adjacent coordinates are in fact
represented in neighboring processors on the CM.
Specifying any other order slows down grid 4
communication considerably.

The value CM send order specifies that a position with
a lower coordinate than another position also has a
smaller send address. This ordering is rare, but it is used
in certain applications.

Use the value CM_fb_ order only if your shape is an
image buffer and is to be moved to a framebuffer. For
details, see Chapter 1 of the Generic Display Interface
Reference Manualfor C*.

You can specify a different ordering for each axis.

onchipbits

offchipbits
can be used to specify the mapping of positions to physi-

cal processors only if the values of the weight argument
for all axes are the same. Specify 0 for the value of each
of these arguments if you use different values for the
weight argument. For information on how to specify
other values for onchipbits and off_chip_bits,

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

consult the description of the create-detailed-geo-
metry instruction in the Paris Reference Manual.

Include values for length, weight, ordering, on_chip_bits, and
off_chip_bits for as many axes as are specified by rank.

The array format of allocated_detailed_shape is as follows:

CMC_Shape_t allocate_detailed_shape

shape *shape_ptr

int rank,

CM_axis_descriptor_t axes[]

where axes is an array that contains descriptors for each axis in the shape to be
allocated. You can fill in the information about each axis by calling the C* library
function fill_axis_descriptor, which is defined as follows:

void fill_axis_descriptor (

CMaxis_descriptor_t axis,
unsigned long length,

unsigned long weight,

) CM_axis_order_t ordering,
unsigned long on_chip_bits,

unsigned long off_chip_bits

where axis is an array element that corresponds to the axis being described, and
the remaining arguments are defined as above.

As an intrinsic function, allocate_detailed_shape can be used as an in-
itializer at file scope. Thus, you can do this:

#include <cm/cmtypes.h>

shape s = allocate_detailed_shape(&s, 2, 256, 2,

CMnews order, 0, 0, 512, 1,

CM news order, 0, 0);

This statement fully specifies a 256-by-512 shape , for which you expect com-
munication to occur twice as often along axis 0 as along axis 1.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Appendv A. CM-200 C * Performance Hints 245

246 C......- Programng'-g Gd--
4

A.5 Parallel Right Indexing

Parallel right indexing, as described in Chapter 7, becomes less efficient as the
range of the array indexes increases.

For users familiar with Paris: The performance of parallel right indexing is com-
parable to aref and aset calls, rather than aref 32 and aset32 calls.

A.6 Paris

Although generally not necessary, it may be possible to improve performance by
calling Paris, the CM parallel instruction set, from within a C* program. For de-
tails on how to do this, see Chapter 2 of the CM-200 C* User 's Guide.

4

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

246 C* Programming Guide

Appendix B

Using allocate_detailed_shape
for the CM-5

The CM-5's run-time system distributes the data for parallel variables among the
processors (either nodes or vector units) of the partition on which the program
is running. Parallel variables that have the same shape have their data distributed
so that their elements are organized identically among and within the processors;
this ensures that elemental operations don't require communication. The "lay-

) out" defines this organization; it is a property of the shape. Two shapes can have
the same rank and dimensions but different layouts (this is why exchanging data
between parallel variables of different shapes may require communication).

C* hides from the user the details of how shapes are actually laid out on a CM-5.1

You may be able to improve your program's performance, however, by using the
allocate_detailed_shape function to change a shape's physical layout
from the default layout provided by the run-time system. You may also want to
use allocate_etailed_shape if you are calling CM Fortran routines, and
you need to have a shape's layout conform with a CM Fortran array layout.

Sophisticated use of allocate_detailed_shape requires an understanding
of how the CM-5 run-time system maps shapes onto the nodes or vector units, and
the implications of changing the default mapping. Sections B.1 through B.4 pro-
vide the necessary background information. If you already understand the issues
involved, you can go directly to Section B.5, where we describe functions that
you can call to determine a shape's layout, or to Section B.6, where we explain
how to call allocate_detailed_shape.

1. Although we talk about "laying out a shape" in this appendix, note that what the run-time system really
does is allocate memory for parallel variables of a given shape on the nodes or vector units.

May 1993 247
Copyright 0 1990-1993 Thinking Machines Corporation

248 C* Programming Guide~rrxmsl-lIilI

B.1 The Default Layout

This section describes how the current implementation of the run-time system
lays out shapes on a CM-5 with vector units. Section B.2 discusses how shapes
are laid out on a CM-5 without vector units. These procedures may change in
future implementations.

Let's say you have a 2-dimensional shape with 8 positions along axis 0 and 12
positions along axis 1, and you are going to run your program on a 16-vector-unit
(four-node) partition of a CM-5. How will the run-time system determine how
to lay out the positions of the shape on the four nodes? Understanding how it
does this requires understanding five concepts:

* physical grids

* garbage positions

* subgrids

* axis sequence

* subgrid sequence

B.1,,1 Physical Grids

When laying out a shape, the run-time system arranges the physical vector units
into a grid whose rank is the same as the rank of the shape. The total number of
vector units in a partition is always a power of two; therefore, the number of
vector units along each axis of the physical grid must be a power of two. Thus,
for our example, the run-time system has these choices for arranging the 16 vec-
tor units into a 2-dimensional physical grid: grids of [4][4], [8][2], [2][8],
[16][1], and [11[16].

B.1.2 Garbage Positions

The run-time system tries to divide up the shape's positions equally among the
vector units. In doing so, it follows these rules:

* Each vector unit must receive the same number of positions.

* The number of positions per vector unit must be a multiple of 8.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

C* Programming Guide248

Appendix B. Usgaoat.p for the' CM-S249
I

These rules also apply when you use allocate_detailedshape to lay out
the shape yourself.

Note, however, that it isn't possible to follow these rules in laying out an [8][12]
shape on 16 vector units; each vector unit could receive the same number of posi-
tions, but the number of positions would not be a multiple of 8.

In such a case, the run-time system internally uses a layout with larger dimen-
sions along one or more axes, so that the rules can be followed. It then lays out
this new shape on the vector units. The actual shape can then be stored within
this larger layout, leaving unused positions along the extended axes. These
unused positions are referred to as garbage positions.

The run-time system always adds garbage positions to the high end of an axis,
and adds as few garbage positions as possible. For our shape of [8][12] positions,
the rumn-time system would pad axis 1 to make an underlying shape of [8][16].
Its layout on a physical grid of [2][8] is shown in Figure 94.

Figure 94. An [8][12] shape laid out on a [2][8] physical grid.

Typically you don't need to be aware that the garbage positions exist. You do
need to take these positions into account, however, when determining how you
want to lay out your shape using allocate_detailed_shape.

B.1.3 Subgrids

As we mentioned above, the run-time system divides the shape into a number of
sections, each section corresponding to a vector unit. These sections are called
subgrids.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

a garbage
axis 1 position

ai,~ 11sO ~~11
~111111

Appeniix B. Using allocate~ detaije4_shpejfor the CM-5 249

250 C*---Programming-------Guide

Note the layout requirements we have discussed so far:

· The physical grid must have a power-of-2 number of vector units along
each dimension.

* Each vector unit must contain a multiple of 8 positions.

* Each vector must contain the same number of positions - in other words,
the shape's subgrid must be the same size on each vector unit.

In the case of our sample [8][12]shape, padded to [8][16], we will have 8 posi-
tions per vector unit, but will they be laid out as a [4]12] subgrid, as shown in
Figure 94, or, for example, as a [1][8] subgrid? The [11][8] layout implies a physi-
cal grid of [8][2], as shown in Figure 95.

axis 1

'IIC'IT'

I I i I I I I

IlillilloEImioEEEIrOJ

I'1' I ' 1I

I I

* garbage
position

I I I I

II I _~I
I IIED~

i i i I E -m

Figure 95. An [8][12] shape laid out on an [8][2] physical grid.

The basic process that the run-time system follows is to minimize the size of the
subgrid. In other words, it uses as few garbage positions as possible; see Section
B.1.2. This doesn't help us choose between the [2][4] and [1][8] subgrids, which
both have the same number of garbage positions. It does, however, eliminate sub-
grids that use fewer than all 16 vector units. In practice, the run-time system
chooses a layout that uses fewer than all of the vector units only when the number
of positions in the shape is small relative to the number of vector units on which
the program is to run.

To determine which layout the run-time system actually uses, you include in your
program the appropriate functions discussed in Section B.5.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

axis O
4

Ir I

250 C* Programming Guide

AppendixB.Usialae I frteC-

If you prefer a different subgrid size from the one that the run-time system uses,
you can use allocate_detailedshape to specify different lengths for the
subgrid axes, as long as the resulting subgrid meets the requirements listed at the
beginning of this section.

Note that, given the dimensions of a shape, the physical grid determines the sub-
grid, and vice versa - if you choose to minimize the number of garbage
positions. You can specify either the physical grid or the subgrid when you use
allocatedetailedshape.

B.1.4 Axis Sequence

One piece of information left out of the layouts shown in Figure 94 and
Figure 95 is the numbering of the vector units within the physical grid. In the
[2][8] physical grid layout, for example, Figure 96 shows two ways in which the
vector units could be numbered.

Figure 96. Two possible vector-unit numberings.

Vector units 0-3 are on node 0, vector units 4-7 are on node 1, etc.

In the example on the top in Figure 96, the vector-unit numbers increase fastest
(that is, by the smallest interval) along axis 0; we call this an axis sequence of
(0, 1) - the first axis in the sequence is the one that varies fastest. In the example
on the bottom in Figure 96, they increase fastest along axis 1; this corresponds
to an axis sequence of (1, 0).

)

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

) axis 1

0 2 4 6 8 10 12 14axs
0 1 3 5 7 9 11 13 15

or

axis I

0 1 2 3 4 5 6 7axs
0 8 9 10 11 12 13 14 15

Appendix B. Using allocate~_Jtaileishape for the CM-5 251

By default for C*, the current implementation of the run-time system lays out
multidimensional shapes so that the vector-unit numbers vary fastest along the
highest-numbered axis - that is, it would choose the axis sequence of (1, O0) in
our example. You can choose a different axis sequence via allo-
cated_detailed_shape.

The axis sequence used is the only feature of the vector-unit numbering that you
can currently control.

B.1.5 Subgrid Sequence

The final issue with regard to the default layout for our sample shape is how the
positions in the subgrid are arranged into linear order in the memory of a vector
unit. This is known as the subgrid sequence.

If you have a subgrid whose dimensions are [4][2], there are two possible layouts
of the positions in vector-unit memory:

[] [] [o] [10o]
[0o] 1] [0] [
[1] [o3 [2] [o]
[1] [1] or [3] [0]

[2] [0] [0] [1]
[2] [[1 [1] [1]
[3] [0] [2] [1]
[3] [1] [3] [1]

By default for C*, the current implementation of the run-time system chooses the
layout on the left; the highest-numbered axis varies fastest (that is, the adjacent
subgrid positions along the highest-numbered axis are contiguous in memory).

You can use allocate_detailed_ shape to choose the other subgrid
sequence, in which positions along the lowest-numbered axis are contiguous in
memory.

B.1.6 Putting It All Together

It turns out that the run-time system chooses a [2][8] physical grid for our [8][12]
shape. Given the information covered so far, we can now show exacty how the
run-time system would lay out the shape using this physical grid. S Figure 97. 4

May 1993
Copyright C 1990-1993 Thinking Machines Corporation

252 C *Programming Guide

ApeIx B. UgaeailesapfoheC- S 253

Figure 97. Default layout of an [8][12] shape on 16 vector units.

Note that the padding occurs in vector units 6, 7, 14, and 15; other layouts would
put the padding in other vector units.

Note these general performance rules for vector units:

* Data movement within a vector unit is faster than data movement between
vector units. Thus, in the default, data movement would be faster along
axis 1.

• Data movement within the vector units of a node is faster than data move-
ment across nodes.

B.2 Layout without Vector Units

If your program is not going to use the CM-S's vector units, the layout is done
in terms of nodes instead of vector units. The layout rules are basically the same,

except that the rule that the subgrid must be a multiple of 8 positions does not
apply.

If the run-time system were to lay out our sample [8][12] shape on 4 nodes, it

could therefore choose among the physical grids and subgrids shown in
) Figure 98.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

VU 0 7
[00] [0][2] [0][4] [0161 0118]] [0[10] x]Ix] [xx]
[0oll] [0[3] [01 5] (7n] [0] [0(9][11 [x]x] x]x]
[I[0] [11[2] [1][4] [1][6 [1][81] [1l10] [[x] [x]ix]
[111i] (1][]3 [] [l1f7 [1] [1]11] [x]lx] [xl[x]
[2][01 [2(2] (2][4 (2]6] (2]1181 [2x[10] [lx] [xax]
(2[11 [213] [2 5] [2](71 12191 [2111] xl[x] IxIX]
t[330] [[3][2 [33M 4 [3][6 [3][8] 3][10] [xix] ix]ix]
t[3[1] [3]31 [31 [33171] (31[11] [xl[x] Ix]ix]

[41[0] 14]2] [4[4] [436] 4][3 [414]110] [lx]x] [Xx]
[4][1] [4][3] [4][5] [4][71 [4][9] [4][11] [xl[x] 1XIx]
[5]0 51[21 s]] [556 [5][8] 5[10] [xlEx] [xlx]
[5][l] [5][3] [5][5 [5]7] 5]t [5][11] [x]] [x]3[]
[61(01 [6121] [6(14] [6(63 [6181 [6][10] [xl[x] (X][x]
[6][1] [6][3] (635 [6][71 6] 61[91 [6][11] [xl[x] 1]x]
(71l0] 7[21 [7N41 (7361 (71(8] l70 x tx] (x(x]
T171] 7v[3] 7M[5 [77J [7M(91] [711] [xl[x] (x]Ix]

8 15

[x][x] - garbage data

Appendix A. Using allocate detile4 sha fr h C- 253

254.. C_ P: G

I

subgrid [4][61
physical grid [2][2]

II I IIIIII

IIII I 11l 1

subgrid [2][12]
physical grid [4][1] physical grid [11(4]physical grid [1][4]

Figure 98. Subgrids and physical grids for an [8][121 shape on four nodes

Note that no padding is required, because the 96 positions of the shape divide up
evenly into 24 per subgrid.

The run-time system in this case would choose the [4][6] subgrid. The actual
default layout is shown in Figure 99.

B.3 Controlling Subgrid Layout: Using Serial Axes
and Weighting Axes

As we mentioned earlier, allocate_detailed_shape lets you control the
parameters that the run-time system uses in laying out a shape (subgrid lengths,
axis sequence, etc.). The allocate_detailed_shape function provides two
additional mechanisms for controlling subgrid layout:

* serial axes

* weighting of axes

We discuss serial axes below, and weighting of axes in Section B.3.2.

('t

4

May 1993
Copyright @ 1990-1993 Thinking Machines Corporation

.

4 l-
B

C* Programming Guide254

Appendix B. Using allocate_detailed shape for the CM-5

position
[101
[01(1]
[011
[0][3]

[o01][[o
[1111

[1][3]
[11]4]

1[211

[2][41
[1[51
]31[0]
131[1]

1[4]

31[51

[4101]
[4[1]
[4111
[41]1
[41[4]
[4151
[51[01
[5[1]
[51[2]
[51]31
[51[4]

node 2 [6][0
[611
[612]
[6](31[]
[6][4]
[6151
[710]

712
[7[31
[71141
151

[01[61

[0183]
[01[9]
01(101

[1101]

i118]

node 1 mf]p
[2][17]
t2]P[][21T](21[9]
[2][10]
[2111]
[3][6]

[3][81
[111]
[31(111

[41][6
[410
[4][81

[4][101
[4][111
[51][6

[51[01

node 3 "[1]

(6171
[61(][[6I91
[6][10]
[6][11]
[761

111
[11]

Figure 99. Default layout of an [8][12] shape on four nodes.

B.3.1 Serial Axes

The allocate detailed sha function allows you to specify an axis as

serial. Typically you would do this to create parallel variables that conform to

CM Fortan arrays that contain a serial axis.

Specifying an axis as serial has two effects:

All positions along the axis will be located on the same vector unit. (This
layout is useful if communication tends to occur along just one axis, since
communication is faster within a vector unit than between vector units.)

255

)

)

May 1993
Copyright @ 1990-1993 Thinking Machines Corporation

---- ------- ----------

.

256 C Programmingiil N --- Guide - ...

For example, if your shape is [3][8][12] and you specify that axis 0 is to
be serial, all positions along axis 0 would be located on the same vector
unit; the physical grid of the remaining two axes is the same as it would
be if axis 0 didn't exist - see Figure 97. One result of this is that the run-
time system never adds garbage positions to a serial axis; it always
satisfies the requirements for garbage positions in the non-serial axes.

The positions along a serial axis in the current implementation vary more
slowly than positions along any non-serial axis - that is, they must be
furthest away from each other in memory. For example, if you have a sub-
grid that is [2][3][4], by default the order of positions in memory is:

[o [o] [o]
[o] [o] [1
[0] [0o] [2]
[0] [0] [3]
[0] [1] [0]
[o] [1] [1]
[o0] 1] [2]

[0] [1] [3]
[0o [2] [0o]

[0] [2] [1] etc.

If you were to specify that axis 1 is serial, the sequence would change to:

[o0] [] [0]
[o] [] [1]
[0] [0o] [2]
[o0] [0o] [3]

[1] [0] [0]
[1] [0] [1]
[1] [0o] [2]
[1] [0o] [3]

[0] [1] [1] etc.

Axis 1 now varies most slowly. If you have more than one serial axis, by
default the highest-numbered axis varies fastest, just as it does for
non-serial axes. In effect, serial and non-serial axes are ordered indepen-
dently.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

C* Pigramming Guide256

Appendix BB~~~~~~~~~B U8s~~sssss~~~sineslrsrs~~~~~~~~~~~~~~~r aoaefr.the.CS2
B.3.2 Weighting Axes

The allocate_detailedshape function also lets you control layout by dif-
ferentially weighting the shape axes.

Weighting one axis more heavily than another axis tells the run-time system that
more communication is to take place along the more heavily weighted axis. The
run-time system therefore tries to localize more of the positions along that axis
within a node or vector unit, thereby reducing the cost of the communication
along that axis. In our example of laying out a shape that is [8][12] on 16 vector
units, weighting axis 1 would tend to result in a [1][8] subgrid. If you have more
than two dimensions, you can assign different weights to each dimension, or
assign the same weight to two or more of the dimensions, causing the run-time
system to treat them similarly.

Note that the run-time system will not necessarily be able to lay out the shape
to completely reflect the weights you assign to the axes. In the current imple-
mentation, once it has chosen a subgrid with the fewest positions, it uses the
weights to trade off factors of two in the lengths of subgrid axes against factors
of two in the length of physical-grid axes, attempting to give axes with higher
weights a longer subgrid length and a smaller physical-grid length.

By default, the run-time system weights all axes evenly.

B.4 Performance Issues

The main reason to use allocate_detailed_shape is to improve perfor-
mance over what you can obtain using the default layout chosen for a shape by
the run-time system. This section summarizes the performance issues you should
consider (most of these issues have already been mentioned in previous
sections).

Note that the discussion here refers to vector units, but applies also to programs
running on CM-Ss without vector units.

,..)

May 1993
Copyright 1990-1993 Thinking Machines Corporation

Appendix A. Using aocatee_detaie4_;qpefbr the CM-5 257

258 C'a Pmgramming Guide

4

B.4.1 Effect of Subgrid Length and Physical Grid

As we discussed above, the run-time system by default chooses the smallest sub-
grid size. This is the most efficient size for operations that are internal to a vector
unit - that is, operations that don't involve communication between vector
units.

When you lengthen a subgrid axis, you improve the efficiency of communication
along that axis at the expense of communication along other axes; you also
decrease the overall efficiency of operations within the vector unit.

Let's look at the communication issue in more detail. Assume that we're using
a subgrid size of [8][4] and we want to do a grid-communication operation of
distance 1 along axis 1 - that is, each element of a parallel variable sends a
value to an element that is one coordinate higher along axis 1. For example:

totorus dim(&dest, source, 1, 1);

Figure 100 shows the subgrids on two vector units; each vector unit moves 8
values to the next vector unit, and 24 values within the vector unit.

axis O

axis 1

.XI r%
'I I I

' I I

(within a
vector unit

"N , between
\ N vector units

VUVU VU VU

4

Figure 100. On-VU and off-VU data movement
for a NEWS operation along axis 1.

In general, the number of off-VU moves in an operation like this is equal to the
total number of positions in the subgrid divided by the subgrid length of the axis
along which the communication is taking place (32/4 - 8); this value is referred
to as the subgrid-orthogonal-length.

May 1993
Copyright) 1990-1993 Thinking Machines Corporation

4

--
N

;\

\-e-e
ve

ve

258 C* Programming Guide

I

f.--fI i r rt I

re *

lk
,r

-

. 1

Appendix B. Using allocate....detaoied..shpfote C-S 25s- -

The number of moves within the vector unit is the total number of positions in
the subgrid minus the subgrid-orthogonal-length (32-8 - 24). This number is
roughly proportional to the subgrid size. As long as the subgrid size stays
roughly constant, changing the layout does not greatly affect the cost of these
on-VU moves. Decreasing the subgrid-orthogonal-length of a subgrid axis will,
however, result in better communication performance along the axis.

B.4.2 Effect of Serial Axes

Making an axis serial guarantees that all positions along the axis are on the same
vector unit- that is, no off-VU data movement is required. This means that a
serial axis will have optimal within-VU performance, once again at the expense
of communication along other axes.

But beware that, since all of the other constraints on shape layout must be satis-
fied by the non-serial axes, a shape with only a small number of positions along
the non-serial axes can end up with an inefficient layout, because it will require
a large number of garbage positions.

B.4.3 Effect of Garbage Positions

If a shape has garbage positions, they are not actually part of the shape's data,
but must be taken into account by grid communication functions. Often this
requires extra work to move data "over" the garbage locations, thus decreasing
efficiency. You should therefore avoid choosing a shape or a subgrid size that
requires the creation of garbage positions along an axis that will be used heavily
for communication.

For other communication operations, sometimes the existence of any garbage
positions in the shape will add overhead.

For elemental operations, the only overhead that garbage positions add is that
computations are carried out for those positions, even though the results are not
used.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Appendix B. Using aocatetc.AtWtae4_shapejbri the CM-5 259

260 C* Programming Guide_ PR

B.5 Determining a Shape's Layout

C* provides several functions you can call to find out how the nm-time system
actually laid out a shape. You can use these functions to deternnmine if you should
use allocate_detailed_shape to specify a different layout.

Include the header file <csshape .h> when you call any of these functions.

The functions are defined as follows:

CMC_axis order_t CMC_shape axis_ordering(shape s, int axis);
int CMCshape_physical_axis_mask(shape s, int axis);

int CMC_shape_subgrid_axis_length(shape s, int axis);
int CMC_shape_subgrid_axis_sequence(shape s, int axis);
int CMC_shape_subgrid_size(shape s);

int CMC shape_subgrid_axis_increment(shape s, int axis);
int CMC_shape_subgrid_axis_orthogonal length(shape s,

int axis);
int CMC shape_subgrid_axis_outer_increment(shape s, int axis);
int CMC_shape_subgrid_axis_oute_count (shape s, int axis);

CMC_shape_axis_ordering returns CMC _newsorder if the specified axis
is in NEWS order (the standard order), CMCserial_order if it's in serial order.

CMC_hape_physical_axis_mask returns an integer that represents the
physical mask for the specified axis. See Section B.6 for a discussion of physical
masks.

MCshhape _subgrid_axislength returns the subgrid length of the speci-
fied axis.

CMC_shape_subgrid_axis_sequence returns an integer that represents the
specified axis's place in the sequence of axes within a subgrid.

CMC_shape_subgrid_size returns the total number of positions in the
subgrid for the specified shape.

CMC_shape_subgrid_axis_increment returns an integer representing how
many positions in memory separate consecutive subgrid positions along the spe-
cified axis. This is calculated by multiplying the subgrid lengths of all axes that
have smaller subgrid axis increments (that is, the axes with lower subgrid
sequences). If the positions along the subgrid axis are contiguous in memory, the
function returns 1.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

260 C* Programming Guick

CMC_shape_subgrid orthogonal_length returns the subgrid-orthogonal-
length for the specified axis. This is the total number of positions in the subgrid
divided by the subgrid length of the axis.

COC_shape_subgrid axis_outer_increment returns the product of the
subgrid axis increment and the subgrid axis length for the specified axis.

CMC_shape_subgrid _axis_outer_count returns the product of the subgrid
lengths of all axes that have larger subgrid axis increments (that is, axes with
higher subgrid sequences) than the axis you specify.

B.6 Using allocate_detailed_shape

This section describes how to specify a layout using allocate_detailed
shape.

Include the header file <csshape.h> when you call allocate_detailed_

shape.

The format is as follows:

shape allocate detailed shape (

shape *s,

int rank,
unsigned long extents [],
unsigned long weights[],

CMCaxis_order_t axisorderings[],
int physical masks[],

int subgrid_lengths[],

int subgridsequence[]);

where:

s is a pointer to a shape. The remaining arguments specify
this shape, and the function returns it. You must provide
a value for this argument.

rank specifies the number of dimensions in the shape. You
must provide a value for this argument. For the remaining
arguments, you supply pointers to rank elements, one for
each dimension, starting with axis 0.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Appendix A. Using allocate_detailei sha or the CM-5 261

extents specifies the number of positions along each axis of the
shape. You must provide values for this argument.

weights specifies the relative frequency of communication along
each axis; see Section B.3.2. For example, weights of 1
for axis 0 and 2 for axis 1 specify that communication
occurs about half as often along axis 0. Only the relative
values of the weights matter, for example, weights of 5
for axis 0 and 10 for axis 1 specify the same communica-
tion as weights of 1 and 2. Specifying the same values for
different axes indicates that they have the same level of
communication.

The weights values are used only if you specify neither
the physical_masks nor the subgrid_lengths argu-
ment.

Pass NULL instead of the weights array to use the default
weights, which are 1 for each axis.

axis_orderings
specifies the ordering of each axis, either
CMC_news_order or CMC_serial_order. Specify
CMC_news_order to get the standard ordering; specify
CMC serial order to make the axis serial. Pass NULL
instead of this array to specify the default ordering, which
is CMC_news_order ordering for each dimension.

physical masks

specifies the mapping of positions to physical nodes or
vector units - that is, it specifies the physical grid and
axis sequence; see Sections B.1.1 and B.1.4. See Section
B.6.1, below, for an explanation of how to specify the
physical masks.

You can pass NtLL instead of an array, in which case the
values for this argument are automatically determined
from the extents and subgrid lengths; see Section B.6.1.
If subgrid_lengths is also NULL, the weights argu-
ment is used to define the shape.

subgridlengths
specifies the subgrid length for each axis; see Section
B.1.3.

May 1993
Copyright Q 1990-1993 Thinking Machines Corporation

262 C* P~ogramming Guide

You can pass NULL instead of an array, in which case the
subgrid lengths will be determined from the extents and
the physical masks (as described in Section B.6.1), or
from the weights if physical_masks is also NULL.

subgrid_sequence

specifies the sequence of axes within a subgrid; see Sec-
tion B.1.5. The default is for the highest-numbered axis
to vary fastest (that is, the sequence is the reverse of the
axis numbers). You can also specify that the lowest-num-
bered axis is to vary fastest (that is, the sequence is 0, 1,
2,...). In either case, serial axes must be last in the
sequence. Other sequences are not allowed. For example,
specify [0, 2, 3, 11 if axis 1 is serial and the lowest-
numbered dimension is to vary fastest.

B.6.1 In More Detail

The allocate_detailed_shape function provides you with several different
options for specifying a shape's layout. The easiest option is to specify weights
for the different axes, and let the run-time system figure out the appropriate lay-

out. The most complete and flexible method is to use the physical_masks and
subgrid_lengths arguments to specify the exact layout you want.

Note that the discussion of the physical_masks argument in this section

assumes that you are compiling for a CM-5 with vector units. If you are not com-
piling for the vector units, the use of the argument is the same, except that it
applies to nodes instead of vector units.

To understand the physical_masks argument, it is useful to review the concept
of a physical grid. The physical grid of a shape is the arrangement of vector units;
it has one position for each VU, arranged in a grid whose rank is the same as that
of the shape. The dimensions of the physical grid are each powers of two, since
there must be a power-of-two number of VUs in the partition.

If axis i of the physical grid has length d4, then we need log2(d4) bits to represent
a position in the physical grid along this axis. The physical mask for the axis is
a mask with log2(d) bits set. When we number all of the VUs linearly, these bits
are the ones that determine each VU's position along axis i in the physical grid.
We call this linear numbering the physical address of the VU.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Appendix B. Using aocatiedAtaile shaf t C- 263

264__ C*_______ Progra__I Immin Ii de_ _

The vector units along the axis containing the least significant bit in the mask are
contiguous. Also, in the current implementation, the bits for any one axis must
be contiguous.

Let's assume we are going to run a program on 32 vector units, and we want a
physical grid that is [4][8], as shown in Figure 101.

Eigure 101. A physical grid with a physical_masks argument of [3, 28].

We would represent the physical address of each of the 32 vector units with a
number between 0 and 32; this requires 5 bits:

bbbbb
MSB LSB

To specify a [4][8] physical grid:

* Axis 0 (4 vector units) requires the lowest 2 bits of the mask because the
vector units along this axis are contiguous; its physical_masks value is
therefore 3:

00011
MSB LSB

* Axis 1 (8 vector units) requires bits 3, 4, and 5 of the mask; bits 0 and 1
are set to 0. Its physical_masks value is therefore 28:

11100
XSB LSB

If you want the vector units along axis 1 to be contiguous, the masks would be:

axis 0 = 11000 axis 1 = 00111

or [24, 7].

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

$

vector unit axis 1
number'-

0 4 8 1216 20 24 28

1 $ 9 13 17 21 2529
axisO

2 6 10 14 18 22 26 30

3 7 1115 19 2327 31

4

C* Programming Guide264

Note that the least significant bits of the physical address denote the four vector
units within a node. Since communication within a node is more efficient than
communication between nodes, axes to which these two bits are assigned can be
more efficient directions for communication.

What if we want to maximize the speed of communication along axis 0? To do
that, we could allocate all the bits of the physical mask to axis 1. This would
create these masks:

axis 0 = 00000 axis 1 = 11111

or [0, 31]. Positions along axis 0 would be on the same vector unit, and perfor-
mance would be best along that axis.

If we are running our program on 64 vector units and want a physical grid of
[8][8], both axes require three bits. But note that the bit mask lets us specify the
axis sequence:

To make vector units along axis 0 contiguous, specify axis 0 in the
low-order bits:

000111

and axis 1 in the high-order bits:

111000

or [7, 56].

To make vector units along axis 1 contiguous, reverse the masks: [56, 7].

Note these constraints in the current implementation for specifying the physical
masks:

* Each physical mask must represent a contiguous set of bits. For example,
a mask of 5 (101 in binary) is illegal.

* The mask for one axis must not use any bits used by another axis. For
example, masks of 7 (binary 0111) and 12 (binary 1100) are illegal incom-
bination, because both use bit 3.

* The sum of the masks must use all bits 0 through n, where n is less than
or equal to the total number of bits that represent the vector units on which
the program will run. For example, if you are going to run on 32 vector
units, you can use all five bits, or the lowest four bits, or the lowest three
bits, and so on. You can't use only the highest four bits. Typically the sum

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Appendix A. Using allocato-detaileeshape for the CM-5 265

266.. C*- Programmings: GuideB-~:~7!7-Z:T Y'-'-~~:~::~ ::~ :--
should be equal to the total number of bits, except for very small shapes,
which don't use all of the vector units.

If you use less than the total number of bits, the shape will use less than
the total number of vector units; this is generally not a good idea.

A serial axis must have a physical mask of 0.

Now let's consider how the physical mask works in conjunction with the subgrid
length.

If you specify values for the physical_masks argument but omit the sub-
grid lengths argument (by passing a NULL value), allocate_detailed_

shape will cause the appropriate subgrid lengths to be used. It calculates the
subgrid length for an axis by dividing the total length of the shape axis by the
length of the corresponding physical axis specified by the mask If necessary, it
rounds up to accommodate the whole axis.

For example, if you have a shape that is [64][50] and you specify a physical grid
that is [4][8], the default subgrid lengths will be [16][7]; any other subgrid
lengths would either be illegal (because the values were too small, and therefore
didn't evenly divide the axis), or cause memory to be unused unnecessarily 4
(because the values were too large).

Similarly, if you specify the subgrid lengths and omit the physical_masks

argument, allocate_detailedshape calculates the appropriate physical
grid by dividing each shape axis by the subgrid length for that axis. It rounds up
to the next power of 2 if necessary.

For example, if the shape is [32][128] and the subgrid lengths are [161[16], the
physical grid will be [2][8]. If the shape is [34][128] and the subgrid lengths are
[16][16], the physical grid will be [4][8].

If you specify subgrid lengths but pass NULL for the physical_masks. argu-
ment, the lowest-numbered axis varies fastest; note that this is different from the
default run-time system behavior.

If your shape requires garbage positions, allocatedetailed shape pro-
vides the appropriate number required per axis.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

C*C Programming Guide266

B.6.2 Example

The program below can be used to show the difference in speed of communica-
tion between the default layout and one specified via a 11 o c a ted_
detailed_shape. The call to allocate_detailed_shape allocates all the

bits of the physical mask to axis 1, and specifies a physical mask of 0 for axis

O; this maximizes communication performance along axis 0, at the expense of

performance along axis 1.

#include <cscomm.h>

#include <cm/timers.h>
#include <stdio.h>

void time_grid(void)

{
double:current a, b;

int axis, i;

for(axis 0; axis < rankof(current); ++axis)

CM timer clear(0);

CM timer start(0);

for(i = 0; i < 20; ++i)

from torusdim(&b, &a,

sizeof(double:current), axis, 1);

}

CM timerstop(0);

printf ("Timings for axis %d:\n", axis);

CMtimer_print(0);

main()

{
shape ordinary, detailed;

unsigned long extents[2];

int physicalmasks[2];

extents[0] = 2048;

extents[1] - 2048;

physicalmasks[0] 0;

physical masks[l] = positionsof (physical) - 1;

9 ordinary = allocate_shape(&ordinary, 2, extents);

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Appendix RB Using allocate-detaile4_shape for the CM-5 267

detailed - allocate_detailed_shape(&detailed, 2, extents,

NULL, /* weights */
NULL, /* axis orderings */

physical masks, /* physical masks */
NULL, /* subgrid lengths */

NULL); /* subgrid sequences */

with (ordinary)

{
printf("Ordinary layout:\n");

time_grid();

printf-("Detailed layout:\n");

time_grid();

Note the use of positionsof (physical) - 1 to specify the physical mask
for axis 1. This makes the program portable among different-size partitions, and
between CM-Ss with and without vector units. 4
Here is the output from a sample run of this program on a 32-node partition with
vector units:

Ordinary layout:

Timings for axis 0:

Starts: 1

CM Elapsed time: 0.146 seconds.

CM busy Time: 0.141 seconds.

Timings for axis 1:

Starts: 1

CM Elapsed time: 0.160 seconds.

CM busy Time: 0.155 seconds.

Detailed layout:
Timings for axis 0:

Starts: 1

CM Elapsed time: 0.127 seconds.

CM busy Time: 0.121 seconds.
Timings for axis 1:

Starts: 1

CM Elapsed time: 0.333 seconds.

CM busy Time: 0.325 seconds.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

268 C* Progamming Guide

BA siaioaelda iledmshape for the CM-S 269

(Your results, of course, may vary.)

Note that the times for the fromtorusdim calls along axis 0 are somewhat
faster for shape detailed than for shape ordinary. Timings along axis 1,
however, are much slower along axis 1 for shape detailed than for shape
ordinary. This shows the effect of using allocate_detailedshape. The
default layout provides superior performance in the general case, where there is
communication along both axes. The detailed layout provides better performance
for one case (communication along axis 0), but its performance in the general
case is much worse than that provided by the default layout.

May 1993
Copyright @ 1990-1993 Thinking Machines Corporation

0
Appendix A. Using aIlocatee-*taile4_;hpefr the CM-5 269

4

4

4

0

Appendix C

Memory Layout on the CM-5

This appendix describes the memory layout used by CM-5 C*, and explains how
to access physical memory characteristics of parallel variables. This information
is not ordinarily necessary for C* programming. It is provided for advanced C*
users who may need the information to mix their C* code with low-level code,
such as C/DPEAC, or to perform special manipulation of data through shape
aliasing, as described in Section C.4.

The representation of parallel variables is very much implementation-dependent
and could change in future releases of CM-S C*. In many cases, making use of
the information provided in this appendix requires a detailed understanding of
how the C* memory layout mechanisms work For the sake of reliable and
portable programming, we urge you to avoid depending on these mechanisms.

Note that we describe memory layout on vector units. The discussion also applies
to the nodes if you use the -sparc option to compile for execution on the nodes.

C.1 Memory Layout of Parallel Variables

Appendix B describes how the shape layout mechanism works and describes
how to access specific layout information for a shape. This section reviews some
of the concepts from that appendix and extends the discussion to specific
memory layout issues for parallel variables.

A C* parallel variable on the CM-5 has the same amount of memory and the
same address in each vector unit. In general, a parallel variable may have more
than one value in each VU. The parallel variable's shape determines the exact
layout of the variable's positions on the VUs.

May 1993 271
Copyright X 1990-1993 Thinking Machines Corporation

2 C* Programming Guide

On each VU, the data representing a parallel variable is arranged in a subgrid.
The subgrids on each VU are always the same size. Elements in the subgrids on
some VUs may not correspond to positions of the parallel variable; these are
called garbage positions and are explained in Appendix B.

Each subgrid can be thought of as a multidimensional array of elements. For the
purposes of computation, however, it is simpler to view the subgrid as a 1-dimen-
sional array of elements, since we're not particularly concerned with the ordering
of the elements in the subgrid. The total number of positions in each subgrid is
called the subgrid size. The function CMCshape_subgrid_size returns a
shape's subgrid size; see Section B.5. In the current C* implementation, the
subgrid size is always a multiple of eight on the vector units; this restriction does
not apply on the nodes.

Suppose we have a parallel integer declared in a shape that has 16 subgrid
elements in each VU:

shape [positionsof(physical) * 16]S;

int:S a;

The representation of a in VU memory is such that each VU has 16 integer
elements, contiguous in memory. If a is stored at the memory location
0x50001448 on each VU, then the VU memory representing a would be:

0x50001448:

0x5000144c:

0x5000145D0:

0x50001484:

a subgrid 0

a subgrid 1

a subgrid 2

a subgrid 15

Parallel structures and arrays are represenented such that the structure members
and array elements are contiguous in memory. Suppose we declare:

struct tri { int x, y, z;

struct tri:S b;
};

4

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

4

4

C* Programming Guide272

Appendir C. Memoiy Layout on the CM-S 273

If b is stored at location Ox50001488, it would be stored as:

0x50001488: b.X subgrid 0

0x5000148c: b.y subgrid 0

0x50001490: b.z subgrid 0

0x50001494: b.z subgrid 1

0x50001498: b.y subgrid 1

0x5000149c: b.z subgrid 1

Ox500014aO: b.z subgrid 2

0x50001544: b.z subgrid 15

Similarly, if we declare:

float:S c[4];

and c is stored at location 0x50001548, it would be stored as:

0x50001548:

0x5000154c:

0x50001540:

0x50001544:

0x50001558:

0x50001644:

[1O]

ell]
c[21
c 3]

c lo]

subgrid 0

subgrid 0

subgrid 0

subgrid 0

subgrid 1

c[3] subgrid 15

The distance in memory between successive subgrid elements is called the
memory stride. For a the memory stride is 4 bytes, for b it is 12 bytes, and for
c it is 16 bytes. (In general, the memory stride for a parallel variable is the
number of bytes that sizeof would return when applied to the variable.)

C.2 Pointers to Parallel Variables

In C*, the representation of a pointer to a parallel variable is different from that
of a pointer to a scalar variable, since it must contain more information than a
simple memory address. In particular, a pointer to a parallel variable carries three
pieces of information:

the parallel variable's memory address

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

I

Appendix C. Memory Layout on the CM-5 273

* its memory stride

* its shape

A pointer to a parallel variable is simply a scalar data type that contains all of this
information. (The current CM-5 C* implementation uses 16 bytes to represent a
pointer to a parallel variable.)

For example, if we declare

int: void *p;

and assign (using b declared in the previous section):

p = &b.y;

then p will have:

* a memory address that is the address of the first subgrid element of b .y
(four bytes offset from the address of b)

* a memory stride that is 12 bytes (the distance between successive subgrid
elements of b. y)

* a shape, which is s

Because a pointer to a parallel variable may point to a member of a parallel
structure or an element of a parallel array, the memory stride is not necessarily
the size of the element pointed to. In the example above, although p points to a
4-byte integer, its memory stride is 12 bytes.

C.3 Manipulating Pointers to Parallel Variables

You can use the shapeof intrinsic to access the shape associated with a pointer
to a parallel variable. For example,

shapeof (*:p)

evaluates to s when p points to b. y.

Two functions declared in <csshape.h> allow access to a pointer's memory
address and stride. These functions are:

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

274 C* Programming Guide

Ap- --p- ICMe---ouont -S 275MI
void *CMCpointer_mem_addr(void:void *p);

sizet CMC_pointer_mem_stride(void:void *p);

The memory address returned by CMCpointer_mem_addr is a VU instruc-
tion-space address; it is not a valid address on the partition manager. The stride
returned by CMCpointer_mem_stride is in bytes.

It is also possible to construct a pointer to a parallel variable, given address,
stride, and shape information. The function cc_ make_pointer declared in
<csshape.h> accomplishes this:

void:void *CMC_make_pointer(void *addr, size_t stride,

shape s);

Finally, the function CMC_changepointer_shape, also declared in
<cashape .h>, changes the shape associated with a pointer:

void:void *CMCchangepointer_shape(void:void *p,

shape s);

Note that this function could be written in terms of CMC_makepointer,
CMCpointer_mem_addr,and CMCpointer_mem_stride.Itisdiscussedin
more detail in the next section.

C.4 Shape Aliasing

Advanced C* users may want to take advantage of the primitives discussed in
the previous section to allow parallel variables to be aliased so that the data is
used as if it were in another shape. This shape aliasing can allow data to be
manipulated in different shapes without actually performing any communication
operations, thus increasing performance.

Accomplishing shape aliasing requires a thorough understanding of how C* lays
out parallel variables in memory. Appendix B and Section C.1 should both be
consulted before attempting it. In particular, shape aliasing where garbage posi-
tions are used in a shape's layout can be tricky. Careful use of
allocatedetailed_ shape may be required in any case.

May 1993
Copyright C 1990-1993 Thinking Machines Corporation

Appendiz C. Memory Layout on the CM-5 275

C.41 Examples

Two examples are provided to demonstrate shape aliasing.

The first example, shown below, demonstrates how data in a 2-dimensional
shape can be viewed as data in a 1-dimensional shape. This technique is used to
accomplish a rank operation on a 2-dimensional data set, treating it as if it were
a 1-dimensional data set. It uses CQc_chagepointer_shape to accomplish
shape aliasng.

#include <cscomm.h>

#include <assert.h>

#include <csshape.h>

#include <stdlib.h>

#include <stdio.h>

void check shape padding (shape s);

main()

{
shape [128] [positionsof(physical)]S1;
shape [128 * positionsof (physical)] S2;

int:S1 a, b; 4
int:S2 *pa, *pb;

int i, j;

/*
* Our shape aliasing in this example depends upon S1 and S2 having
* identical subgrid sizes and upon there being no padding used in
* the layout of each shape. The C* layout mechanism should guarantee
* that for the shapes declared above, but the code below verifies
* it.

*/
assert(CMC_shape_subgrid_size(S1) -- CMC_shape_subgrid_size(S2));

check shapepadding(S1);

check shapepadding(S2);

/*
* Initialize "a" with random values.

*/
with (S1)

{
a - prand() % 100;

}

/*
*Alias "pa" and "pb" so that they point to "a" and "b" but have 4

May 1993
Copyright 0 1990-1993 hinking Machincs Corporation

276 C* Prgramming Guide

Appendix C. Memory Layout on the CM-S 277

* S2 as their shapes.

*/
pa - CMC_change_pointer_shape(&a, S2);
pb - CMC_change_pointer_shape(&b, S2);

/*
* Rank the random values in "a" as if they were in a one-dimensional

* shape.
*/

with(S2)

{

*pb - rank(*pa, 0, CMCupward, CMC_none, CMC_nofield);
}

/*
* Print some of the results of the rank operation.

*/
for(i - O; i < 4; ++i)

{

for(j ' O; j < 4; ++j)

{
printf("[%d] [%d] value: %3d rank: %d\n",

i, j, [i] [j]a, [i] [j]b);

void check_shapepadding(shape s)

int axis, physical_dim, axis_mask;

/*
* For each axis, ensure that the product of the physical grid

* dimension and the subgrid dimension is equal to the shape's

* dimension. If this is not so, then the shape has positions that

* are used for padding, and our shape aliasing example will not

* work.

*/
for(axis - 0; axis < rankof(s); ++axis)

{

/*
* Calculate the dimension of the physical grid by counting the
* number of bits in the physical axis mask.

*/
axis_mask - CMC_shape physical_axis mask(s, axis);

physical_dim - 1;
while(axis mask)

if(axis mask & Oxl) physical_dim <<- 1;

*i ..taxismask >>- 1;

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

278 .C*.Progr -m-- m---g-Guide---.--- .. I
*
* Check that there is no padding for the axis.

*/
assert(dimof(s, axis) --

CMC_shape_subgrid_axis_length(s, axis) * physical_dim);

I

The second example demonstrates shape aliasing that allows a parallel array of
integers to be viewed as a single 2-dimensional parallel integer. This requires
both a sophisticated use of allocate_detailed_shape and manipulation of
pointer strides.

#include <assert.h>
#include <csshape.h>

#include <stdio.h>

shape allocate_alias_shape(shape orig_shape, int new_axis_len);

main()

{
shape [128 * positionsof(physical)]S1;

int:S1 a[10], b;

shape S2;

int:void *pa;

int i, j;

with(S1)

{

for(i - 0; i < 10; ++i)

{
a[i] - i * pcoord(O);

I

S2 - allocate_aliasshape(S1, 10);
pa - CMC_make_pointer(CMC_pointer_mem_addr(a), sizeof(int), S2);

with(S2)

{
/*
* The data in the array "a" can now be treated as a single
* two-dimensional parallel variable by dereferencing "pa".

* We check that the values pointed to by "pa" are correct, and

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

4

}

4

.

278 C* Programmting Guide

Appe]dfrc C. M..o.. Layout on the CM-S.. 2

* then add 1 to all of them.

*/
assert(&- (*pa -- pcoord(O) * pcoord(1)));

*pa +- 1;

I1

with (S1)

{

/*
* Similarly, we can still view the data as a 1-d parallel

* array:

*/
for(i - O; i < 10; ++i)

{
printf("a[%d]:", i);

for(j - 0; j < 4; ++j)

{
printf(" %3d", [j]a[i]);

printf(" ...\n");

}

0
/*
* allocate_alias_shape() creates a 2-d shape given a 1-d shape.

* The second dimension is used to alias a parallel array to be

* a simple type in this shape.

*/
shape allocate_alias_shape(shape orig_shape, int new axislen)

{
shape new shape;

unsigned long extents[2];

int subgrid_lengths[2];

int subgrid_sequences[2];

/*
* The scheme would be somewhat more complicated for multidimensional

* shapes.

/assert(rankof(origshape) 1);
assert(rankof(origshape) -- 1);

/*
* The new shape will be 2-d, with axis 0 having the original
* dimension and axis 1 having a dimension that is equal to the

* dimension of the array we are aliasing.

*/
extents[0O] dimof(orig_shape, 0);

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

Appendix C Memory ayout on the CM-5 279

}

280 C* Programming Guide~l~g

extents[1] - new axislen;

/*
* We use the original subgrid length for axis 0, and the array
* dimension for the subgrid length of axis 1. This ensures that

* axis 1 has no off-VU component.

*/
subgrid_lengths[0] CMC_shape_subgrid_axis_length(orig_shape, 0);

subgrid_lengths[l1] new_axislen;

/*
* These subgrid sequences ensure that axis 1 has the lowest stride,

* necessary to properly alias the array.

*/
subgrid_sequences[0] 1;

subgrid_sequences[1] - 0;

/*
* The weights, axis orderings, and physical masks are not specified
* because the other information sufficiently constrains our new

* shape.

*/
newshape - allocate_detailedshape(&new shape,

2, /*

extents,

NULL, /*

NULL, /*

NULL, /*
subgrid leng

subgridsequ

4'I rank */
weights */

axis orderings */

physical masks */

[ths,

lences);

/*
* Verify that the subgrid increments are correct.
*/

assert(CMC_shape_subgrid_axis_increment(newshape, 0) --

new_axislen);
assert(CMC_shape_subgrid_axis_increment(newshape, 1) -- 1);

return newshape;

I

May 1993

Copyright © 1990-1993 Thinking Machines Corporation

. C PIrogramming Guide280

Appendix D

CM-5 C* Table Lookup Utility

CM-5 C* provides an efficient mechanism for parallel lookups into a single table.
If you use this mechanism, C* replicates the table once per node or vector unit,
rather than in each position of a shape.

To use the table lookup utility, include the file <cstable.h>.

The utility consists of four functions:

Call CMC allocateshared table to allocate the table on the nodes.
It takes as its argument the size of the table (the total number of elements
in the table times their size in bytes), and it returns a pointer to a parallel
variable that indicates the table's location on the nodes. Its definition is:

void:void *CMC allocate shared table(size t table size);

It is legal to use the pointer returned by this function only with the other
table lookup functions.

Call CMCinitialize_shared table to put values into the table. Its
definition is:

void CMC initialize_shared table(void:void *table,

const void *values,

sizet tablesize);

where:

table is the pointer to the table, returned by
CMC allocate_shared_table.

values is a pointer to the scalar table values.

May 1993 281

Copyright © 1990-1993 Thinking Machines Corporation

2 2 - --------------------- O M N g G uide

tablesize is the size of the table in bytes. This is the same
size specified to the CMC_ailo-
catesshared_table function.

• Call CC_lookup_shared_table to do a lookup in the table on the
nodes. Its definition is:

void CMC_lookup_shared_table(void:current *result,

void:void *table,

int:current index,

sizet elementsize);

where:

result is a pointer to a parallel variable of the current
shape that holds the results of the lookup.

table is the parallel pointer to the table.

index is a parallel int of the current shape; its values
are the indices into the table.

elementsize is the size of each element in the table, in bytes. 4
Call CC free_shared table to deallocate the memory allocated on
the nodes to the table. Its definition is:

void CMC free shared table(void:void *table);

where table is the pointer returned by CMC_allo-
cate shared table.

D.1 An Example

In this example, a table of 24 ints is allocated and initialized in a 16384-position
shape on the nodes. Random numbers are used as the index into the table, and
the results of some lookups are printed. Finally, the memory for the table is freed.

#include <stdio.h>

#include <stdlib.h>
#include <cstable.h>

int table data[24] - {

14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,

23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2

May 1993

Copyright 0 1990-1993 Thinking Machines Corporation

C* Prvgramming Gukde282

Append --_ix- _~.:CM-S C_abl_- -- _y 2--8-3 " _
(0

main()

{
shape [16384]s;

int:s index, result;

void:void *table;

int i;

table - CMC_allocate_sharedtable(sizeof(tabledata));
CMCinitializeshared_table(table, tabledata,

sizeof(tabledata));

with(s)

index - prand() % 24;

CMC_lookup_shared table(&result, table, index,
sizeof(result));

}

for(i 0; i < 20; ++i)

printf("%d\n", [i]result);

}

CMC free shared table(table);

0
May 1993
Copyright @ 1990-1993 Thining Machines Corporation

Appendix D. CM-5 C* Table Lookup Utility 283

}

4

Of elements and positions: Participating in parallel operations.
Parallel operations within a where statement are carried out
only on parallel variable elements left active by the where
statement.

A dimension of a shape. Axes are numbered starting with 0 and
are read from left to right in a left index. For example, if a
shape is declared as " [256] [s5121 Shape", shape Shapes has
256 positions along axis 0 and 512 positions along axis 1.

An unsigned single-bit integer data type.

An attempt by more than one parallel variable element to send
values to or get a value from the same element at the same time.
C* provides mechanisms for avoiding collisions.

combiner type

context

In communication functions: The type of operation to be carried
out by the function-for example, add values, multiply them, or
perform a bitwise logical AND.

The active positions of a shape as set by a where statement.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

(IS

Appendix E

Glossary
~~~~~~~~~~~--- -*__ -----------------

active

axis

bool

collision

285

286 C* Programming Guide

coordinate A number that identifies a position or an element along an axis.
For example, the coordinates of parallel variable element
[61 [14] pi are 6 for axis O and 14 for axis 1.

corresponding elements
Elements of different parallel variables that are at the same posi-
tion. Corresponding elements have the same coordinates and the
same shape.

current shape The shape on whose parallel variables parallel operations can be
performed. The with statement selects the current shape.

current predeclared shape name
A shape name that C* equates to the current shape. Variables
declared to be of shape current (for example, in a function)
are of the shape that is current when the declaration is made.

direction In communication functions: The direction along an axis in 4
which a function is to perform its operation. An upward direc-
tion is from lower-numbered coordinates to higher; a downward
direction is from higher-numbered coordinates to lower.

element An individual data point of a parallel variable. A parallel vari-
able has one element at each position in its shape.

exclusive operation
In communication functions: An operation that excludes the first
position of a segment-bit scan set, and that includes the first po-
sition of a start-bit scan set in the operation for the preceding
scan set. Compare inclusive operation.

general communication
Communication in which any parallel variable element can send
a value to or get a value from any other element, whether or not
their positions are in the same shape. Compare grid commu-
nication.

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Andix E ary 287

get operation An operation in which a parallel variable gets values from
another parallel variable. For example: "dest -
[index] source;".

grid communication
Communication in which a parallel variable sends values to or
gets values from another parallel variable in the same shape, us-
ing the coordinates of the parallel variable's elements. Compare
general communication.

hypetplane In communication functions: A set of positions whose coordi-
nates are allowed to differ along more than one axis. Compare
scan class.

inactive Of elements and positions: Not participating in parallel
operations.

inclusive operation
In communication functions: An operation that includes the first
position of the scan set. Compare exclusive operation.

intrinsic function

left indexing

multicoordinate

notify bit

A function that is defined as part of the language.

A method of specifying an element or elements of a parallel
variable, or the dimension(s) of a shape, using values in brackets
to the left of the variable or shape's name.

A value obtained by the make_multi coordinate function
that specifies which element of a parallel variable is to be spread
through each hyperplane for the copy multispread function.

In the send function: a bool-sized parallel variable, each ele-
ment of which can be set when the corresponding element of the
destination parallel variable receives a value.

A

May 1!993
Copyright O 1990-1993 Thinking Machines Corporation

Appendix E Glossary 287

288 C--a-g--------Guide

parallel operation

parallel variable

pcoord function

physical shape

position

predeclared shape

promotion

rank

An operation carried out on more than one element of a parallel
variable at the same time.

A variable consisting of multiple data points, called elements,
arranged in a specified shape. The declaration "int: ShapeA
p;" declares pi to be an int-length parallel variable of shape
ShapeA. Compare scalar variable.

An intrinsic function that returns a parallel variable whose ele-
ments are initialized to their coordinates along a specified axis.

A shape predeclared by C*. It is 1-dimensional, with the number
of positions equal to the number of physical processors allocated
to the program at run time.

An area of a shape that can contain parallel variable elements. A
shape declared as [8192] ShapeB contains 8192 positions, ar-
ranged along one dimension. A parallel variable of a given
shape has an element in each position of that shape.

name
A shape name provided as part of the language. The three
predeclared shape names are current, physical, and void.

Changing a scalar variable into a parallel variable by replicating
the value of the scalar variable in each position of the shape.

The number of dimensions of a shape. A shape declared as
[s512 12561 ShapeA has rank 2. A shape can have up to 31

dimensions.

reduction operator
An operator that reduces a parallel variable to a single scalar
value by performing a combining operation. For example, the
reduction operator +- adds the values of active elements of a
parallel variable.

(L

May 1993
Copyright 0 1990-1993 Thinking Machins Corporation

288 C* Programming Guide

Apni Gos

In communication functions: A bool-sized parallel variable. An
element of an sbit, when set to 1, marks the beginning of a scan
set at the element's position. An sbit can be interpreted as a seg-
ment bit or as a start bit, depending on the value of the smode
argument to the function.

sca!ar variable

scan class

scan set

segment bit

senr address

sent operation

shape

A Standard C variable, having only one value. Compare parallel
variable.

In communication functions: A set of positions whose coordi-
nates differ only along a specified axis. Compare hyperplane,
scan set.

In communication functions: A subset of a scan class, the begin-
ning of which is marked by an sbit.

In communication functions: The interpretation of an sbit when
the value of the smode argument is CM_segmentbit. When
an sbit is a segment bit: 1) the sbit starts a scan set when the
value of its element is 1, whether or not it is in an active posi-
tion; 2) scan sets are not affected by the direction of the
operation; and 3) operations in one scan set never affect values
of elements in another scan set. Compare start bit.

An address that, along with a position's coordinates, uniquely
identifies that position among all positions in all shapes.

An operation in which a parallel variable element sends a value
to another element. For example: "[index] dest =
source;".

A template for parallel data. A shape is declared in a shape
statement and consists of a number of positions organized in up
to 31 dimensions. All parallel variables must have a shape, and
no parallel operations can be carried out unless a shape is made
current by a with statement.

May' 1993
Copyright 1990-1993 Thinking Machines Corporation

Appendix E. Glossary 289

sbit

290- C*Programmi-g-G-ide

shape-valued expression
An expression that can be resolved to a shape name, and can be
used anywhere a shape name is used. For example,
"shapeof (pl)" returns the name of the parallel variable p's
shape and can be used in place of that shape's name.

start bit In communication functions: The interpretation of an sbit when
the value of the smode argument is ca_start_bit. When an
sbit is a start bit: 1) an sbit starts a scan set only when the value
of its element is 1 and the element's position is active; 2) when
the direction is downward, scan sets are created from the higher
coordinate to the lower coordinate; and 3) in an exclusive opera-
tion, the position whose sbit element is 1 receives a value from
the preceding scan set, if there is one. Compare segment bit.

torus A doughnut-shaped surface. C* "torus" communication func-
tions use a grid as if it were wrapped into a torus, with the
opposite borders of the grid connected. An element that requires
a value from beyond the border gets it from the other side of the
grid.

void predeclared shape name
An extension of the ANSI keyword void. It specifies a shape
without indicating what the shape's name is. The void
predeclared shape name can be used only as the target shape of
a scalar-to-parallel pointer.

where statement A statement that sets the context for parallel operations within
its body. For example, "where (pl - 4)" causes parallel op-
erations to be carried out only on elements in positions where
the parallel variable pi is equal to 4.

with statement A statement that chooses the current shape. Parallel operations
within the body of a with statement must (with some excep-
tions) be carried out on parallel variables of the current shape.

wrapping In communication functions: Obtaining values from the other
side of the grid.

May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

q

t:

C* Programming Guide290

Index
IIN..

Symbols
(period), 140

1,48
:., 49-50, 77

&,4.2
not allowed with parallel-left-indexed

parallel variable, 132
&&, 45, 77
&-,57
%, 5;1

%%, 51-52

++,48
--, 55
*-, 55
/-,55
"-,57
I 1,48, 77

I-,56,74
<?,50-51

<?., 51-62
>?, 50-51
>?.., 51, 56

>-,48

A
active positions, 11, 63

See also positions
and scan sets, 183
obtaining the number of, 112
using cast, to obtain number of, 112
when shape first selected, 63
when there are no, 71-74

allocate_detailed shape

CM-2 version, 243

C(-5 version, 247
using, 261

allocate_shape, 108,210, 243
ANSI, 3

arrays
See also parallel arrays
and parallel structures, 30
and pointers, 85

arrays of shapes, 114
and pointers, 105-116
partially specifying, 104-105

axis, 19, 150

serial, 255
weighting, 257

axis sequence, 251
axis_mask, 205,234

B

bitwise AND, 57, 176

bitwise exclusive OR, 57, 176
bitwise OR, 56, 76, 176

used to prevent code from executing, 74
bitwise reduction operators, 56-57
block scope, branching into, 23, 28
bools, 58, 110

boolsizeof, 59, 223

border behavior, 151
and pcoord, 140

break, 40

and everywhere, 71
behavior in nested where statement, 70

C

C operators
with scalar and parallel operands, 44-47
with scalar LHS and parallel RHS, 45-47
with scalar operands, 43-44
with two parallel operands, 47-48

C*
and C, 3-4
program development facilities of, 5

May 1993
Copyright © .1990-1993 Thinking Machines Corporation

9*

291

n92 *Pormmnud

C* program
compiling, 15

executing, 15

casts, 112-114
parallel-to-scalar, 46, 114
scalar-to-parallel, 112

to a different shape, 113
<cm/cmtypes .h>, 243
CxC_changepointershape, 275
CC _combineradd, 176
CxC_combinercopy, 176
CXC ombiner logand, 176
CMC combinerlogior, 176

CMCcombinerlogxor, 176

CMCcombiner _max, 176
CfC_combiner min, 176
CMC combiner multiply, 176
CMC_combineroverwrite, 219, 222
CC combinert, 187
CMC communication directiont, 187

CMCdownward, 184

CMC e:Xclusive, 181

Cxc_i:nclusive, 181
CC_make pointer, 275
CMC_no_field, 187, 222
cMc_none, 187

CQC_ ointer_memadd,, 275
CMCpointer_mem_stride, 275
CC scan inclusion t, 187

CMCsegmentbit, 182
CCcsl3gmentmode_t, 187

fCc_sandaddrt, 211
CMCslape axis_oordering, 260
CM_shape_physicalaxis mask, 260
CMC_ hapesubgr idaxisincrement,

260
Cxc_slhapesubgridaxis_length, 260
ClCshape_subgridaxisouter_.count,

261

CMCsape _subgrid_.axis.outer
increment, 261

CMC_shape_subgrid_axis_sequence,
260

C C._s1ape_subgrid_orthogonal-
length, 261

CKC_shape_ubgridsize, 260, 272
CQCstart_bit, 182
CMcupward, 184

collisionmode, 215

collisions, 124
in get operations, 215-216
with parallel left indexing, 123-126

combiner, types of, 175-208
conditional expression, 49-50
conditional operator, 77
context, 63

See also where
effect on other contexts, 69
resetting, 65, 70

continue, 40

and everywhere, 71

behavior in nested where statement, 70
coordinates, 22, 76, 147, 149
copy.multispread, 178, 205-206, 232-235
copy reduce, 192-193

copyspread, 195-196, 232
.cS, 8
<cscomm.h>, 146
<csshape. h>, 260,261,274
current, 91, 97-98, 240

current shape, 11, 37, 63, 96
and pointers, 83, 84

D

deallocateshape, 109-110

demotion, parallel-to-scalar, 46
dimensions, 103

maximum number of, 109
partially specifying, 105

dimof, 23, 33, 105, 141
and pcoord, 141-142

direction. See upward direction, downward
direction

downward direction, 186
and scan sets, 184

May 1993
Copyright © 1993 Thinking Machines Corporation

C * Prpgramming Guide292

Index ' ffff.23

E

elements, 7, 9, 25, 118
and positions, 27-28
choosing, 176-186
corresponding, 27, 47
operations on, 67
sorting by rank, 223-225

else clause, 65-66
enumerate, 197-199
enums, parallel, 61

everywhere, 70-71,240
in functions, 95

exclusive operation, 181
extern, and shapes, 106

F

f ill_axis sescriptor, 245
float constants, 239
framlebuffer, :244

fro:m_grid, 158-161
fro:m_griddim, 152-158
from_torus, 165-169
fromtorusdim, 165-169
func:tion prototyping, 92, 240
functions

and shapes, 96-97
as shape-valued expressions, 97
intrinsic, 23
overloading, 100-101
passing by' reference, 94
use of everywhere in, 240
using parallel variables with, 91-94

G

garbage positions, 248
effect on performance, 259

general communication, 147, 242
use grid communication in preference to,

242
get function, 213-218

and parallel structures or parallel arrays,
216

collisions in, 215-216

9

get operation, 119-120, 214
and collisions, 123-124, 215-216
in functions, 95, 129
inactive positions in, 126-127
use send operation in preference to, 243

global, 206-207,209
goto, 40

and everywhere, 71
behavior in nested where statement, 70
branching into block containing shape

declaration, 23
branching into block with parallel variable

declaration, 28
grid communication, 146, 147, 175, 242

and inactive positions, 151-152
and pcoord, 139-142
aspects of, 149-152
direction of, 150
distance of, 151
use in preference to general

communication, 242

H

hyperplane, 204, 232

if, 56, 74
image buffer, 244
inactive positions, 68

See also positions
and parallel left indexing, 126-130
and scan sets, 183
and send operations, 220
behavior in grid communication, 151-152

index variable, use of, 121-122
initializing, using parallel variables, 41

L

left index, 34, 42
and scalar variables, 34
parallel, 118-135

and pcoord, 139

May 1993

Copyright © 1990-1993 Thinking Machines Corporation

Index 293

294 ZT..'Z-iZ-iZZ- C ------------- . . - G

limitations of, 132
what can be indexed, 132

precedence of, 35
local shape, assigning to a global shape, 107
logical AND operator, 45, 77
logical OR operator, 77
looping through all positions, 75

M

main, 240
make, 5

make multi_coord, 232-235
makeendaddess, 209-213, 223, 226,

230
matrix

multiplying diagonals in, 133-142
transposing, 138-140

maximum operator, 50-51
maximum reduction operator, 56
memory stride, 273, 275
minimum operator, 50-51
minimum reduction operator, 56
modulus operator, 51-52
multicoordinate, 232

obtaining, 233
multiapread, 178, 202-205

N

news order, 244
notify bit, 219, 222

0
overload, 100, 101

overloading, 91, 100-101

P
palloc, 103, 110-112
parallel arrays

declaring, 30-31
elements of, 31
getting, 216
initializing, 32

parallel indexes into, 86-89
sending, 221-223

parallel right indexing, 86
performance of, 246

parallel structures
declaring, 28-30
getting, 216
initializing, 32
sending, 221-223

parallel unions. See unions, parallel
parallel variables, 9

allocating storage for, 110-112
choosing an individual element of, 13, 34
communicating with scalar variables, 226
compared with scalar, 24-25
declaring, 25-28
declaring multiple, 26-28
declaring with a shape-valued expression,

114-115
initializing, 31-36, 41
mapping to another shape, 130-132
memory layout in CM-5 C*, 271
not of current shape, 41
obtaining information about, 32-33
passing as argument to function, 91-92
returning from function, 93-94
scope of, 28
sending, 218-221
unary operators for, 48

parallel-to-scalar assignment, 46
when no positions are active, 72

Paris, 4, 246
passing by value, 94
pcoord, 76, 135-139

and enumerate, 197
and grid communication, 139-142

pfree, 111
physical, 115
physical grids, 248, 263

effect on performance, 258
pointer arithmetic, 85-86
pointers

scalar-to-parallel, 82-84
adding a parallel variable to, 88-89
and parallel structures, 30

May 1993
Copyright © 1993 Thinking Machines Corporation

294 C* Prpgramming Guide

I - - --e- -- 295-
as arguments to a function, 92
CM-5 C* representation of, 273

scalar-to-scalar, 81

to shapes, 82
positions, 9

See also active positions, inactive positions
and elements, 27-28
definition of, 19
looping through all, 75

positionsof, 23, 33, 105

and where, 66
Prism,5
promotion, bool to int, 59
promotion, scalar to parallel, 44, 45, 112, 122

R

rank, 19, 103, 108, 145

sorting elements by, 223-225
rank function, 199-202, 223
rankof, 23, 33

and a partially specified shape, 104
and fully unspecified shape, 104

readfrom position, 226-227
read_from var, 227
reduce, 190-192
reduction assignment, 14

and global, 206
parallel-to-parallel, 54
parallel-to-scalar, 52
when no positions are active, 73
with a parallel LHS, 57
with send operation, 125

reduction operators, 52-58
list of, 54-55
precedence of, 58
unary, 53

return, 40
and everywhere, 71
behavior in nested where statement, 70

S
sbit, 179, 182, 183, 190

scalar variables, 10
communicating with parallel variables, 226
contrasted with ANSI definition, 24
in left index, 34
promoted to parallel, 44
use in preference to parallel variables, 239

scan, 176, 186-190
difference from reduce, 191

scan class, 176-208
subset of hyperplane, 204

scan set, 179-181
scan subclass, 179, 190
scan subset, 190
scope

of parallel variables, 28
of shapes, 23-24

segment bit, 182, 183

send address, 147, 149, 210
obtaining a single, 210-211
obtaining more than one, 211-213

send function, 218, 223
and parallel arrays or parallel structures,

221-223
and parallel variables, 218-221
differences from send operation, 219-220

send operation, 120-121
and collisions, 124-126
and send function, 219-220
comparing parallel left indexing and send,

219-220
in functions, 95, 129
inactive positions in, 127-128
use in preference to get operation, 243
with parallel left indexing, 219

send order, 244
serial axes, 255

effect on performance, 259
shape aliasing, 275
shape names, predeclared, 97, 115
shape selection, 10
shape-valued expression, 33, 39

declaring parallel variable with, 114-115
in casts, 113

May 1993
Copyright C) 1990-1993 Thinking Machines Corporation

Index 295

2-9 CProramm-n-Guid

shapeof,33

used with void shape, 99
using to access a pointer's shape, 274

shapes, 8

See also current shape
as arguments to functions, 96
choosing, 21
creating copies of, 106, 110
deallocating, 109-110
declaring, 21-23
declaring multiple, 22
default, 39
default layout on CM-5, 248
definition of, 19
dynamically allocating, 108-109
equivalence of, 106-107
fully uspecified, 103-104
maximum number of dimensions in, 19
not allowed in structures, 30
obtaining information about, 23-24
partially specified, 103-106
returned by functions, 96-97
scope of, 23
size restrictions on CM-2/200, 20
switching between, 70

smode, 182

spread, 194-195,202
start bit, 182
<stdlib.h>, 109, 110

structures. See parallel structures
subgrid layout, controlling, 254
subgrid length, effect on performance, 258
subgrid sequence, 252
subgrid-orthogonal-length, 258
subgrids, 249
switch

branching into block containing shape
declaration, 23

branching into block with parallel variable
declaration, 28

T

to_grid, 161
togrid dim, 161

totorus, 169-174
totorusdim, 169-174
torus, 165

U

unary operators and parallel variables, 48
unions, parallel, 60
upward direction, and scan sets, 184

V

variables. See parallel variables, scalar
variables

void predeclared shape name, 91, 98-100
used when returning a pointer, 99

W

where, 63-67, 140

and parallel-to-scalar assignment, 67
and positionsof, 66
and scalar code, 67-68
controlling expression of, 64
nesting, 68

while, 76
with, 11, 37-39, 63, 226, 230

nesting, 39-41, 69-70
using a shape-valued expression with, 39

wrapping, 151

writeto position, 229-230
writetopvar, 231

May 1993
Copyright 0 1993 Thinking Machines Corporation

0

296 C * Prpgramming Guide

